General Linear Process

Consider a general linear process of the form

$$
z_{t}=a_{t}+\sum_{j=1}^{\infty} \psi_{j} a_{t-j}=\left(1+\sum_{j=1}^{\infty} \psi_{j} B^{j}\right) a_{t}=\psi(B) a_{t}
$$

where a_{t} is a white noise process with $\operatorname{var}\left[a_{t}\right]=\sigma_{a}^{2}, B$ is the backward shift operator, $B z_{t}=z_{t-1}, B^{j} z_{t}=z_{t-j}$, and $\psi(B)$ is called the transfer function. Alternatively, one may write

$$
\left(1-\sum_{j=1}^{\infty} \pi_{j} B^{j}\right) z_{t}=\pi(B) z_{t}=a_{t}
$$

where the current value of z_{t} is "regressed" on the past values z_{t-j}. It is easily seen that $\pi(B) \psi(B)=1$.

It is known that any zero-mean stationary Gaussian process can be written in the MA form $z_{t}=\psi(B) a_{t}$ with $\sum_{j=1}^{\infty}\left|\psi_{j}\right|<\infty$.

The transfer function $\psi(B)$ defines a linear filter that transforms the input a_{t} to output z_{t}. The filter is stable with $\sum_{j=1}^{\infty}\left|\psi_{j}\right|<\infty$.

Autocovariance and Spectrum

Set $\psi_{0}=1$ and $\psi_{h}=0, h<0$. It is easy to calculate $\gamma_{k}=\sigma_{a}^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+k}$. Write $\gamma(B)=\sum_{k=-\infty}^{\infty} \gamma_{k} B^{k}$ as the autocovariance generating function. It follows that

$$
\begin{aligned}
\gamma(B) & =\sigma_{a}^{2} \sum_{k} \sum_{j} \psi_{j} \psi_{j+k} B^{k} \\
& =\sigma_{a}^{2} \sum_{j} \psi_{j} B^{-j} \sum_{k} \psi_{j+k} B^{j+k}=\sigma_{a}^{2} \psi\left(B^{-1}\right) \psi(B)
\end{aligned}
$$

where $B^{-1}=F$ is the forward shift operator.
Recall the definition of the power spectrum,

$$
p(\omega)=\sum_{k=-\infty}^{\infty} \gamma_{k} e^{-i 2 \pi k \omega} .
$$

Substituting $e^{-i 2 \pi \omega}$ for B in $\psi(B)$, one has

$$
p(\omega)=\sigma_{a}^{2} \psi\left(e^{i 2 \pi \omega}\right) \psi\left(e^{-i 2 \pi \omega}\right)=\sigma_{a}^{2}\left|\psi\left(e^{-i 2 \pi \omega}\right)\right|^{2}
$$

Stationarity and Invertibility

For the linear process $z_{t}=\psi(B) a_{t}$ to be a valid stationary process, $\psi\left(e^{-i 2 \pi \omega}\right)=\sum_{j=0}^{\infty} \psi_{j} e^{-i 2 \pi \omega j}$ must be convergent, i.e., $\psi(B)$ be convergent for $|B| \leq 1$. It suffices to have $\sum_{j=0}^{\infty}\left|\psi_{j}\right|<\infty$.

A process is invertible if $\pi(B)$ is convergent for $|B| \leq 1$. It suffices to have $\sum_{j=0}^{\infty}\left|\pi_{j}\right|<\infty$. To illustrate the idea, consider the MA(1) process $z_{t}=(1-\theta B) a_{t}$. Since $\sum_{0}^{k} x^{j}(1-x)=1-x^{k+1}$, one has

$$
z_{t}=-\sum_{j=1}^{k} \theta^{j} z_{t-j}+a_{t}-\theta^{k+1} a_{t-k-1}
$$

For $|\theta|<1$, one may let $k \rightarrow \infty$ and "invert" the process into an $\operatorname{AR}(\infty)$ process, with $\pi_{j}=\theta^{j}$ dying out as $j \rightarrow 0$. For $|\theta| \geq 1$, $\theta^{k+1} a_{t-k-1} \nrightarrow 0$. Also note that $\rho_{1}=-1 /\left(\theta+\theta^{-1}\right)$, so $\theta=b^{ \pm 1}$ are not identifiable. Invertibility removes the ambiguity and assures practical sensibility.

AR(p) Process: Stationarity

An autoregressive process of order p (i.e., $\mathrm{AR}(p)$) is defined by

$$
z_{t}=\phi_{1} z_{t-1}+\cdots+\phi_{p} z_{t-p}+a_{t}
$$

or $\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right) z_{t}=\phi(B) z_{t}=a_{t}$. The transfer function is given by $\psi(B)=\phi^{-1}(B) . \operatorname{AR}(p)$ is invertible by definition.

Write $\phi(B)=\prod_{j=1}^{p}\left(1-G_{j} B\right)$, where G_{j}^{-1} are the roots of $\phi(B)=0$. One has (assuming distinctive roots),

$$
\psi(B)=\prod_{j=1}^{p} \frac{1}{1-G_{j} B}=\sum_{j=1}^{p} \frac{K_{j}}{1-G_{j} B},
$$

so one must have $\left|G_{i}\right|<1$ for $\psi(B)$ to be convergent for all $|B| \leq 1$. In other words, one needs the roots of $\phi(B)$ to lie outside of the unit circle for $z_{t}=\phi^{-1}(B) a_{t}$ to be stationary.

To get the roots of $1+.6 x+.5 x^{2}$, use polyroot (c $(1, .6, .5)$) in R.

Examples: AR(1) and AR(2)

Stationarity condition

For $\operatorname{AR}(1)$, one needs $\left|\phi_{1}\right|<1$.
For $\operatorname{AR}(2)$, one needs $\left|g_{j}\right|<1$ in the expression

$$
\phi(B)=\left(1-g_{1} B\right)\left(1-g_{2} B\right)=1-\left(g_{1}+g_{2}\right) B-\left(-g_{1} g_{2}\right) B^{2}
$$

With g_{j} real, $\left(\phi_{1}, \phi_{2}\right)=\left(g_{1}+g_{2},-g_{1} g_{2}\right)$ over $g_{1}, g_{2} \in(-1,1)$. With g_{j} a conjugate pair $A e^{ \pm i 2 \pi \omega}$, one has $\left(\phi_{1}, \phi_{2}\right)=\left(2 A \cos 2 \pi \omega,-A^{2}\right)$ over $\omega \in(-1 / 2,1 / 2), A \in(0,1)$.

Autocorrelation

For $\operatorname{AR}(1), \rho_{k}=\phi_{1}^{k}, k \geq 0$.
For $\operatorname{AR}(2), \rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}, k>0 ; \rho_{0}=1, \rho_{1}=\phi_{1} /\left(1-\phi_{2}\right)$.

