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✫

✩

✪

Stationary Stochastic Process

The behavior of a stochastic process, or simply a process, z(t) on a

domain T is characterized by the probability distributions of its

finite dimensional restrictions
(

z(t1), . . . , z(tm)
)

,

p
(

z(t1), . . . , z(tm)
)

,

for all t1, . . . , tm ∈ T .

A process is (strictly) stationary if

p
(

z(t1), . . . , z(tm)
)

= p
(

z(t1 + h), . . . , z(tm + h)
)

,

for all t1, . . . , tm, h ∈ T .

In (discrete time) time series analysis, T is the integer lattice, so ti

and h will be integers. We will write z(t) as zt.
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✫

✩

✪

Moments of Stationary Process

For m = 1 with a stationary process, p(zt) = p(z) is the same for

all t. Its mean and variance are

µ = E[zt] =

∫

zp(z)dz, σ2 = E
[

(zt − µ)2
]

=

∫

(z − µ)2p(z)dz.

The autocovariance of the process at lag k is

γk = cov[zt, zt+k] = E
[

(zt − µ)(zt+k − µ)
]

.

The autocorrelation of the process is

ρk =
E
[

(zt − µ)(zt+k − µ)
]

√

E
[

(zt − µ)2]E[(zt+k − µ)2
]

=
γk
γ0

,

where γ0 = σ2.
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✫

✩

✪

Autocovariance and Positive Definiteness

The covariance matrix of (z1, . . . , zn),














γ0 γ1 . . . γn−1

γ1 γ0 . . . γn−2

...
... . . .

...

γn−1 γn−2 . . . γ0















= σ2















ρ0 ρ1 . . . ρn−1

ρ1 ρ0 . . . ρn−2

...
... . . .

...

ρn−1 ρn−2 . . . ρ0















,

is positive definite. In general, a bivariate function R(t, s) on T is

nonnegative definite if for all li real and all ti ∈ T ,
∑

i,j liljR(ti, tj) ≥ 0.

For 1-D stationary process, the autocovariance R(t, s) = R
(

|t− s|
)

is generated from some univariate function R(h).
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✫

✩

✪

Weak Stationarity, Gaussian Process

A process is a Gaussian process if its restrictions (zt1 , . . . , ztm)

follow normal distributions.

A process zt on T is weakly stationary of second order if

E[zt] = E[z0] = µ

cov[zt, zt+h] = cov[z0, zh] = γh,

for all t, h ∈ T . A Gaussian process that is weakly stationary of

second order is also strictly stationary.

For zt stationary, the linear function with coefficients l1, . . . , ln,

Lt = l1zt + l2zt−1 + · · ·+ lnzt−n+1,

is stationary. These include ∇zt = zt − zt−1 and higher order

differences ∇dzt.
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✫

✩

✪

Examples: AR(1) and MA(1) Processes

Let at be independent with E[at] = 0 and E[a2t ] = σ2
a. The process

at is called a white noise process.

Suppose zt satisfies zt = φzt−1 + at, a first order autoregressive

(AR) process, with |φ| < 1 and zt−1 independent of at. It is easy to

verify that E[zt] = 0 and

γ0 = σ2
a/(1− φ2), ρk = φρk−1, ρk = φ|k|.

Let zt = at − θat−1, a first order moving average (MA) process. It

is easy to verify that E[zt] = 0 and

γ0 = σ2
a(1 + θ2), γ1 = σ2

a(−θ), γk = 0, k > 1.
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✫

✩

✪

Examples of Nonstationary Processes

Consider a random walk with drift, zt = zt−1 + δ + at, t > 0, with

z0 = 0, δ a constant, and at white noise. It is easy to calculate

E[zt] = δt, var[zt] = tσ2
a,

so zt is nonstationary. The difference wt = zt − zt−1 however is

stationary.

Consider zt = µt + yt, with µt a deterministic function and yt a

stationary process. E[zt] = µt + E[y] depends on t, so zt is

nonstationary.

For µt = δt, wt = zt − zt−1 is stationary.

For µt = A cos(2πt/k) +B sin(2πt/k), wt = zt − zt−k is stationary.
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✫

✩

✪

Estimation of Mean

Observing z1, . . . , zN , one estimates µ = E[zt] using

z̄ =
∑N

t=1 zt/N , with the variance

var[z̄] = 1
N2

∑N
t=1

∑N
s=1 γt−s =

γ0

N

[

1 + 2
∑N−1

k=1 (1− k
N )ρk

]

.

Assuming
∑

k |ρk| < ∞, it can be shown that as N → ∞,

N var[z̄] → γ0
(

1 + 2
∑∞

k=1 ρk
)

,

which yields the “large sample” variance (γ0/N)
(

1 + 2
∑∞

k=1 ρk
)

.

Compare with the familiar i.i.d. result var[z̄] = σ2/N , the effective

sample size becomes N/
(

1 + 2
∑∞

k=1 ρk
)

due to autocorrelation.

The factor
(

1 + 2
∑∞

k=1 ρk
)

is 1 for white noise, (1 + φ)/(1− φ) for

AR(1), and (1− θ)2/(1 + θ2) for MA(1).
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✫

✩

✪

Estimation of Autocorrelation Function

To estimate γk, one uses the sample covariance function

ck = 1
N

∑N−k
t=1 (zt − z̄)(zt+k − z̄).

