STAT 520 Linear Stationary and Nonstationary Models 1

/ General Linear Process' \

Consider a general linear process of the form

Zt = a + Z;il Yjar—j = (1+ Z;il %’Bj)at = Y(B)ay,

where a; is a white noise process with var[a;] = 02, B is the

backward shift operator, Bz = z_1, B z; = zi—j, and ¢ (B) is
called the transfer function. Alternatively, one may write

(1 — Z;}il WJBJ)Zt = W(B)Zt = A,

where the current value of z; is “regressed” on the past values z;_;.
It is easily seen that w(B)y(B) = 1.

It is known that any zero-mean stationary Gaussian process can be
written in the MA form z; = 9 (B)a; with 3772 [1h;] < oo.

The transfer function ¥ (B) defines a linear filter that transforms
\ihe input a; to output z;. The filter is stable with > "7, [1h;] < oo./
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/ Autocovariance and Spectrum' \

Set g =1 and ¥, =0, h < 0. It is easy to calculate

e =04 Do Yihjrk. Write v(B) = 302 B as the
autocovariance generating function. It follows that

v(B) =02, D Vithj i B”
=052 B7 3 e BT = o3 (BTHY(B),

where B! = F is the forward shift operator.

Recall the definition of the power spectrum,

—12mkw

P(w) = D koo €
Substituting e~ **™ for B in 1(B), one has

(@) = 2P (2 )p(e~2™) = 2[gh (e 2.
N /
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/ Stationarity and Invertibility' \

520 Linear Stationary and Nonstationary Models 3

For the linear process z; = ¥(B)a; to be a valid stationary process,
P(e2m) =320 Japje”"¥™I must be convergent, i.e., ¥ (B) be
convergent for |B| < 1. Tt suffices to have » .~ [¢h;] < .

A process is invertible if m(B) is convergent for |B| < 1. It suffices
to have Z;io 75| < 0o. To illustrate the idea, consider the MA(1)

process z = (1 — OB)ay. Since Y¢ 27 (1 — z) = 1 — zFt1, one has

k ‘ k+1
Zt = — ijl szt_j + a; — 0 T a¢—j—1-

For |#| < 1, one may let £k — oo and “invert” the process into an
AR(o0) process, with m; = 67 dying out as j — 0. For |6] > 1,

0t 1a;_rp_1 /4 0. Also note that p; = —1/(0 +671), so 6 = b*! are
not identifiable. Invertibility removes the ambiguity and assures

\E‘actical sensibility. /

C. Gu
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/ AR(p) Process: Stationarity' \

An autoregressive process of order p (i.e., AR(p)) is defined by

2t = Q124—1 +  + Qpzi—p + ay,

or (1-—¢1B—---—¢,BP)zy = ¢(B)z = a;. The transfer function
is given by ¢(B) = ¢~ 1(B). AR(p) is invertible by definition.
Write ¢(B) = ?:1(1 — G;B), where Gj_l are the roots of

®(B) = 0. One has (assuming distinctive roots),

TP 1 P K
»(B) = 1= =G, B — 24j=11-0,B’

so one must have |G;| < 1 for ¥(B) to be convergent for all |B| < 1.
In other words, one needs the roots of ¢(B) to lie outside of the

unit circle for z; = ¢~1(B)a; to be stationary.

\\To get the roots of 1+ .6z + .522, use polyroot(c(1,.6,.5)) in R/

C. Gu Spring 2024



STAT 520 Linear Stationary and Nonstationary Models 5

/ Examples: AR(1) and AR(Z)I \

Stationarity condition

For AR(1), one needs |¢1| < 1.

For AR(2), one needs |g;| < 1 in the expression
¢(B) = (1—qiB)(1 — g2B) =1~ (g1 + g2) B — (—g192) B*.

With g; real, (¢1,$2) = (91 + g2, —g192) over g1, g2 € (—1,1). With
g; a conjugate pair AeT*>™ one has (¢1, ¢2) = (24 cos 2mw, —A?)

over w € (—1/2,1/2), A € (0,1).

Autocorrelation

For AR(1), pr = ¢%, k> 0.