Examples: AR(1) and AR(2)

Variance

For $\operatorname{AR}(1), \gamma_{0}=\phi_{1} \gamma_{1}+\sigma_{a}^{2}$, so $\gamma_{0}=\sigma_{a}^{2} /\left(1-\phi_{1} \rho_{1}\right)=\sigma_{a}^{2} /\left(1-\phi_{1}^{2}\right)$.
For $\operatorname{AR}(2), \gamma_{0}=\phi_{1} \gamma_{1}+\phi_{2} \gamma_{2}+\sigma_{a}^{2}$, so

$$
\gamma_{0}=\frac{\sigma_{a}^{2}}{1-\phi_{1} \rho_{1}-\phi_{2} \rho_{2}}=\frac{1-\phi_{2}}{1+\phi_{2}} \frac{\sigma_{a}^{2}}{\left\{\left(1-\phi_{2}\right)^{2}-\phi_{1}^{2}\right\}}
$$

Power spectrum

For $\operatorname{AR}(1), p(\omega)=\sigma_{a}^{2} /\left|1-\phi_{1} e^{-i 2 \pi \omega}\right|^{2}=\sigma_{a}^{2} /\left(1+\phi_{1}^{2}-2 \phi_{1} \cos 2 \pi \omega\right)$.
For $\operatorname{AR}(2)$,

$$
\begin{aligned}
p(\omega) & =\frac{\sigma_{a}^{2}}{\left|1-\phi_{1} e^{-i 2 \pi \omega}-\phi_{2} e^{-i 4 \pi \omega}\right|^{2}} \\
& =\frac{\sigma_{a}^{2}}{1+\phi_{1}^{2}+\phi_{2}^{2}-2 \phi_{1}\left(1-\phi_{2}\right) \cos 2 \pi \omega-2 \phi_{2} \cos 4 \pi \omega} .
\end{aligned}
$$

AR(p) Process: Yule-Walker Equations

Taking expectations of the expression,

$$
z_{t-k} z_{t}=\phi_{1} z_{t-k} z_{t-1}+\cdots+\phi_{p} z_{t-k} z_{t-p}+z_{t-k} a_{t}
$$

one has, after dividing by γ_{0},

$$
\rho_{k}=\phi_{1} \rho_{k-1}+\cdots+\phi_{p} \rho_{k-p}, \quad k>0
$$

Substituting $k=1, \ldots, p$, one obtains the Yule-Walker equations

$$
\left(\begin{array}{ccccc}
1 & \rho_{1} & \rho_{2} & \ldots & \rho_{p-1} \\
\rho_{1} & 1 & \rho_{1} & \ldots & \rho_{p-2} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\rho_{p-1} & \rho_{p-2} & \rho_{p-3} & \ldots & 1
\end{array}\right)\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{p}
\end{array}\right)=\left(\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{p}
\end{array}\right)
$$

or $\mathbf{P}_{p} \boldsymbol{\phi}=\boldsymbol{\rho}_{p}$, and $\boldsymbol{\phi}=\mathbf{P}_{p}^{-1} \boldsymbol{\rho}_{p}$ expresses ϕ_{j} 's in terms of ACF's.

Partial Autocorrelation Function

Consider a Gaussian stationary process. The partial autocorrelation function at lag k is defined by

$$
\alpha_{k}=\operatorname{corr}\left(z_{k}, z_{0} \mid z_{1}, \ldots, z_{k-1}\right)
$$

It can be shown that α_{k} equals the k th element of $\boldsymbol{\phi}_{k}=\mathbf{P}_{k}^{-1} \boldsymbol{\rho}_{k}$, $\phi_{k k}$. Replacing ρ_{v} by r_{v} in the Yule-Walker equations, one gets the sample PACF $\hat{\phi}_{k k}$ as the k th element of $\hat{\boldsymbol{\phi}}_{k}=\hat{\mathbf{P}}_{k}^{-1} \hat{\boldsymbol{\rho}}_{k}$.

For $\mathrm{AR}(p)$ processes at lag $k>p$, one has $\phi_{k k}=0$, and it can be shown that, asymptotically, $\hat{\phi}_{k k} \sim N\left(0, \frac{1}{N}\right)$. Sample PACF's are available in R via acf with type="partial", or via pacf.

For non-Gaussian processes, one may still calculate $\phi_{k k}$ via ACFs as diagnostics for $\mathrm{AR}(p)$ models, though they may no longer be perceived as conditional correlations.

Recursive Yule-Walker Solutions and PACF

Let $h=k-1$. Partition $\mathbf{P}_{k}=\left(\begin{array}{cc}\mathbf{P}_{h} & \tilde{\boldsymbol{\rho}}_{h} \\ \tilde{\boldsymbol{\rho}}_{h}^{T} & 1\end{array}\right)$, where $\tilde{\boldsymbol{\rho}}_{h}$ is $\boldsymbol{\rho}_{h}$ in reverse order, and write $d=1-\tilde{\boldsymbol{\rho}}_{h}^{T} \mathbf{P}_{h}^{-1} \tilde{\boldsymbol{\rho}}_{h}=1-\boldsymbol{\rho}_{h}^{T} \mathbf{P}_{h}^{-1} \boldsymbol{\rho}_{h}=1-\boldsymbol{\phi}_{h}^{T} \boldsymbol{\rho}_{h}$. One has

$$
\mathbf{P}_{k}^{-1}=\left(\begin{array}{cc}
\mathbf{P}_{h}^{-1}+d^{-1} \mathbf{P}_{h}^{-1} \tilde{\boldsymbol{\rho}}_{h} \tilde{\boldsymbol{\rho}}_{h}^{T} \mathbf{P}_{h}^{-1} & -d^{-1} \mathbf{P}_{h}^{-1} \tilde{\boldsymbol{\rho}}_{h} \\
-d^{-1} \tilde{\boldsymbol{\rho}}_{h}^{T} \mathbf{P}_{h}^{-1} & d^{-1}
\end{array}\right) .
$$

Write $\tilde{\boldsymbol{\phi}}_{h}=\mathbf{P}_{h}^{-1} \tilde{\boldsymbol{\rho}}_{h}$. Straightforward algebra yields,

$$
\boldsymbol{\phi}_{k}=\mathbf{P}_{k}^{-1}\binom{\boldsymbol{\rho}_{h}}{\rho_{k}}=\binom{\boldsymbol{\phi}_{h}-d^{-1}\left(\rho_{k}-\boldsymbol{\phi}_{h}^{T} \tilde{\boldsymbol{\rho}}_{h}\right) \tilde{\boldsymbol{\phi}}_{h}}{d^{-1}\left(\rho_{k}-\boldsymbol{\phi}_{h}^{T} \tilde{\boldsymbol{\rho}}_{h}\right)}=\binom{\boldsymbol{\phi}_{h}-\phi_{k k} \tilde{\boldsymbol{\phi}}_{h}}{\phi_{k k}}
$$

which gives the recursive formulas for Yule-Walker solutions.
Consider Gaussian process with $\gamma_{0}=1$. The conditional covariance matrix of $\left(z_{0}, z_{k}\right) \mid\left(z_{1}, \ldots, z_{k-1}\right)$ is given by

$$
\left(\begin{array}{cc}
1 & \rho_{k} \\
\rho_{k} & 1
\end{array}\right)-\binom{\boldsymbol{\rho}_{h}^{T}}{\tilde{\boldsymbol{\rho}}_{h}^{T}} \mathbf{P}_{h}^{-1}\left(\boldsymbol{\rho}_{h}, \tilde{\boldsymbol{\rho}}_{h}\right) .
$$

