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/ Stationary Stochastic Process' \

The behavior of a stochastic process, or simply a process, z(t) on a

domain 7 is characterized by the probability distributions of its
finite dimensional restrictions (z(¢1), ..., z(tm)),

p(z(tl), e z(tm)),

for all ¢1,...,t,, €T.
A process is (strictly) stationary if

p(z(t1), ..., 2(tm)) =p(z(t1 + h), ..., 2(tm + h)),
for all t1,...,t;,h €T.

In (discrete time) time series analysis, T is the integer lattice, so t;

\ind h will be integers. We will write z(t) as z;. /
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/ Moments of Stationary Process' \

For m = 1 with a stationary process, p(z;) = p(z) is the same for

all t. Its mean and wvariance are
p=Elz] = /zp(Z)dz, 0? = E[(z — p)?] = /(Z — p)*p(2)dz.

The autocovariance of the process at lag k is

o = covlze, 2ok = E[(2 — 1) (zeen — ).

The autocorrelation of the process is

o = El(zt — p)(ze4k — 11)] _
VEL — w2 El(zeen — 2] 0

\ivhere Yo = 2. /
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Autocovariance and Positive Deﬁniteness.

The covariance matrix of (21, ..., 2zn),
( 70 Y1 e %7,—1\ ( Po P1 e pn—l\
1 Yo oo ... Yn—2 , | Pt PO ... Pn-—2
= 0O ,
K’Yn—l Yn—2 s e Yo ) \pn—l Pn—2 <. Lo )

is positive definite. In general, a bivariate function R(t¢,s) on T is

nonnegative definite if for all [; real and all t; € T,

Zi,j liljR(ti, tj) > 0.

For 1-D stationary process, the autocovariance R(t,s) = R(|t — s|)
is generated from some univariate function R(h).

N /
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/ Weak Stationarity, Gaussian Process' \

A process is a Gaussian process if its restrictions (z¢,, .. .,

tm

follow normal distributions.

A process z; on T is weakly stationary of second order if
Elz] = Elzo] = p
COV[Zt, Zt—}—h] = COV[an Zh] — Yh;

for all t,h € 7. A Gaussian process that is weakly stationary of
second order is also strictly stationary.

For z; stationary, the linear function with coefficients [y, ...,1,,
Ly =lize +loze1 4+ -+ lp2e—ny1,

is stationary. These include Vz; = 2; — 21 and higher order

\iiﬁ‘erences Vez. /

C. Gu Spring 2024




STAT 520 Stationary Stochastic Processes 5

Examples: AR(1) and MA(1) Processes'

Let a; be independent with Efa;] = 0 and E[a?] = o2. The process

a; is called a white noise process.

Suppose z; satisfies z; = ¢z;_1 + a¢, a first order autoregressive
(AR) process, with |¢| < 1 and z;_; independent of a;. It is easy to
verify that F[z;] = 0 and

Yo = 02/(1 - ¢2)7 Pk = QPE—1, Pk = ¢|k|-

Let z; = a; — fa;_1, a first order moving average (MA) process. It
is easy to verify that F|z;] = 0 and

Yo = o5 (1+ 6%), v1 = o2(—0), v =0, k>1.

- /
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Examples of Nonstationary Processes'

Consider a random walk with drift, z; = z;_1 +0 + a¢, t > 0, with

zo = 0, 0 a constant, and a; white noise. It is easy to calculate

Elz;) = 6t, var|z] = to?,

so z; is nonstationary. The difference w; = z; — 2,1 however is

stationary.

Consider z; = u¢ + y¢, with p; a deterministic function and y; a
stationary process. E|z:| = u: + Ely] depends on ¢, so z; is

nonstationary.

For puy = 0t, wy = 2z — z;_1 is stationary.

For pu; = Acos(2nt/k) 4+ Bsin(2nt/k), wy = 24 — z;—, is stationary.

- /
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4 N\
Estimation of Mean.

Observing 21, ..., zn, one estimates u = F|z;] using
zZ = Zi\i . 2t/N, with the variance

V&I’[ ]:Ng Zt 123 1 t— s:fyo[ +2Z ( %)pk}

Assuming » |, |pi| < 0o, it can be shown that as N — oo,

NV&I‘[ ]—>’70(1—|-22k 1pk)

which yields the “large sample” variance (o/N)(1+ 2> 72, pk)-

Compare with the familiar i.i.d. result var[z] = 0%/N, the effective
sample size becomes N/(1+4 2377, px) due to autocorrelation.

The factor (1+2) ,-, px) is 1 for white noise, (1 + ¢)/(1 — ¢) for
AR(1), and (1 —0)?/(1 + 6%) for MA(1).