\\FOI’ AR(2), pr = P1pr—1 + P2pk—2, k> 0; po =1, p1 = ¢1/(1 — ¢2)/

C. Gu Spring 2024
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/ Examples: AR(1) and AR(Z)I \

&
p(w) = 1 — Gre—i2mw _ gye—idmw]|2
&
\\ - 1+ @2 + @3 — 2¢1(1 — o) cos 2mw — 2¢p5 cos 4w’ /

520 Linear Stationary and Nonstationary Models 6

Variance

For AR(1), 70 = ¢171 + 05, 80 y0 = 05 /(L — ¢1p1) = 05 /(1 — 7).

For AR(2), 70 = ¢171 + ¢272 + 03, s0

_ o 1= &
1 —¢1p1 — Pap2 14+ 2 {(1 —¢2)? — 3}

Power spectrum

For AR(1), p(w) = 02/|1 — 917" |? = 02 /(1 + ¢7 — 2¢1 cos 27w).

For AR(2),

Yo
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[ 1
p1

p1
1

one has, after dividing by 7o,

P2
pP1

K,Op—l pp—Q IOP_3

Pk = P1Pk—1+ * + PpPk—p,
Substituting £ =1, ...

Pp—l\

Pp—2

L

(1)
P2

k> 0.

Y

/ AR(p) Process: Yule-Walker Equations' \

Taking expectations of the expression,

Rt—kZt = P12—kZ—1 T+ OpZi—kZt—p + Zi—kAt,

, p, one obtains the Yule- Walker equations

(1)

o)

\ir P,¢ =p,, and ¢ = P, 'p, expresses ¢;’s in terms of ACF’s. /

C. Gu
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/ Partial Autocorrelation Function' \

Consider a Gaussian stationary process. The partial autocorrelation

function at lag k is defined by
Q= COIT( 2k, 20|21y -+ -y Zk—1)-

It can be shown that oy equals the kth element of ¢, = P_1 P
ork- Replacing P by r, in the Yule-Walker equatlons one gets the
sample PACF ¢y, as the kth element of gbk =P, 'p,.

For AR(p) processes at lag k > p, one has ¢, = 0, and it can be
shown that, asymptotically, ¢gr ~ N (0, %) Sample PACF’s are

available in R via acf with type="partial", or via pacft.

For non-Gaussian processes, one may still calculate ¢ via ACF's
as diagnostics for AR(p) models, though they may no longer be

\3erceived as conditional correlations. /

C. Gu Spring 2024
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/ Recursive Yule-Walker Solutions and PACF. \

" Py ~ . .
Let h = k — 1. Partition Py = (f):ff °h) where p, is p, in reverse order,
h

1
and writed=1—p; P, 'p, =1—p.P; 'p, =1— @} p,. One has

1, —1lp—1s ~Tp—1 1p—1=
1 P, +d P, "ppop Py, —d P, "ppn
.

—1-Tp—1 —1
—d~'pf P, d

Write q~bh = P,:l P, - Straightforward algebra yields,

b, =P! Pr) _ [ Pn— d~Y(pr — &, br,) P N K Dk Py,
kT = =
v 4" (pi — 91 5n) o

which gives the recursive formulas for Yule-Walker solutions.

Consider Gaussian process with 79 = 1. The conditional covariance

matrix of (2o, 2x)|(21,...,2k—1) is given by
1 Pk pT -1 ~
(,Ok 1 ) o (ﬁ%) Ph (ph7ph)

QfOHOWS that i = (o — PL P, P) /(1 = P P, py,) = i

C. Gu

/
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/ Yule-Walker (Moment) Estimates for AR(p) I\

= 7o ( —qbp ). Substituting

Since y9 = > 5, ¢jv; + 02, s

A
A A

2
O-CL
pj = T4, Yo = Co, one has qb =P,

Recall the recursive Yule-Walker solutions, and verify that
(1 - ¢Zpk) = (1- ¢Z—1Pk—1)(1 — ¢31.), one has

Pr— Ph_1Pk 1
1 — ¢£—1Pk—1
¢k,k—1 — ¢k—1 - ¢kkq~5k—1a

Vi = ’Yo(1 - ¢%§Pk) — Uk—l(l - ﬁk)»

Ok = — WO(Pk — PZ—1§5k—1)/Uk—1a

where ¢, = (qbg 11, Prk). Putting hats on the parameters and

starting with qgll = r; and 91 = co(1 — r?), one obtains the

\\Durbin—Lem’nson algorithm for fitting AR models.