It follows that $\alpha_{k}=\left(\rho_{k}-\boldsymbol{\rho}_{h}^{T} \mathbf{P}_{h}^{-1} \tilde{\boldsymbol{\rho}}_{h}\right) /\left(1-\boldsymbol{\rho}_{h}^{T} \mathbf{P}_{h}^{-1} \boldsymbol{\rho}_{h}\right)=\phi_{k k}$.

Yule-Walker (Moment) Estimates for AR(p)

Since $\gamma_{0}=\sum_{j=1}^{p} \phi_{j} \gamma_{j}+\sigma_{a}^{2}$, so $\sigma_{a}^{2}=\gamma_{0}\left(1-\boldsymbol{\phi}_{p}^{T} \boldsymbol{\rho}_{p}\right)$. Substituting
$\hat{\rho}_{j}=r_{j}, \hat{\gamma}_{0}=c_{0}$, one has $\hat{\boldsymbol{\phi}}_{p}=\hat{\mathbf{P}}_{p}^{-1} \hat{\boldsymbol{\rho}}_{p}, \hat{\sigma}_{a}^{2}=c_{0}\left(1-\hat{\boldsymbol{\phi}}_{p}^{T} \hat{\boldsymbol{\rho}}_{p}\right)=\hat{v}_{p}$.
Recall the recursive Yule-Walker solutions, and verify that $\left(1-\boldsymbol{\phi}_{k}^{T} \boldsymbol{\rho}_{k}\right)=\left(1-\boldsymbol{\phi}_{k-1}^{T} \boldsymbol{\rho}_{k-1}\right)\left(1-\phi_{k k}^{2}\right)$, one has

$$
\begin{aligned}
& \phi_{k k}=\frac{\rho_{k}-\boldsymbol{\rho}_{k-1}^{T} \tilde{\boldsymbol{\phi}}_{k-1}}{1-\boldsymbol{\phi}_{k-1}^{T} \boldsymbol{\rho}_{k-1}}=\gamma_{0}\left(\rho_{k}-\boldsymbol{\rho}_{k-1}^{T} \tilde{\boldsymbol{\phi}}_{k-1}\right) / v_{k-1}, \\
& \boldsymbol{\phi}_{k, k-1}=\boldsymbol{\phi}_{k-1}-\phi_{k k} \tilde{\boldsymbol{\phi}}_{k-1}, \\
& v_{k}=\gamma_{0}\left(1-\boldsymbol{\phi}_{k}^{T} \boldsymbol{\rho}_{k}\right)=v_{k-1}\left(1-\phi_{k k}^{2}\right),
\end{aligned}
$$

where $\boldsymbol{\phi}_{k}^{T}=\left(\boldsymbol{\phi}_{k, k-1}^{T}, \phi_{k k}\right)$. Putting hats on the parameters and starting with $\hat{\phi}_{11}=r_{1}$ and $\hat{v}_{1}=c_{0}\left(1-r_{1}^{2}\right)$, one obtains the Durbin-Levinson algorithm for fitting AR models.

Examples: AR(1), AR(2), and AR(3)

The Y-W equations for $\operatorname{AR}(1), \operatorname{AR}(2)$, and $\operatorname{AR}(3)$ are $\phi_{1}=\rho_{1}$,

$$
\left(\begin{array}{cc}
1 & \rho_{1} \\
\rho_{1} & 1
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}=\binom{\rho_{1}}{\rho_{2}}, \quad \text { and } \quad\left(\begin{array}{ccc}
1 & \rho_{1} & \rho_{2} \\
\rho_{1} & 1 & \rho_{1} \\
\rho_{2} & \rho_{1} & 1
\end{array}\right)\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)=\left(\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\rho_{3}
\end{array}\right) .
$$

The Durbin-Levinson algorithm proceeds as follows:

1. $\phi_{11}=r_{1} ; v_{1}=c_{0}\left(1-r_{1}^{2}\right)$.
2. $\phi_{22}=c_{0}\left(r_{2}-r_{1} \phi_{11}\right) / v_{1} ; \phi_{21}=\phi_{11}-\phi_{22} \phi_{11} ; v_{2}=v_{1}\left(1-\phi_{22}^{2}\right)$.
3. $\phi_{33}=c_{0}\left(r_{3}-r_{1} \phi_{22}-r_{2} \phi_{21}\right) / v_{2}$;

$$
\left(\phi_{31}, \phi_{32}\right)=\left(\phi_{21}, \phi_{22}\right)-\phi_{33}\left(\phi_{22}, \phi_{21}\right) ; v_{3}=v_{2}\left(1-\phi_{33}^{2}\right) .
$$

MA(q) Process: Invertibility

A moving average process of order q (i.e., $\mathrm{MA}(q))$ is defined by

$$
z_{t}=a_{t}-\theta_{1} a_{t-1}-\cdots-\theta_{q} a_{t-q}
$$

or $z_{t}=\left(1-\theta_{1} B-\cdots-\theta_{q} B^{q}\right) a_{t}=\theta(B) a_{t}$. The transfer function is given by $\psi(B)=\theta(B)$. $\mathrm{MA}(q)$ is stationary by definition.

Similar to the stationarity condition for $\mathrm{AR}(p)$, one needs the roots of $\theta(B)$ to lie outside of the unit circle for $z_{t}=\theta(B) a_{t}$ to be invertible. Let G_{j}^{-1} be the roots of $\theta(B)$ and consider the spectrum $p(\omega)=\sigma_{a}^{2} \prod_{j=1}^{q}\left|1-G_{j} e^{-i 2 \pi \omega}\right|^{2}$. For G_{j} real,

$$
\left|1-G_{j} e^{-i 2 \pi \omega}\right|^{2} \propto\left(G_{j}+G_{j}^{-1}-2 \cos 2 \pi \omega\right)
$$

so $G_{j}^{ \pm 1}$ are exchangeable. Similar arguments can be made for conjugate pairs of complex roots. Hence, MA (q) models come in " $2{ }^{q}$-plet", of which only one is invertible, barring $\left|G_{j}\right|=1$.

Examples: MA(1) and MA(2)

Invertibility condition

The invertibility of $\mathrm{MA}(1)$ and $\mathrm{MA}(2)$ is dual to the stationarity of $\mathrm{AR}(1)$ and $\mathrm{AR}(2)$.