- /
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/ Estimation of Autocorrelation Function' \

To estimate 7, one uses the sample covariance function

k=% it (2t — 2)(ze4n — 7).

To estimate pg, one uses the sample autocorrelation function
Ty = Ck/Co-

Both ¢|;_4 and r;_g are nonnegative definite.

It can be shown that
Eler] =y — 576 — w01 +23202, po) = +O(N ),
and that
Elr] = pp = xoe — v (1422200 p0) = pr + O(NTH),
\io cr and 1 are asymptotically unbiased estimates of v, and py. /
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Variance of Sample ACFI

For Gaussian process with IV large, it can be shown that
1 ©.@)

COV[Ck,Ck+S] ~ N Z (’Yv’}/v—l—s + va’Yv—l—Zk-l—S)?

V=—0CC

so Nvar[eg] = > 00 (72 4+ Yo Yut2k)- Similarly, one has

oo

1

COV[Tka Tk—l—S] ~ N Z (pvpv—l—s + PvPuv+2k+s + 2,0k,0k—|—s,012}

= 2Pk PvPutkts — 2PktsPvPo+k)s
and N var[ry] = > 02 (p2 + poputar + 20508 — 4PkPoPo+k)-

For k large, pi often “dies out”, leaving only the first terms

\iontributing to the large-lag (co)variance.

~

/
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/ Sample ACF in RI \

The acf function in the R library ts can be used to calculate and
plot ¢ and 7, with standard errors superimposed for r,. Part of
the arguments and default options are listed below.

acf (x,lag.max=NULL,type=c("cor","cov","partial"),
plot=TRUE,demean=TRUE, .. .)
plot.acf(acf.obj,ci=0.95,ci.col="blue",

ci.type=c("white","ma"),...)

The default 1lag.max is 10log,;y N. The estimated variances for ry
are (1/N) for ci.type="white" (white noise model, with p, = 0,
v > 0),or (1/N)(1+ 225;% r#) for ci.type="ma" (MA(k-1)
model, with p, =0, v > k —1).

The option type="partial" concerns partial autocorrelation, to be

/
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A complex number a + ib can be written as Ae'’ = A(cosf + isin6),
where A =

For any f(z) on (—1/2,1/2) satisfying f 172 | f(z ‘ dxr < oo, one has the
Fourier series expansion,

where f, = f_1/2 f(x)e™*dx are the Fourier coefficients. The
Parseval’s identity asserts that > 50 | f,|* = 1/2 | f(z |2d:13.

For vector (z1,...,2n), the discrete Fourier transform (DFT) is given by

and the inverse DF'T is given by

Some Elementary Fourier Analysis' \

la + ib| = Va2 + b2, cos® = a/A, and sinf = b/A. |e*| = 1.

f(ZE) — Z?O)O:_oo fve—iQTrv:c7

1/2
1/2

—i27tv /N
)

1 N
Cv:ﬁztzlzte v=1,..., N,

— ﬁzszl CveiQﬂtv/N7 L= 17"'7N' /

C. Gu

Spring 2024



STAT 520 Stationary Stochastic Processes

-

C. Gu

Spectral Density of Stationary Process'

Herglotz’s Theorem. A necessary and sufficient condition for pg,
k=0,+1,4+2,... to be the autocorrelation function for some

stationary process z; is that there exists a probability function
(cdf) F(w) on (—=1/2,1/2) such that

pr = [ 117, €PTHdF ().

When F'(w) has a density f(w), pr are the Fourier coefficients of
f(w). The spectral density f(w) has an expression

f(w) — ZZO:_OO pke—wwkw.

For z; real with pr = p_g, one has

\\ flw)=1+2>"" picos2mkw. /

12
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/ Examples of Spectral Density'

For white noise, f(w) =1 is uniform.

1 — ¢? .
For AR(1), f(w) = Ty ——sE Plots are with ¢ = +£.5.
6 cos 2
For MA(1), f(w) =1—2 (1;o—s|,_ sz. Plots are with § = +£.7.
AR(1) Spectrum MA(1) Spectrum
N —(|).4 —(;.2 OIO 0|2 014 N —(I').4 —(|).2 O{O O|2 OI4

~

/
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Continuous and Discrete Spectrum'

Consider z; = a1 cos 2w\t + as sin 2w \t, where a1, as ~ N(0,0?).
One has F[z;] = 0 and

cov|z, z5] = 0*{cos 2\t cos 2 \s + sin 2w\t sin 27 \s}

= 0% cos 2mA|t — s,

so z; 18 stationary with pr = cos 2w Ak. The spectral distribution

F(w) is discrete with mass at w = £\.

The above example shows that a discrete spectrum corresponds to
a sinusoidal deterministic process, thus a purely random process
should have a spectral density. In general, a stationary process may
have both deterministic and purely random components.

- /
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