Stationary Stochastic Process

The behavior of a *stochastic process*, or simply a *process*, z(t) on a domain \mathcal{T} is characterized by the probability distributions of its finite dimensional restrictions $(z(t_1), \ldots, z(t_m))$,

$$p(z(t_1),\ldots,z(t_m)),$$

for all $t_1, \ldots, t_m \in \mathcal{T}$.

A process is (strictly) stationary if

$$p(z(t_1), \ldots, z(t_m)) = p(z(t_1 + h), \ldots, z(t_m + h)),$$

for all $t_1, \ldots, t_m, h \in \mathcal{T}$.

In (discrete time) time series analysis, \mathcal{T} is the integer lattice, so t_i and h will be integers. We will write z(t) as z_t .

Moments of Stationary Process

For m = 1 with a stationary process, $p(z_t) = p(z)$ is the same for all t. Its mean and variance are

$$\mu = E[z_t] = \int zp(z)dz, \quad \sigma^2 = E[(z_t - \mu)^2] = \int (z - \mu)^2 p(z)dz.$$

The *autocovariance* of the process at lag k is

$$\gamma_k = \operatorname{cov}[z_t, z_{t+k}] = E[(z_t - \mu)(z_{t+k} - \mu)].$$

The *autocorrelation* of the process is

$$\rho_k = \frac{E[(z_t - \mu)(z_{t+k} - \mu)]}{\sqrt{E[(z_t - \mu)^2]E[(z_{t+k} - \mu)^2]}} = \frac{\gamma_k}{\gamma_0},$$

where $\gamma_0 = \sigma^2$.

Autocovariance and Positive Definiteness

The covariance matrix of (z_1, \ldots, z_n) ,

$$\begin{pmatrix} \gamma_0 & \gamma_1 & \dots & \gamma_{n-1} \\ \gamma_1 & \gamma_0 & \dots & \gamma_{n-2} \\ \vdots & \vdots & \dots & \vdots \\ \gamma_{n-1} & \gamma_{n-2} & \dots & \gamma_0 \end{pmatrix} = \sigma^2 \begin{pmatrix} \rho_0 & \rho_1 & \dots & \rho_{n-1} \\ \rho_1 & \rho_0 & \dots & \rho_{n-2} \\ \vdots & \vdots & \dots & \vdots \\ \rho_{n-1} & \rho_{n-2} & \dots & \rho_0 \end{pmatrix},$$

is positive definite. In general, a bivariate function R(t,s) on \mathcal{T} is nonnegative definite if for all l_i real and all $t_i \in \mathcal{T}$,

$$\sum_{i,j} l_i l_j R(t_i, t_j) \ge 0.$$

For 1-D stationary process, the autocovariance R(t,s) = R(|t-s|)is generated from some univariate function R(h).

Weak Stationarity, Gaussian Process

A process is a *Gaussian process* if its restrictions $(z_{t_1}, \ldots, z_{t_m})$ follow normal distributions.

A process z_t on \mathcal{T} is *weakly stationary* of second order if

$$E[z_t] = E[z_0] = \mu$$
$$\operatorname{cov}[z_t, z_{t+h}] = \operatorname{cov}[z_0, z_h] = \gamma_h,$$

for all $t, h \in \mathcal{T}$. A Gaussian process that is weakly stationary of second order is also strictly stationary.

For z_t stationary, the linear function with coefficients l_1, \ldots, l_n ,

$$L_t = l_1 z_t + l_2 z_{t-1} + \dots + l_n z_{t-n+1},$$

is stationary. These include $\nabla z_t = z_t - z_{t-1}$ and higher order differences $\nabla^d z_t$.

Examples: AR(1) and MA(1) Processes

Let a_t be independent with $E[a_t] = 0$ and $E[a_t^2] = \sigma_a^2$. The process a_t is called a *white noise* process.

Suppose z_t satisfies $z_t = \phi z_{t-1} + a_t$, a first order *autoregressive* (AR) process, with $|\phi| < 1$ and z_{t-1} independent of a_t . It is easy to verify that $E[z_t] = 0$ and

$$\gamma_0 = \sigma_a^2 / (1 - \phi^2), \qquad \rho_k = \phi \rho_{k-1}, \qquad \rho_k = \phi^{|k|}$$

Let $z_t = a_t - \theta a_{t-1}$, a first order moving average (MA) process. It is easy to verify that $E[z_t] = 0$ and

$$\gamma_0 = \sigma_a^2 (1 + \theta^2), \qquad \gamma_1 = \sigma_a^2 (-\theta), \qquad \gamma_k = 0, \quad k > 1.$$

Examples of Nonstationary Processes

Consider a random walk with drift, $z_t = z_{t-1} + \delta + a_t$, t > 0, with $z_0 = 0$, δ a constant, and a_t white noise. It is easy to calculate

$$E[z_t] = \delta t, \quad \operatorname{var}[z_t] = t\sigma_a^2,$$

so z_t is nonstationary. The difference $w_t = z_t - z_{t-1}$ however is stationary.