Variance and autocorrelation

For $\mathrm{MA}(1), \gamma_{0}=\sigma_{a}^{2}\left(1+\theta_{1}^{2}\right) ; \rho_{1}=-\theta_{1} /\left(1+\theta_{1}^{2}\right), \rho_{k}=0, k>1$.
For $\mathrm{MA}(2), \gamma_{0}=\sigma_{a}^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)$;

$$
\rho_{1}=\frac{-\theta_{1}\left(1-\theta_{2}\right)}{1+\theta_{1}^{2}+\theta_{2}^{2}}, \quad \rho_{2}=\frac{-\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}, \quad \rho_{k}=0, \quad k>2
$$

Power spectrum

Replacing ϕ_{1} by θ_{1} and ϕ_{2} by θ_{2} in the power spectrums of $\operatorname{AR}(1)$ and $\operatorname{AR}(2)$, and move the denominators to the numerators, one gets the power spectrums of $\mathrm{MA}(1)$ and $\mathrm{MA}(2)$.

Multiplicity: MA(1) and MA(2)

Consider $z_{t}=(1-2 B) a_{t}$, which has the same autocorrelation function as the invertible $z_{t}=(1-0.5 B) a_{t}$.

Consider $z_{t}=\left(1-B-B^{2}\right) a_{t}=(1+0.618 B)(1-1.618 B) a_{t}$, which has the same autocorrelation function as the invertible $z_{t}=\left(1-0.382 B^{2}\right) a_{t}=(1+0.618 B)(1-0.618 B) a_{t}$, where $1 / 1.618=0.618$. The other two members of the family are $z_{t}=\left(1-2.618 B^{2}\right) a_{t}=(1+1.618 B)(1-1.618 B) a_{t}$ and $z_{t}=\left(1+B-B^{2}\right) a_{t}=(1+1.618 B)(1-0.618 B) a_{t}$.

The a_{t} in different expressions are independent but may have different variances.

ARMA (p, q) Process

An $\operatorname{ARMA}(p, q)$ model is of the form

$$
z_{t}-\phi_{1} z_{t-1}-\cdots-\phi_{p} z_{t-p}=a_{t}-\theta_{1} a_{t-1}-\cdots-\theta_{q} z_{t-q}
$$

or $\phi(B) z_{t}=\theta(B) a_{t}$, where $\phi(B)$ and $\theta(B)$ are polynomials of degree p and q in B. The stationarity and invertibility are governed by the roots of $\phi(B)$ and $\theta(B)$.

For $k>q$, since $\phi(B) z_{t}=\theta(B) a_{t}$ is uncorrelated with z_{t-k}, one has $\operatorname{cov}\left[\phi(B) z_{t}, z_{t-k}\right]=\phi(B) \rho_{k}=0$, or more explicitly,

$$
\rho_{k}=\phi_{1} \rho_{k-1}+\cdots+\phi_{p} \rho_{k-p}, \quad k>q .
$$

With the transfer function $\psi(B)=\phi^{-1}(B) \theta(B)$, the power spectrum of $\operatorname{ARMA}(p, q)$ is seen to be

$$
p(\omega)=\sigma_{a}^{2}\left|\theta\left(e^{-i 2 \pi \omega}\right)\right|^{2} /\left|\phi\left(e^{-i 2 \pi \omega}\right)\right|^{2} .
$$

Example: ARMA $(1,1)$

Stationarity and invertibility condition

For stationarity, one needs $\left|\phi_{1}\right|<1$, for invertibility, $\left|\theta_{1}\right|<1$.
Variance and autocorrelation
Note that $E\left[z_{t} a_{t}\right]=E\left[\left(\phi_{1} z_{t-1}+a_{t}-\theta_{1} a_{t-1}\right) a_{t}\right]=\sigma_{a}^{2}$, one has

$$
\gamma_{0}=E\left[\left(\phi_{1} z_{t-1}+a_{t}-\theta_{1} a_{t-1}\right)^{2}\right]=\phi_{1}^{2} \gamma_{0}+\sigma_{a}^{2}+\theta_{1}^{2} \sigma_{a}^{2}-2 \phi_{1} \theta_{1} \sigma_{a}^{2}
$$

so $\gamma_{0}=\sigma_{a}^{2}\left(1+\theta_{1}^{2}-2 \phi_{1} \theta_{1}\right) /\left(1-\phi_{1}^{2}\right)$. Similarly, one has

$$
\begin{aligned}
& \rho_{1}=\phi_{1}-\theta_{1} \sigma_{a}^{2} / \gamma_{0}=\frac{\left(\phi_{1}-\theta_{1}\right)\left(1-\phi_{1} \theta_{1}\right)}{1+\theta_{1}^{2}-2 \phi_{1} \theta_{1}}, \\
& \rho_{k}=\phi_{1}^{k-1} \rho_{1}, \quad k>1
\end{aligned}
$$

Power spectrum

$$
p(\omega)=\sigma_{a}^{2} \frac{\left|1-\theta_{1} e^{-i 2 \pi \omega}\right|^{2}}{\left|1-\phi_{1} e^{-i 2 \pi \omega}\right|^{2}}=\sigma_{a}^{2} \frac{1+\theta_{1}^{2}-2 \theta_{1} \cos 2 \pi \omega}{1+\phi_{1}^{2}-2 \phi_{1} \cos 2 \pi \omega}
$$

Moment Estimates for MA(q) and ARMA (p, q)

For an $\operatorname{MA}(q)$ model, one has $\gamma_{0}=\sigma_{a}^{2}\left(1+\sum_{j=1}^{q} \theta_{j}^{2}\right)$ and $\gamma_{k}=\sigma_{a}^{2}\left(-\theta_{k}+\sum_{j=1}^{q-k} \theta_{j} \theta_{j+k}\right), k \geq 1$. The moment estimates of σ_{a}^{2}, $\theta_{q}, \ldots, \theta_{1}$ can be obtained through a simple iteration,

$$
\begin{aligned}
\sigma_{a}^{2} & =c_{0} /\left(1+\sum_{j=1}^{q} \theta_{j}^{2}\right) \\
\theta_{k} & =-\left(c_{k} / \sigma_{a}^{2}-\sum_{j=1}^{q-k} \theta_{j} \theta_{j+k}\right), \quad k=q, \ldots, 1
\end{aligned}
$$

Remember that the solutions of θ_{j} and σ_{a}^{2} are not unique.
For an $\operatorname{ARMA}(p, q)$ model, one needs to use $c_{j}, j=0, \ldots, p+q$. One can solve ϕ_{j} from the equations,

$$
\gamma_{k}=\phi_{1} \gamma_{k-1}+\cdots+\phi_{p} \gamma_{k-p}, \quad k=q+1, \ldots, q+p .
$$

Note that $w_{t}=\phi(B) z_{t}=\theta(B) a_{t}$, and the ACF of w_{t} is $\gamma_{k}^{\prime}=\phi^{T} \Gamma_{k} \phi$, where $\phi^{T}=\left(1,-\phi_{1}, \ldots,-\phi_{p}\right)$ and Γ_{k} has (i, j) th entry γ_{k+j-i}. Use $c_{k}^{\prime}=\hat{\phi}^{T} \hat{\Gamma}_{k} \hat{\phi}$ in the MA iteration above to get θ_{j}.