C. Gu

p :Co(l_¢ppp) :@p'

/
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4 N
Examples: AR(1), AR(2), and AR(S)I

The Y-W equations for AR(1), AR(2), and AR(3) are ¢1 = p1,

1 p1 po D1 p1
1 p1 D1 P1
— , and p1 1 p o2 | = | p2
p1 1 D2 P2 .

p2  p1 ¢s3 P3

The Durbin-Levinson algorithm proceeds as follows:
1. @11 =113 v1 = co(l — 7“2)-
2. a2 = co(re — r1911)/v1; P21 = P11 — P2211; V2 = v1(1 — ¢3,).

3. ¢33 = co(r3 — rios — rogor)/va;

(¢31, P32) = (P21, P22) — P33(h22, P21); v3 = V2 (1 — 33).

- /
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/ MA((q) Process: Invertibility' \

520 Linear Stationary and Nonstationary Models 12

A moving average process of order q (i.e., MA(q)) is defined by
2y =ap — a1 — - — Qqat—qa

orzg=(1-60,B—---—0,B%a; = 0(B)a;. The transfer function is
given by (B) = 6(B). MA(q) is stationary by definition.

Similar to the stationarity condition for AR(p), one needs the roots
of 8(B) to lie outside of the unit circle for z; = 8(B)a; to be
invertible. Let Gj_l be the roots of #(B) and consider the spectrum
p(w) = o2 R I G, e "*™ 2. For G, real,

11— Ge ™2 o« (G + Gj_l — 208 27w),

SO G;-tl are exchangeable. Similar arguments can be made for
conjugate pairs of complex roots. Hence, MA(q) models come in
“29-plet”, of which only one is invertible, barring |G| = 1. /

Spring 2024
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/ Examples: MA(1) and MA(2) \

Invertibility condition

The invertibility of MA(1) and MA(2) is dual to the stationarity of
AR(1) and AR(2).

Variance and autocorrelation
For MA(l), Yo — O'Z(l + 9%), P1 = —(91/(1 + (9%), Pk — 0, k> 1.
For MA(2), 0 = o5(1 + 07 + 63);

—0:1(1 — 0) -6,
1+ +02° P iyeerer

P1 = or =0, k> 2.

Power spectrum

Replacing ¢1 by 61 and ¢2 by 65 in the power spectrums of AR(1)

and AR(2), and move the denominators to the numerators, one

\Eets the power spectrums of MA(1) and MA(2). /

C. Gu

13
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Multiplicity: MA(1) and MA(Z)I

Consider z; = (1 — 2B)ay, which has the same autocorrelation

function as the invertible z; = (1 — 0.5B)a;.

Consider z; = (1 — B — B%)a; = (1 + 0.618B)(1 — 1.618B)a;, which
has the same autocorrelation function as the invertible

2z = (1 —0.382B%)a; = (1 4+ 0.618B)(1 — 0.618B)a;, where

1/1.618 = 0.618. The other two members of the family are

2z = (1 —2.618B%)a; = (1 + 1.618B)(1 — 1.618B)a; and

2z = (1+ B — B?)a; = (1+1.618B)(1 — 0.618B)ay.

The a; in different expressions are independent but may have

different variances.

- /
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/ ARMA(p, q) Process I \

N plw) = 02 6(e=2m) /| g(e= ™). Y

520 Linear Stationary and Nonstationary Models 15

An ARMA((p,q) model is of the form

Zp— P12e—1 —  — przt—p =a; —Oap—1 — - — eqzt—qa

or ¢(B)z; = 0(B)ay, where ¢(B) and 6(B) are polynomials of
degree p and q in B. The stationarity and invertibility are governed
by the roots of ¢(B) and 6(B).

For k > ¢, since ¢(B)z; = 0(B)a; is uncorrelated with z;_, one has
cov|p(B)zt, ze— k| = ¢(B)pr = 0, or more explicitly,

Pk = Q1pk—1+ -+ Pppr—p, k> q.

With the transfer function ¢(B) = ¢~ !(B)6#(B), the power
spectrum of ARMA (p,q) is seen to be

Spring 2024
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/ Example: ARMA(1,1) I \

Stationarity and invertibility condition

For stationarity, one needs |¢1| < 1, for invertibility, 0| < 1.

Variance and autocorrelation
Note that Elz;a;] = E[(¢p12¢—1 + a; — 01a:_1)as] = 02, one has

Yo = E[(¢p120-1 + ar — O1a4-1)%] = @770 + 05 + 0702 — 2416102,
S0 Yo = 02(1 4+ 0% — 2¢161)/(1 — ¢7). Similarly, one has

—01)(1—¢10
p1=¢1 — 6102/ = (¢11+91%)_(2¢i¢911 1),

Pk — ¢]1€—11017 k> 1.