Consider $z_t = \mu_t + y_t$, with μ_t a deterministic function and y_t a stationary process. $E[z_t] = \mu_t + E[y]$ depends on t, so z_t is nonstationary.

For
$$\mu_t = \delta t$$
, $w_t = z_t - z_{t-1}$ is stationary.

For $\mu_t = A\cos(2\pi t/k) + B\sin(2\pi t/k)$, $w_t = z_t - z_{t-k}$ is stationary.

Estimation of Mean

Observing z_1, \ldots, z_N , one estimates $\mu = E[z_t]$ using $\bar{z} = \sum_{t=1}^{N} z_t / N$, with the variance $\operatorname{var}[\bar{z}] = \frac{1}{N^2} \sum_{t=1}^{N} \sum_{s=1}^{N} \gamma_{t-s} = \frac{\gamma_0}{N} \left[1 + 2 \sum_{k=1}^{N-1} (1 - \frac{k}{N}) \rho_k \right].$ Assuming $\sum_{k} |\rho_k| < \infty$, it can be shown that as $N \to \infty$, $N \operatorname{var}[\overline{z}] \to \gamma_0 (1 + 2 \sum_{k=1}^{\infty} \rho_k),$ which yields the "large sample" variance $(\gamma_0/N)(1+2\sum_{k=1}^{\infty}\rho_k)$. Compare with the familiar *i.i.d.* result $var[\bar{z}] = \sigma^2/N$, the effective sample size becomes $N/(1+2\sum_{k=1}^{\infty}\rho_k)$ due to autocorrelation. The factor $(1+2\sum_{k=1}^{\infty}\rho_k)$ is 1 for white noise, $(1+\phi)/(1-\phi)$ for AR(1), and $(1 - \theta)^2 / (1 + \theta^2)$ for MA(1).

Estimation of Autocorrelation Function

To estimate γ_k , one uses the sample covariance function

$$c_k = \frac{1}{N} \sum_{t=1}^{N-k} (z_t - \bar{z}) (z_{t+k} - \bar{z}).$$

To estimate ρ_k , one uses the sample autocorrelation function

 $r_k = c_k/c_0.$

Both $c_{|t-s|}$ and $r_{|t-s|}$ are nonnegative definite.

It can be shown that

$$E[c_k] \approx \gamma_k - \frac{k}{N} \gamma_k - \frac{1}{N} \gamma_0 \left(1 + 2 \sum_{v=1}^{\infty} \rho_v \right) = \gamma_k + O(N^{-1}),$$

and that

$$E[r_k] \approx \rho_k - \frac{k}{N}\rho_k - \frac{1}{N}(1 + 2\sum_{v=1}^{\infty}\rho_v) = \rho_k + O(N^{-1}),$$

so c_k and r_k are asymptotically unbiased estimates of γ_k and ρ_k .

Variance of Sample ACF

For Gaussian process with N large, it can be shown that

$$\operatorname{cov}[c_k, c_{k+s}] \approx \frac{1}{N} \sum_{v=-\infty}^{\infty} (\gamma_v \gamma_{v+s} + \gamma_v \gamma_{v+2k+s}),$$

so $N \operatorname{var}[c_k] \approx \sum_{v=-\infty}^{\infty} (\gamma_v^2 + \gamma_v \gamma_{v+2k})$. Similarly, one has

$$\operatorname{cov}[r_k, r_{k+s}] \approx \frac{1}{N} \sum_{v=-\infty}^{\infty} (\rho_v \rho_{v+s} + \rho_v \rho_{v+2k+s} + 2\rho_k \rho_{k+s} \rho_v^2) - 2\rho_k \rho_v \rho_{v+k+s} - 2\rho_{k+s} \rho_v \rho_{v+k}),$$

and $N \operatorname{var}[r_k] \approx \sum_{v=-\infty}^{\infty} (\rho_v^2 + \rho_v \rho_{v+2k} + 2\rho_k^2 \rho_v^2 - 4\rho_k \rho_v \rho_{v+k}).$

For k large, ρ_k often "dies out", leaving only the first terms contributing to the large-lag (co)variance.

Sample ACF in R

The acf function in the R library ts can be used to calculate and plot c_k and r_k , with standard errors superimposed for r_k . Part of the arguments and default options are listed below.

The default lag.max is $10 \log_{10} N$. The estimated variances for r_k are (1/N) for ci.type="white" (white noise model, with $\rho_v = 0$, v > 0), or $(1/N)(1 + 2\sum_{v=1}^{k-1} r_k^2)$ for ci.type="ma" (MA(k-1) model, with $\rho_v = 0, v > k - 1$).