Moment Estimates: ARMA(1,1)

When applied to an $\operatorname{ARMA}(1,1)$ process $(1-\phi B) z_{t}=(1-\theta B) a_{t}$, the algorithm for moment estimates proceeds as follows:

1. Solve ϕ from $r_{2}=\phi r_{1}$.
2. Calculate

$$
c_{0}^{\prime}=(1,-\phi)\left(\begin{array}{cc}
c_{0} & c_{1} \\
c_{1} & c_{0}
\end{array}\right)\binom{1}{-\phi}, \quad c_{1}^{\prime}=(1,-\phi)\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{0} & c_{1}
\end{array}\right)\binom{1}{-\phi} .
$$

3. Solve θ, σ_{a}^{2} from equations

$$
\sigma_{a}^{2}=\frac{c_{0}^{\prime}}{1+\theta^{2}}, \quad \theta=-\frac{c_{1}^{\prime}}{\sigma_{a}^{2}}
$$

Estimation of Mean

Consider $\phi(B) z_{t}=\mu+\theta(B) a_{t}$. It is easily seen that $E\left[z_{t}\right]=\mu /\left(1-\phi_{1}-\cdots-\phi_{p}\right)$. Recall the "large sample" variance of the sample mean \bar{z},

$$
\operatorname{var}[\bar{z}]=\frac{1}{n} \sum_{k=-\infty}^{\infty} \gamma_{k}=\frac{\gamma(1)}{n}=\frac{\sigma_{a}^{2}}{n} \psi^{2}(1)=\frac{\sigma_{a}^{2}}{n} \frac{\theta^{2}(1)}{\phi^{2}(1)}=\frac{p(0)}{n}
$$

where $\gamma(B)=\sigma_{a}^{2} \psi(B) \psi\left(B^{-1}\right)$ is the covariance generating function and $p(\omega)$ is the power spectrum. The moment estimate of μ is thus $\hat{\mu}=\hat{\phi}(1) \bar{z}$ with approximate standard error $\hat{\sigma}_{a}|\hat{\theta}(1)| / \sqrt{n}$.

Fitting an $\operatorname{ARMA}(1,1)$ model to Series A, one has $\hat{\phi}=.8683$, $\hat{\theta}=.4804$, and $\hat{\sigma}_{a}^{2}=.09842$. Further, $\bar{z}=17.06$ with s.e. $[\bar{z}] \approx \sqrt{\hat{p}(0) / n}=.0882$, and $\hat{\mu}=(1-.8683)(17.06)=2.25$ with s.e. $[\hat{\mu}]=\hat{\sigma}_{a}(1-\hat{\theta}) / \sqrt{n}=.0116$.

Linear Difference Equation and ACF

From the linear difference equation $\phi(B) \rho_{k}=0, k>q$, one can obtain a general expression for ρ_{k}.

Write $\phi(B)=\prod_{j=1}^{p}\left(1-G_{j} B\right)$, where G_{j}^{-1} are the roots of $\phi(B)$. It is easy to verify that $\left(1-G_{j} B\right) G_{j}^{t}=0$, so ρ_{k} has a term $A_{j} G_{j}^{k}$.

For a double root G_{j}^{-1}, one also has $\left(1-G_{j} B\right)^{2}\left(t G_{j}^{t}\right)=0$, so ρ_{k} has terms $\left(A_{j, 0}+A_{j, 1} k\right) G_{j}^{k}$. In general, a root G_{j}^{-1} of multiplicity m contributes terms $\sum_{v=0}^{m-1} A_{j, v} k^{v} G_{j}^{k}$.

For pairs of conjugate complex roots $\left|G_{j}\right|^{-1} e^{ \pm i \gamma_{j}}$, one has terms

$$
\left|G_{j}\right|^{k}\left(A_{j} e^{i \gamma_{j} k}+\bar{A}_{j} e^{-i \gamma_{j} k}\right)=2\left|G_{j}\right|^{k}\left|A_{j}\right| \cos \left(k \gamma_{j}+\alpha_{j}\right) .
$$

Assuming distinct roots, one has $\rho_{k}=\sum_{j=1}^{p} A_{j} G_{j}^{k}$, where A_{j} 's are determined by the initial values $\rho_{q}, \ldots, \rho_{q-p+1}$.

Examples: AR(2) and ARMA(2,1)

For $\left(1-0.4 B-0.21 B^{2}\right) z_{t}=(1-0.7 B)(1+0.3 B) z_{t}=a_{t}$, $\rho_{k}=A_{1} 0.7^{k}+A_{2}(-0.3)^{k}, k>0$, as $\phi(B) \rho_{k}=0, k>0 . A_{1}$ and A_{2} can be fixed via $\rho_{0}=1$ and $\rho_{-1}=\rho_{1}=\phi_{1} /\left(1-\phi_{2}\right)$.

For $\left(1-0.8 e^{i \pi / 3} B\right)\left(1-0.8 e^{-i \pi / 3} B\right) z_{t}=(1-0.5 B) a_{t}$,

$$
\begin{aligned}
\rho_{k} & =A\left(0.8 e^{i \pi / 3}\right)^{k}+\bar{A}\left(0.8 e^{-i \pi / 3}\right)^{k} \\
& =|A|(0.8)^{k} e^{i(\alpha+k \pi / 3)}+|A|(0.8)^{k} e^{-i(\alpha+k \pi / 3)} \\
& =(0.8)^{k} 2|A| \cos (k \pi / 3+\alpha) \\
& =(0.8)^{k}\{B \cos (k \pi / 3)+C \sin (k \pi / 3)\}, \quad k>1,
\end{aligned}
$$

where B and C can be fixed from $\rho_{0}=1$ and $\rho_{1} ; \rho_{1}$ and $\kappa=\sigma_{a}^{2} / \gamma_{0}$ satisfy equations $1=\phi_{1}^{2}+\phi_{2}^{2}+2 \phi_{1} \phi_{2} \rho_{1}+\left(1+\theta^{2}-2 \phi_{1} \theta\right) \kappa$ and $\rho_{1}=\phi_{1}+\phi_{2} \rho_{1}-\theta \kappa$, where $\phi_{1}=0.8, \phi_{2}=-0.64$, and $\theta=0.5$.

Reverse Time Stationary Models

A stationary process is characterized by its autocovariance and mean, independent of the time direction. In particular, models assuming forward or reverse time are mathematically equivalent.