Power spectrum

o |1 — 601722 5 1+ 607 — 2604 cos 2nw

\\ p<w):0-a|1_gble—i27rw|2 — Oaq 1+¢%—2¢1C0827Tw. /

C. Gu Spring 2024
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For an MA(q) model, one has 79 = ¢2(1+ >_7_. 6%) and

Jlj

04, ..., 01 can be obtamed through a simple iteration,

7 —co/(1+Zj 105),
(Ck/O' —Zq k6@3+k) k:q,...,l.

Remember that the solutions of §; and o2 are not unique.

For an ARMA((p,q) model, one needs to use c¢;, j =0,...,p+gq.
One can solve ¢; from the equations,

Ve = P1Vk—1++ PpVh—p, k=q+1,...,9+Dp.
Note that wy; = ¢(B)z; = 0(B)ag, and the ACF of wy is
Vi = ¢' Tho, where ¢" = (1, —¢1,...,—¢,) and T, has (4, j)th

~T A ~
\intry Vi+j—i- Use ¢, = ¢ I'p¢ in the MA iteration above to get Gy

/Moment Estimates for MA(q) and ARMA (p,q) I\

Vi = 02(—0; + Zq 'y i0i+k), k > 1. The moment estimates of o2,

17
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-

Moment Estimates: ARMA(l,l)I

the algorithm for moment estimates proceeds as follows:

1. Solve ¢ from ry = ¢ 1.

)

3. Solve 0, 0% from equations

2. Calculate

66 — (17 _¢) (

Co C1

C1 Co

—¢

/
2  C
Pa = 1+ 62’

-

When applied to an ARMA(1,1) process (1 — ¢B)z; = (1 — 0B)ay,

~

. Gu
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\ie.[,&] = 64(1 — 0)//n = .0116.

520 Linear Stationary and Nonstationary Models

/ Estimation of Mean' \

Consider ¢(B)zy = u+ 0(B)ay. It is easily seen that
Elze] =pu/(1—¢1 —---— ¢p). Recall the “large sample” variance of
the sample mean z,

I S () er o 02 60%(1)  p(0)
Var[z]—n Z%_ n _nw(l)_nqbQ(l)_ n

k=—o0

where v(B) = o2¢(B)y(B™!) is the covariance generating function
and p(w) is the power spectrum. The moment estimate of u is thus
ii = ¢(1)Z with approximate standard error 64|0(1)|//n.

Fitting an ARMA(1,1) model to Series A, one has ¢ = .8683,
= .4804, and 62 = .09842. Further, Z = 17.06 with
s.e.|z] & 4/p(0)/n = .0882, and 1 = (1 — .8683)(17.06) = 2.25 with

/

19
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\ietermined by the initial values pg, ..., pg—p+1-

C. Gu

520 Linear Stationary and Nonstationary Models

/ Linear Difference Equation and ACFI \

From the linear difference equation ¢(B)pr = 0, k > ¢, one can
obtain a general expression for py.

Write ¢(B) = ?:1(1 — G;B), where Gj_l are the roots of ¢(B). It

is easy to verify that (1 — G;B)G’% =0, so py has a term A;GY.

For a double root Gj_l, one also has (1 — G;B)*(tG%) = 0, so pj, has
terms (Aj o + A;1k)GY%. In general, a root Gj_l of multiplicity m

contributes terms Y ' A; ,kUG¥.

For pairs of conjugate complex roots |G;|~te*", one has terms
|Gj‘k(Aj6i7jk -+ Ajfi_m/jk) = Q‘Gj‘k|AJ‘ COS(k’yj + Oéj).

Assuming distinct roots, one has py = ?:1 AjGé?, where A;’s are

/

20
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/ Examples: AR(2) and ARMA(2,1) \

For (1 —0.4B —0.21B%)z; = (1 —0.7B)(1 + 0.3B)z; = ay,
pr = A10.7% + A5(—0.3)%, k> 0, as ¢(B ) r=0,k>0. A and A,
can be fixed via pg =1 and p_1 = p1 = d1/(1 — ¢2).