To estimate ρk, one uses the sample autocorrelation function

rk = ck/c0.

Both c|t−s| and r|t−s| are nonnegative definite.

It can be shown that

E[ck] ≈ γk − k
N γk − 1

N γ0
(

1 + 2
∑∞

v=1 ρv
)

= γk +O(N−1),

and that

E[rk] ≈ ρk − k
N ρk − 1

N

(

1 + 2
∑∞

v=1 ρv
)

= ρk +O(N−1),

so ck and rk are asymptotically unbiased estimates of γk and ρk.
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✫

✩

✪

Variance of Sample ACF

For Gaussian process with N large, it can be shown that

cov[ck, ck+s] ≈
1

N

∞
∑

v=−∞

(γvγv+s + γvγv+2k+s),

so N var[ck] ≈
∑∞

v=−∞(γ2
v + γvγv+2k). Similarly, one has

cov[rk, rk+s] ≈
1

N

∞
∑

v=−∞

(ρvρv+s + ρvρv+2k+s + 2ρkρk+sρ
2
v

− 2ρkρvρv+k+s − 2ρk+sρvρv+k),

and N var[rk] ≈
∑∞

v=−∞(ρ2v + ρvρv+2k + 2ρ2kρ
2
v − 4ρkρvρv+k).

For k large, ρk often “dies out”, leaving only the first terms

contributing to the large-lag (co)variance.
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✫

✩

✪

Sample ACF in R

The acf function in the R library ts can be used to calculate and

plot ck and rk, with standard errors superimposed for rk. Part of

the arguments and default options are listed below.

acf(x,lag.max=NULL,type=c("cor","cov","partial"),

plot=TRUE,demean=TRUE,...)

plot.acf(acf.obj,ci=0.95,ci.col="blue",

ci.type=c("white","ma"),...)

The default lag.max is 10 log10 N . The estimated variances for rk
are (1/N) for ci.type="white" (white noise model, with ρv = 0,

v > 0), or (1/N)(1 + 2
∑k−1

v=1 r
2
k) for ci.type="ma" (MA(k-1)

model, with ρv = 0, v > k − 1).

The option type="partial" concerns partial autocorrelation, to be

discussed later.
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✫

✩

✪

Some Elementary Fourier Analysis

A complex number a+ ib can be written as Aeiθ = A(cos θ + i sin θ),

where A = |a+ ib| =
√
a2 + b2, cos θ = a/A, and sin θ = b/A. |eiθ| = 1.

For any f(x) on (−1/2, 1/2) satisfying
∫

1/2

−1/2

∣

∣f(x)
∣

∣

2

dx < ∞, one has the

Fourier series expansion,

f(x) =
∑∞

v=−∞
fve

−i2πvx,

where fv =
∫

1/2

−1/2
f(x)ei2πvxdx are the Fourier coefficients. The

Parseval’s identity asserts that
∑∞

v=−∞
|fv|2 =

∫

1/2

−1/2

∣

∣f(x)
∣

∣

2

dx.

For vector (z1, . . . , zN ), the discrete Fourier transform (DFT) is given by

ζv = 1√
N

∑N
t=1

zte
−i2πtv/N , v = 1, . . . , N ,

and the inverse DFT is given by

zt =
1√
N

∑N
v=1

ζve
i2πtv/N , t = 1, . . . , N .
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✫

✩

✪

Spectral Density of Stationary Process

Herglotz’s Theorem. A necessary and sufficient condition for ρk,

k = 0,±1,±2, . . . to be the autocorrelation function for some

stationary process zt is that there exists a probability function

(cdf) F (ω) on (−1/2, 1/2) such that

ρk =
∫ 1/2

−1/2
ei2πkωdF (ω).

When F (ω) has a density f(ω), ρk are the Fourier coefficients of

f(ω). The spectral density f(ω) has an expression

f(ω) =
∑∞

k=−∞ ρke
−i2πkω.

For zt real with ρk = ρ−k, one has

f(ω) = 1 + 2
∑∞

k=1 ρk cos 2πkω.
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✫

✩

✪

Examples of Spectral Density

For white noise, f(ω) = 1 is uniform.

For AR(1), f(ω) =
1− φ2

1− 2φ cos 2πω + φ2
. Plots are with φ = ±.5.

For MA(1), f(ω) = 1− 2
θ cos 2πω

1 + θ2
. Plots are with θ = ±.7.
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✫

✩

✪

Continuous and Discrete Spectrum

Consider zt = a1 cos 2πλt+ a2 sin 2πλt, where a1, a2 ∼ N(0, σ2).

One has E[zt] = 0 and

cov[zt, zs] = σ2{cos 2πλt cos 2πλs+ sin 2πλt sin 2πλs}

= σ2 cos 2πλ|t− s|,

so zt is stationary with ρk = cos 2πλk. The spectral distribution

F (ω) is discrete with mass at ω = ±λ.

The above example shows that a discrete spectrum corresponds to

a sinusoidal deterministic process, thus a purely random process

should have a spectral density. In general, a stationary process may

have both deterministic and purely random components.
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