Recall the autocovariance generating function of $z_{t}=\psi(B) a_{t}$, $\gamma(B)=\sigma_{a}^{2} \psi(B) \psi\left(B^{-1}\right)$. It is clear that $z_{t}=\psi(F) a_{t}$ has the same autocovariance, where $F=B^{-1}$ is the forward shift operator. For $\operatorname{ARMA}(p, q)$, let G_{j}^{-1} be the roots of $\theta(B)$ and H_{j}^{-1} those of $\phi(B)$. The same autocovariance is shared by all processes of the form

$$
\prod_{j=1}^{p}\left(1-H_{j} B^{ \pm 1}\right) z_{t}=\prod_{j=1}^{q}\left(1-G_{j} B^{ \pm 1}\right) a_{t}
$$

Consider an MA(1) process $z_{t}=a_{t}-\theta a_{t-1}$. For $|\theta|>1$, one has

$$
z_{t}=a_{t}-\theta a_{t-1}=(-\theta)\left(-\theta^{-1} a_{t}+a_{t-1}\right)=\tilde{a}_{t}-\theta^{-1} \tilde{a}_{t+1}
$$

an invertible reverse time $\mathrm{MA}(1)$ model, where $\tilde{a}_{t}=-\theta a_{t-1}$.

Model Identification via ACF/PACF

For $k>q$ with an $\mathrm{MA}(q)$ process, $\rho_{k}=0, E\left[r_{k}\right] \approx 0$, and $\operatorname{var}\left[r_{k}\right] \approx\left(1+2 \sum_{j=1}^{q} \rho_{j}^{2}\right) / N$.

For $k>p$ with an $\operatorname{AR}(p)$ process, $\phi_{k k}=0, E\left[\hat{\phi}_{k k}\right] \approx 0$, and $\operatorname{var}\left[\hat{\phi}_{k k}\right] \approx 1 / N$, where $\hat{\phi}_{k k}$ is the Yule-Walker estimate of $\phi_{k k}$.

For an stationary $\operatorname{ARMA}(p, q)$ process, ρ_{k} damps out exponentially. If $\phi(B)$ has a near unit root $G_{i}^{-1}=\left(1-\delta_{i}\right)^{-1}, \rho_{k}$ has a term $A_{i}\left(1-\delta_{i}\right)^{k} \approx A_{i}\left(1-k \delta_{i}\right)$, damping out at a much slower linear rate. A slowly damping ρ_{k} signifies nonstationarity.

In practice, one inspect r_{k} for stationarity, take differences if nonstationary, and repeat the process. The order identification of mixed ARMA model is not as straightforward.

Model Selection via AIC or BIC

To each observed series, one usually can fit several different models with similar goodness-of-fit. For example, suppose the ARMA $(1,1)$ model $(1+.2 B) z_{t}=(1-.8 B) a_{t}$ is a good fit to the data. Since

$$
(1+.2 B)^{-1}(1-.8 B)=1-B+.2 B^{2}-.04 B^{3}+\cdots \approx 1-B+.2 B^{2}
$$

so an $\mathrm{MA}(2)$ fit $z_{t}=\left(1-B+.2 B^{2}\right) a_{t}$ is also likely a good fit.
AIC and BIC can be of assistance in the selection of competing models. Let $l(\gamma \mid \mathbf{z})$ be the log likelihood of the model and $\hat{\gamma}$ be the MLE of γ, where γ consists of all model parameters including ϕ_{j}, θ_{k}, and σ_{a}^{2}. AIC and BIC are defined by

$$
\mathrm{AIC}=-2 l(\hat{\gamma} \mid \mathbf{z})+2 r, \quad \mathrm{BIC}=-2 l(\hat{\gamma} \mid \mathbf{z})+r \log n
$$

where r is the number of parameters and n is the sample size. Models with smaller AIC or BIC are considered better ones.

ARIMA (p, d, q) Processes

To model nonstationary yet nonexplosive series, a popular device is the autoregressive integrated moving average (ARIMA) model,

$$
\phi(B) \nabla^{d} z_{t}=\varphi(B) z_{t}=\theta(B) a_{t}
$$

where $\varphi(B)=\phi(B) \nabla^{d}$ is a generalized AR operator. Note that $\nabla^{d}=(1-B)^{d}$ has roots on the unit circle.

A process with roots of $\varphi(B)$ inside the unit circle is explosive.
Assume stationarity and invertibility for $\nabla^{d} z_{t}$. An ARIMA model can be written in the $\operatorname{AR}(\infty)$ form $\pi(B) z_{t}=a_{t}$, where

$$
\pi(B)=1-\sum_{j=1}^{\infty} \pi_{j} B^{j}=\theta^{-1}(B) \phi(B)(1-B)^{d}
$$

For $d>0$, since $\pi(1)=0$, one has $\sum_{j=1}^{\infty} \pi_{j}=1$.

MA form of ARIMA Processes

Symbolically, an ARIMA process can be written in a MA (∞) form $z_{t}=\psi(B) a_{t}, \psi(B)=1+\sum_{i=1}^{\infty} \psi_{i} B^{i}$, although $\left\{z_{t}\right\}$ is nonstationary and the filter unstable. From $\varphi(B) \psi(B)=\theta(B)$, one has

$$
\psi_{j}=\varphi_{1} \psi_{j-1}+\cdots+\varphi_{p+d} \psi_{j-p-d}-\theta_{j}, \quad j>0
$$

where $\psi_{0}=1, \psi_{j}=0, j<0$. For $j>q, \varphi(B) \psi_{j}=0$.
Take a time origin $k<t$ and write $z_{t}=I_{k}(t-k)+C_{k}(t-k)$, where $I_{k}(t-k)=\sum_{j=0}^{t-k-1} \psi_{j} a_{t-j}$. For $t-k>q, \varphi(B) I_{k}(t-k)=\theta(B) a_{t}$, so $\varphi(B) C_{k}(t-k)=0 . C_{k}(t-k)$ is called the complementary function, and is seen to be determined by the history up to time k. It follows that $E\left[z_{t} \mid z_{k}, z_{k-1}, \ldots\right]=C_{k}(t-k)$.

Note that $C_{k}(t-k)=C_{k-1}(t-(k-1))+\psi_{t-k} a_{k}$.