For (1 —0.8¢""/3B)(1 — 0.8e~"/3B)z = (1 — 0.5B)ay,
pr = A(0.8¢™/3)F 4 4(0.8¢™/3)k
= | A|(0.8)%e > HFT/3) 1| A](0.8)F e (0 HFT/3)
= (0.8)"2|A| cos(km/3 + «)
= (0.8)"{Bcos(kn/3) + Csin(kn/3)}, k> 1,
where B and C can be fixed from pg = 1 and p1; p1 and & = 02 /g

satisfy equations 1 = ¢? + ¢35 + 2¢1d2p1 + (1 + 6% — 2¢10)k and
\il = @1 + Pap1 — Ok, where ¢1 = 0.8, ¢po = —0.64, and € = 0.5. /

C. Gu Spring 2024
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\in invertible reverse time MA (1) model, where a; = —6a;_1.

C. Gu
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/ Reverse Time Stationary Models' \

A stationary process is characterized by its autocovariance and
mean, independent of the time direction. In particular, models

assuming forward or reverse time are mathematically equivalent.

Recall the autocovariance generating function of z; = ¢(B)ay,
v(B) = o2(B)y(B~1). It is clear that z; = 1(F)a; has the same
autocovariance, where F' = B~1! is the forward shift operator. For

ARMA(p,q), let Gj_l be the roots of #(B) and Hj_1 those of ¢(B).

The same autocovariance is shared by all processes of the form
b (1 - HjB™ )z =[[I_,(1 - G;B*")ay.
Consider an MA(1) process z; = a; — 6a;_1. For |6 > 1, one has

2t — Q¢ — Qat_l = (—(9)(—(9_1at + CLt_l) = &t — 9_1&t—|—17

/

22
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/ Model Identification via ACF/ PACFI

520 Linear Stationary and Nonstationary Models 23

~

For k > q with an MA(q) process, pr =0, E|ri] ~ 0, and
Va“r[rk] (1 —|—22] 110])/

For k > p with an AR(p) process, ¢rr = 0, E[dri] ~ 0, and
V&I’[&kk] ~ 1/N, where cﬁkk is the Yule-Walker estimate of ¢ .

For an stationary ARMA (p,q) process, pr damps out exponentially.
If ¢(B) has a near unit root G; ' = (1 — &;)~, p has a term
A; (1 —6;)F =~ A;(1 — kd;), damping out at a much slower linear

rate. A slowly damping p; signifies nonstationarity.

In practice, one inspect 73 for stationarity, take differences if

nonstationary, and repeat the process. The order identification of

\\mixed ARMA model is not as straightforward. /

C. Gu
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/ Model Selection via AIC or BIC. \

To each observed series, one usually can fit several different models

with similar goodness-of-fit. For example, suppose the ARMA(1,1)
model (1+ .2B)z; = (1 — .8B)a; is a good fit to the data. Since

(1+.2B)""(1-8B)=1—-B+.2B>—.04B*+.--~1— B+ .2B?,
so an MA(2) fit z; = (1 — B + .2B?)a; is also likely a good fit.
AIC and BIC can be of assistance in the selection of competing
models. Let [(v|z) be the log likelihood of the model and 4 be the

MLE of «, where «y consists of all model parameters including ¢;,
01, and o2. AIC and BIC are defined by

AIC = =2[(4|z) 4+ 2r, BIC = =2l(¥|z) + rlogn,

where r is the number of parameters and n is the sample size.

Q/Iodels with smaller AIC or BIC are considered better ones. /

C. Gu Spring 2024
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\\For d > 0, since 7(1) = 0, one has ) 3~ m; = 1. /

520 Linear Stationary and Nonstationary Models 25

ARIMA (p,d,q) Processes I \

To model nonstationary yet nonexplosive series, a popular device is

the autoregressive integrated moving average (ARIMA) model,
¢(B)V9z = o(B)z = 0(B)ay,

where ¢(B) = ¢(B)V? is a generalized AR operator. Note that
V% = (1 — B)? has roots on the unit circle.

A process with roots of ¢(B) inside the unit circle is explosive.

Assume stationarity and invertibility for V9z;. An ARIMA model

can be written in the AR(oc0) form 7(B)z; = at, where

n(B) =1 Y2, m;B = 0=} (B)$(B)(1 — B)".

g=1
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\i\Tote that Ck(t — k) = Ck_l(t — (k — 1)) + Vi _pag. /

520 Linear Stationary and Nonstationary Models 26

MA form of ARIMA Processes' \

Symbolically, an ARIMA process can be written in a MA(oco) form
ze = (B)ag, w(B) =147, ¥; B*, although {2;} is nonstationary
and the filter unstable. From ¢(B)y(B) = 6(B), one has

V; =11+ -+ Opraj—p—a — 05, 7>0,
where 19 =1, ¢; =0, j < 0. For j > ¢q, p(B)y; = 0.