The option type="partial" concerns partial autocorrelation, to be discussed later.

Some Elementary Fourier Analysis

A complex number a + ib can be written as $Ae^{i\theta} = A(\cos \theta + i \sin \theta)$, where $A = |a + ib| = \sqrt{a^2 + b^2}$, $\cos \theta = a/A$, and $\sin \theta = b/A$. $|e^{i\theta}| = 1$.

For any f(x) on (-1/2, 1/2) satisfying $\int_{-1/2}^{1/2} |f(x)|^2 dx < \infty$, one has the *Fourier series expansion*,

$$f(x) = \sum_{v=-\infty}^{\infty} f_v e^{-i2\pi v x},$$

where $f_v = \int_{-1/2}^{1/2} f(x) e^{i2\pi vx} dx$ are the Fourier coefficients. The Parseval's identity asserts that $\sum_{v=-\infty}^{\infty} |f_v|^2 = \int_{-1/2}^{1/2} |f(x)|^2 dx$.

For vector (z_1, \ldots, z_N) , the discrete Fourier transform (DFT) is given by

$$\zeta_v = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} z_t e^{-i2\pi t v/N}, \quad v = 1, \dots, N,$$

and the inverse DFT is given by

$$z_t = \frac{1}{\sqrt{N}} \sum_{v=1}^{N} \zeta_v e^{i2\pi t v/N}, \quad t = 1, \dots, N.$$

Spectral Density of Stationary Process

Herglotz's Theorem. A necessary and sufficient condition for ρ_k , $k = 0, \pm 1, \pm 2, \ldots$ to be the autocorrelation function for some stationary process z_t is that there exists a probability function (cdf) $F(\omega)$ on (-1/2, 1/2) such that

$$\rho_k = \int_{-1/2}^{1/2} e^{i2\pi k\omega} dF(\omega).$$

When $F(\omega)$ has a density $f(\omega)$, ρ_k are the Fourier coefficients of $f(\omega)$. The spectral density $f(\omega)$ has an expression

$$f(\omega) = \sum_{k=-\infty}^{\infty} \rho_k e^{-i2\pi k\omega}$$

For z_t real with $\rho_k = \rho_{-k}$, one has

$$f(\omega) = 1 + 2\sum_{k=1}^{\infty} \rho_k \cos 2\pi k\omega.$$

Examples of Spectral Density

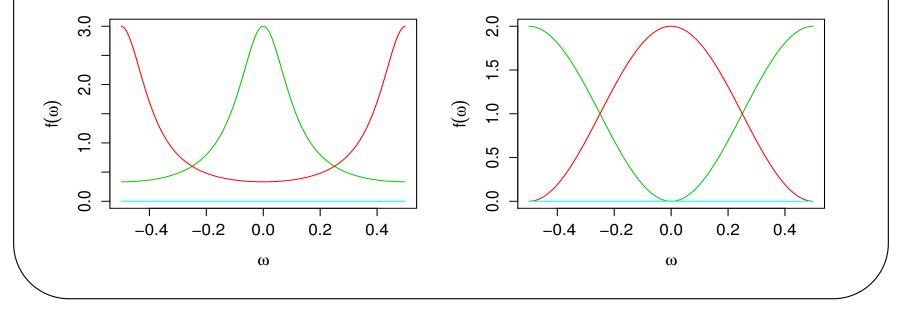
For white noise, $f(\omega) = 1$ is uniform.

For AR(1),
$$f(\omega) = \frac{1 - \phi^2}{1 - 2\phi \cos 2\pi\omega + \phi^2}$$
. Plots are with $\phi = \pm .5$.

For MA(1),
$$f(\omega) = 1 - 2 \frac{\theta \cos 2\pi\omega}{1 + \theta^2}$$
. Plots are with $\theta = \pm .7$.

AR(1) Spectrum

MA(1) Spectrum



Continuous and Discrete Spectrum

Consider $z_t = a_1 \cos 2\pi \lambda t + a_2 \sin 2\pi \lambda t$, where $a_1, a_2 \sim N(0, \sigma^2)$. One has $E[z_t] = 0$ and

$$\operatorname{cov}[z_t, z_s] = \sigma^2 \{ \cos 2\pi\lambda t \cos 2\pi\lambda s + \sin 2\pi\lambda t \sin 2\pi\lambda s \}$$
$$= \sigma^2 \cos 2\pi\lambda |t - s|,$$

so z_t is stationary with $\rho_k = \cos 2\pi \lambda k$. The spectral distribution $F(\omega)$ is discrete with mass at $\omega = \pm \lambda$.

The above example shows that a discrete spectrum corresponds to a sinusoidal deterministic process, thus a purely random process should have a spectral density. In general, a stationary process may have both deterministic and purely random components.