ψ Weights and π Weights

$\left(1-\varphi_{1} B-\varphi_{2} B^{2}-\cdots\right)\left(\psi_{0}+\psi_{1} B+\psi_{2} B^{2}+\cdots\right)=\left(1-\theta_{1} B-\theta_{2} B^{2}-\cdots\right)$.
Matching coefficients, one has

$$
\begin{aligned}
\psi_{1}-\varphi_{1} \psi_{0} & =-\theta_{1}, \\
\psi_{2}-\varphi_{1} \psi_{1}-\varphi_{2} \psi_{0} & =-\theta_{2}, \\
\psi_{3}-\varphi_{1} \psi_{2}-\varphi_{2} \psi_{1}-\varphi_{3} \psi_{0} & =-\theta_{3},
\end{aligned}
$$

Likewise, $\varphi(B)=\theta(B)\left(-\pi_{0}-\pi_{1} B-\pi_{2} B^{2}-\cdots\right)$, for $\pi_{0}=-1$, so

$$
\begin{aligned}
\pi_{1}-\theta_{1} \pi_{0} & =\varphi_{1}, \\
\pi_{2}-\theta_{1} \pi_{1}-\theta_{2} \pi_{0} & =\varphi_{2}, \\
\pi_{3}-\theta_{1} \pi_{2}-\theta_{2} \pi_{1}-\theta_{3} \pi_{0} & =\varphi_{3},
\end{aligned}
$$

MA Form of ARIMA: Some Details

For $l>0, I_{2}(l)$ uses a_{3}, a_{4}, \ldots to represent updates to z_{2+l} after z_{2}.

$$
\begin{aligned}
& I_{2}(t-2)=a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\cdots+\psi_{t-3} a_{3}, \\
& I_{2}(t-3)=a_{t-1}+\psi_{1} a_{t-2}+\psi_{2} a_{t-3}+\cdots+\psi_{t-4} a_{3} .
\end{aligned}
$$

$\varphi(B) I_{2}(t-2)=I_{2}(t-2)-\varphi_{1} I_{2}(t-3)-\varphi_{2} I_{2}(t-4)-\cdots=\theta(B) a_{t}$, for $t-2>q$, is shown below

$$
\begin{array}{rr}
1: a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\cdots+\psi_{t-3} a_{3} \\
-\varphi_{1}: & a_{t-1}+\psi_{1} a_{t-2}+\cdots+\psi_{t-4} a_{3} \\
-\varphi_{2}: & a_{t-2}+\cdots+\psi_{t-5^{a} 3}
\end{array}
$$

with coefficients of a_{t}, a_{t-1}, \ldots given by

$$
\begin{aligned}
a_{t}: & 1 \\
a_{t-1}: & \psi_{1}-\varphi_{1} \psi_{0}=-\theta_{1} \\
a_{t-2}: & \psi_{2}-\varphi_{1} \psi_{1}-\varphi_{2} \psi_{0}=-\theta_{2} \\
& \cdots \cdots \\
a_{3}: & \psi_{t-3}-\varphi_{1} \psi_{t-4}-\cdots-\varphi_{t-3} \psi_{0}=-\theta_{t-3}
\end{aligned}
$$

Example: ARIMA(1,1,1)

Consider $p=d=q=1$ with $|\phi|,|\theta|<1 . \varphi(B)=(1-\phi B)(1-B)$.
Since $\varphi(B) \psi_{j}=0, j>1$, one has $\psi_{j}=A_{0}+A_{1} \phi^{j}$, where
$A_{0}=(1-\theta) /(1-\phi)$ and $A_{1}=(\theta-\phi) /(1-\phi)$ are determined from
$A_{0}+A_{1}=\psi_{0}=1$ and $A_{0}+A_{1} \phi=\psi_{1}=\varphi_{1}-\theta=1+\phi-\theta$.
Since $C_{k}(t-k)=b_{0}^{(k)}+b_{1}^{(k)} \phi^{t-k}$ for $t-k>1$, one has

$$
z_{t}=\sum_{j=0}^{t-k-1}\left(A_{0}+A_{1} \phi^{j}\right) a_{t-j}+\left(b_{0}^{(k)}+b_{1}^{(k)} \phi^{t-k}\right),
$$

where $b_{0}^{(k)}, b_{1}^{(k)}$ satisfy the initial conditions $b_{0}^{(k)}+b_{1}^{(k)}=z_{k}$ and $b_{0}^{(k)}+b_{1}^{(k)} \phi+a_{k+1}=z_{k+1}=(1+\phi) z_{k}-\phi z_{k-1}+a_{k+1}-\theta a_{k}$. Solving for $b_{0}^{(k)}, b_{1}^{(k)}$ from the equations, one has $b_{0}^{(k)}=\left(z_{k}-\phi z_{k-1}-\theta a_{k}\right) /(1-\phi)$, $b_{1}^{(k)}=\left(-\phi\left(z_{k}-z_{k-1}\right)+\theta a_{k}\right) /(1-\phi)$.

With $\pi(B)=(1-\theta B)^{-1}(1-\phi B)(1-B)$, it is easy to verify that $\pi_{1}=1+\phi-\theta, \pi_{j}=(1-\theta)(\theta-\phi) \theta^{j-2}, j>1$.

Example: IMA(0,2,2)

Consider $p=0, d=q=2$ with $\theta(B)$ invertible. $\varphi(B)=(1-B)^{2}$.
Since $\varphi(B) \psi_{j}=0, j>2$, one has $\psi_{j}=A_{0}+A_{1} j$, where $A_{0}=1+\theta_{2}$ and $A_{1}=1-\theta_{1}-\theta_{2}$ are solved from $A_{0}+A_{1}=\psi_{1}=\varphi_{1}-\theta_{1}=2-\theta_{1}$ and $A_{0}+2 A_{1}=\psi_{2}=\varphi_{1} \psi_{1}+\varphi_{2}-\theta_{2}=2\left(2-\theta_{1}\right)-\left(1+\theta_{2}\right)$.

Since $C_{k}(t-k)=b_{0}^{(k)}+b_{1}^{(k)}(t-k)$ for $t-k>2$, one has

$$
z_{t}=a_{t}+\sum_{j=1}^{t-k-1}\left(A_{0}+A_{1} j\right) a_{t-j}+\left(b_{0}^{(k)}+b_{1}^{(k)}(t-k)\right)
$$

where $b_{0}^{(k)}, b_{1}^{(k)}$ satisfy the initial conditions $b_{0}^{(k)}+b_{1}^{(k)}=z_{k+1}-a_{k+1}$ and $b_{0}^{(k)}+2 b_{1}^{(k)}=z_{k+2}-a_{k+2}-\psi_{1} a_{k+1}$. It follows that $b_{1}^{(k)}=z_{k+2}-z_{k+1}-a_{k+2}-\left(1-\theta_{1}\right) a_{k+1}=z_{k}-z_{k-1}-\left(\theta_{1}+\theta_{2}\right) a_{k}-\theta_{2} a_{k-1}$ and $b_{0}^{(k)}=z_{k+1}-a_{k+1}-b_{1}^{(k)}=z_{k}+\theta_{2} a_{k}$. Note that $C_{k}(0)=z_{k} \neq b_{0}^{(k)}$.

Since $\theta(B) \pi(B)=\varphi(B)$, one has $\pi_{1}=2-\theta_{1}$, $\pi_{2}=\pi_{1} \theta_{1}-\left(1+\theta_{2}\right)=\theta_{1}\left(2-\theta_{1}\right)-\left(1+\theta_{2}\right)$, and $\theta(B) \pi_{j}=0, j>2$.