Take a time origin k < t and write z; = I (t — k) + Cr(t — k), where
Lu(t—k) = Y0 Wja—j. For t —k > q, o(B)Iu(t — k) = 0(B)ay,
so p(B)Ck(t — k) = 0. Ci(t — k) is called the complementary
function, and is seen to be determined by the history up to time k.
It follows that El|z¢|zk, 2k—1,...] = Cx(t — k).

Spring 2024
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/ 1) Weights and 7 Weights' \

(1—p1B—p2B* =)o+ 91 B+¢2B*+---) = (1—61B—60B*—--).
Matching coefficients, one has

W1 — 1Yo = —01,
Y2 — o191 — p21p = —b2,
W3 — 1 — Y211 — Y3y = —03,

Likewise, ¢(B) = §(B)(—mg — m1 B — maB* — ---), for mp = —1, so
w1 — 1m0 = P11,
Ty — 011 — O2mmp = P2,
w3 — 0172 — O2m1 — O30 = (3,

- /
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28

-

For [ > 0, Ix(l) uses

12(1: —

I (t —

-

o(B)I2(t —2) = I2(t — 2) — p112(t — 3) — pala(t —4) — -
t — 2 > q, is shown below

MA Form of ARIMA: Some Details'

as, a4, ... to represent updates to zo;

2) =a¢ +Yrag_q1 + d2a4_o + -+ Pr_zagz,
3) =ayz_1 +v¥rag_o+¥Yoar_3+ -+ Pr_ga3z.

1l:ay +Yrap_1 +voap_o+ -+ Ys_3a3

—¥1 at—1 +¥1ag_2 + -+ Pp_ga3
—p2 ag—2 + -+ Yi_5a3
with coefficients of a+, ar—1, ... given by
a : 1
ar_1: %1 —e1vo = —01
a2 : P2 —@1¥1 — p2vg = —02
az: Y3 —P1Yt—q4 — - — Pt_3%0 = —0¢_3

- = 0(B)ay, for

~

after zo.

/

C. Gu
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\ilzl—kqb—ﬁ,wj:(1—9)(9—q5)9j_2,j>1. /

C. Gu
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/ Example: ARIMA (1,1,1) I \

Consider p =d = g =1 with |¢|,|0| < 1. ¢(B) = (1 — ¢B)(1 — B).

Since (B)y; =0, j > 1, one has ¥; = Ag + A1¢’, where
Ao=(1-0)/(1 —¢) and A1 = (0 — ¢)/(1 — ¢) are determined from
Ao + A; =¢0=1 andAo—I—A1q5:¢1 :g01—(9=1—|—¢—9

Since Ci(t — k) = b(k) -+ b(k)qbt_k for ¢ — k > 1, one has
=300 (Ao + A1) )ar + (b + 016" "),

where bék), bgk) satisfy the initial conditions b(() ) 4+ bgk) = 2, and

b(k) + b(k)gb +agt1 = 2k+1 = (1 4+ ¢)zk — ¢zk—1 + ak+1 — Bak. Solving for
b(k) b(k) from the equations, one has b( ) = = (2 — ¢zK—1 — Oar) /(1 — @),
b = (<1 — 21m1) + 0r) /(1 — 0).

With 7(B) = (1 —0B) (1 — ¢B)(1 — B), it is easy to verify that

29
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/ Example: TMA(0,2,2) I \

Consider p = 0, d = ¢ = 2 with 0(B) invertible. ¢(B) = (1 — B).

Since p(B)y; =0, j > 2, one has ¥; = Ag + A1j, where Ag =1+ 02 and
A1 =1— 607 — 03 are solved from Ag + A1 = Y1 = 1 — 01 =2 — 0, and
Ag +2A1 = P2 = p1P1 + 2 — 02 = 2(2 — 01) — (1 + 62).