ARIMA Processes with Added Noise

The sum of independent MA processes of orders q and q_{1} is itself an MA process of order $\max \left(q, q_{1}\right)$.

Suppose one observes $Z_{t}=z_{t}+b_{t}$, where $\phi(B) \nabla^{d} z_{t}=\theta(B) a_{t}$ and $\phi_{1}(B) b_{t}=\theta_{1}(B) \alpha_{t}$ with a_{t}, α_{t} being two independent white noise processes. It follows that

$$
\phi_{1}(B) \phi(B) \nabla^{d} Z_{t}=\phi_{1}(B) \theta(B) a_{t}+\phi(B) \theta_{1}(B) \nabla^{d} \alpha_{t}
$$

so Z_{t} is of order $\left(p_{1}+p, d, \max \left(p_{1}+q, p+d+q_{1}\right)\right)$. In particular, an IMA process with added white noise is of order $(0, d, \max (q, d))$.

If $\phi(B)$ and $\phi_{1}(B)$ share some common roots, the orders will be lower. In general, an ARIMA model of form $\varphi(B) z_{t}=\theta(B) a_{t}$ is over-parameterized if $\varphi(B)$ and $\theta(B)$ have common roots.

Example: IMA($0,1,1$) and Random Walk

Consider $Z_{t}=z_{t}+b_{t}$, where $\nabla z_{t}=a_{t}-\theta a_{t-1}$ and a_{t}, b_{t} are independent white noise with variances $\sigma_{a}^{2}, \sigma_{b}^{2}$.

For the autocovariance of $\nabla Z_{t}=(1-\theta B) a_{t}+(1-B) b_{t}$, one has

$$
\gamma_{0}=\sigma_{a}^{2}\left(1+\theta^{2}\right)+2 \sigma_{b}^{2}, \quad \gamma_{1}=-\theta \sigma_{a}^{2}-\sigma_{b}^{2}, \quad \gamma_{k}=0, k>1
$$

Write $\nabla Z_{t}=u_{t}-\Theta u_{t-1}$ and equate $\gamma_{0}=\sigma_{u}^{2}\left(1+\Theta^{2}\right), \gamma_{1}=-\Theta \sigma_{u}^{2}$,

$$
\Theta=\frac{r\left(1+\theta^{2}\right)+2-\sqrt{4 r(1-\theta)^{2}+r^{2}\left(1-\theta^{2}\right)^{2}}}{2(1+r \theta)}, \quad \sigma_{u}^{2}=\frac{\theta \sigma_{a}^{2}+\sigma_{b}^{2}}{\Theta}
$$

where $r=\sigma_{a}^{2} / \sigma_{b}^{2}$. Consider a random walk with $\theta=0$. One has

$$
\Theta=\left(r+2-\sqrt{4 r+r^{2}}\right) / 2, \quad \sigma_{u}^{2}=\sigma_{b}^{2} / \Theta
$$

Hence, an $\operatorname{IMA}(0,1,1)$ process with $\Theta>0$ is seen to be a random walk buried in a white noise.

Testing for Unit Root

Consider an $\mathrm{AR}(1)$ process $z_{t}=\phi z_{t-1}+a_{t}$. Observing z_{0}, \ldots, z_{n} and minimizing the LS criterion $\sum_{t=1}^{n}\left(z_{t}-\phi z_{t-1}\right)^{2}$, one has

$$
\hat{\phi}=\sum_{t=1}^{n} z_{t} z_{t-1} / \sum_{t=1}^{n} z_{t-1}^{2}=\phi+\sum_{t=1}^{n} z_{t-1} a_{t} / \sum_{t=1}^{n} z_{t-1}^{2}
$$

It can be shown through conditioning arguments that

$$
E\left[\sum_{t=1}^{n} z_{t-1} a_{t}\right]=0, \quad \operatorname{var}\left[\sum_{t=1}^{n} z_{t-1} a_{t}\right]=\sigma_{a}^{2} E\left[\sum_{t=1}^{n} z_{t-1}^{2}\right]
$$

For $|\phi|<1, z_{t}$ is stationary with $\gamma_{0}=\operatorname{var}\left[z_{t}\right]=\sigma_{a}^{2} /\left(1-\phi^{2}\right)$, so

$$
\sqrt{n /\left(1-\phi^{2}\right)}(\hat{\phi}-\phi)=O_{p}(1)
$$

For $\phi=1, E\left[\sum_{t=1}^{n} z_{t-1}^{2}\right]=\sigma_{a}^{2} n(n+1) / 2$, thus $n(\hat{\phi}-1)=O_{p}(1)$.
A test based on the " t-statistic", $\hat{\tau}=(\hat{\phi}-1) / \sqrt{s^{2} / \sum_{t=1}^{n} z_{t-1}^{2}}$, where $s^{2}=\sum_{t=1}^{n}\left(z_{t}-\hat{\phi} z_{t-1}\right)^{2} /(n-1)$, was proposed by Dickey and Fuller, who derived its asymptotic null distribution under $\phi=1$.

Testing for Unit Root

Allowing for a constant, a linear trend, and possibly dependent but stationary innovations u_{t} with autocovariance γ_{k}, one has

$$
z_{t}=\beta_{0}+\beta_{1}(t-n / 2)+\phi z_{t-1}+u_{t}
$$

The asymptotic distribution of the " t-statistic", $\hat{\tau}=(\hat{\phi}-1) /$ s.e. $[\hat{\phi}]$, was derived by Phillips and Perron under $\phi=1$, which depends on γ_{0} and $\sigma^{2}=p_{u}(0)=\sum_{k=-\infty}^{\infty} \gamma_{k}$. Consistent estimates of γ_{0} and σ^{2} are $\hat{\gamma}_{0}=\sum_{t=1}^{n} \hat{u}_{t}^{2} /(n-3)$ and the Newey-West estimate,

$$
\hat{\sigma}^{2}=n^{-1} \sum_{t=1}^{n} \hat{u}_{t}^{2}+2 n^{-1} \sum_{s=1}^{l} w_{s l} \sum_{t=s+1}^{n} \hat{u}_{t} \hat{u}_{t-s}
$$

where \hat{u}_{t} are the residuals from the LS fit, $w_{s l}=1-s /(l+1)$, and $l \rightarrow \infty, l^{4} / n \rightarrow 0$ as $n \rightarrow \infty$. The test is implemented in PP.test.

For $\phi(B) \nabla z_{t}=\theta(B) a_{t}, z_{t}=z_{t-1}+\sum_{j=1}^{p} \phi_{j} w_{t-j}+\theta(B) a_{t}=z_{t-1}+u_{t}$, where $w_{t}=\nabla z_{t}$. The process $\left\{u_{t}\right\}$ is stationary when $\left\{w_{t}\right\}$ is.