Since Ci(t — k) = bék) — bgk)(t — k) for t — k > 2, one has
2= ar+ YN (Ao + Argar—; + (b + {7 (t — k),

where b(()k), bgk) satisfy the initial conditions b(()k) —+ bgk) = Zk+1 — Ak+1 and
b\ + 20 = 2410 — arg2 — Yrargr. It follows that

bgk) = Zht2 — Zkt1 —Okt2 — (1 —01)ars1 = 2p — 2k—1 — (01 +02)ar —O2ak 1
and bém = Zkt1 — Qg+l — bgk) = 21, + 02ax. Note that Cx(0) = z, # bgk).

Since 0(B)n(B) = ¢(B), one has m1 = 2 — 01,
\ig =m0 — (1 -+ 62) = (91(2 — (91) — (1 —|—92), and Q(B)T('J =0, 3 > 2. /
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/ ARIMA Processes with Added Noise' \

The sum of independent MA processes of orders ¢ and ¢; is itself

an MA process of order max(q, q1).

Suppose one observes Z; = z; + b;, where ¢(B)V%z, = 0(B)a; and
»1(B)by = 01(B)a; with a;, a; being two independent white noise

processes. It follows that

¢1(B)p(B)V?Zy = ¢1(B)0(B)a; + (B)01(B)Vay,
so Zy is of order (p1 + p,d, max(p1 +q,p+d+q1)). In particular, an
IMA process with added white noise is of order (0, d, max(q, d)).

If ¢(B) and ¢1(B) share some common roots, the orders will be
lower. In general, an ARIMA model of form ¢(B)z; = 0(B)ay is
\iver—parameterized if ¢(B) and 6(B) have common roots. /
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/ Example: IMA(0,1,1) and Random Walk' \

Consider Z; = z; + by, where Vz; = a; — 0a;—1 and a4, b; are

2 2
a’ Ob‘

independent white noise with variances o

For the autocovariance of VZ; = (1 — 0B)a; + (1 — B)b;, one has
Yo =02(1+6%)+ 207, v =-002—0:, w=0k>1.
Write VZ; = u; — Ou;_1 and equate y9 = 02 (1 + ©?), 1 = —Q02,

o — r(14+6%)+2—4/4r(1—0)2+r2(1—62)2 9 _ Bol+o;
= 2(1+70)  CuT e

where r = 02 /2. Consider a random walk with § = 0. One has
O=(r+2—Vir+r2)/2, o2=0}/6.

Hence, an IMA(0,1,1) process with © > 0 is seen to be a random

\ivalk buried in a white noise. /
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/ Testing for Unit Root' \

Consider an AR(1) process z; = ¢z;_1 + a;. Observing zq, ..., 2z,

and minimizing the LS criterion Y. | (z: — ¢z¢—1)?, one has

¢ = Z?:l zezi-1/ Z?:_l Zt2—1 = ¢+ 2?21 zi—104/ Z?:l 2752—1-

It can be shown through conditioning arguments that
E[} i z—1a] =0, var32 ) ze1aq] = 0o B30 28 4]

For |¢| < 1, z; is stationary with 9 = var[z;] = 02/(1 — ¢?), so

Vn/(1—¢%)(¢ — ¢) = Op(1).
For ¢ =1, B[, 22 ] = 02n(n +1)/2, thus n(¢ — 1) = O,(1).

A test based on the “t-statistic”, 7 = (¢ — 1)/Vs>/ S0, 22 |,
where s? =30 (2t — 0z_1)2/(n — 1), was proposed by Dickey and
\\Fuller, who derived its asymptotic null distribution under ¢ = 1. /
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/ Testing for Unit Root' \

Allowing for a constant, a linear trend, and possibly dependent but

stationary innovations u; with autocovariance g, one has

2zt = Po+ Bt —n/2) + pze_1 + us.

The asymptotic distribution of the “t-statistic”, 7 = (¢ — 1)/s.e.[d],
was derived by Phillips and Perron under ¢ = 1, which depends on
Yo and 02 = p,(0) = > 72 ___ k. Consistent estimates of vy and o?
are Yo = »_,—, U7 /(n — 3) and the Newey-West estimate,

. _ . 1l A
6> =n"" Z?ﬂ i +2n~! D o1 Wsl Z?ZSH Uttt —s,
where 4, are the residuals from the LS fit, wg =1—s/(I + 1), and
| — 00, [*/n — 0 as n — co. The test is implemented in PP.test.

For Cb(B)VZt :H(B)a,t, Rt = Zt—1 ‘|‘Z§:1 Qjwe_j +9(B)at = Z¢—1 T Uy,
\ivhere wy = Vz;. The process {u;} is stationary when {w,} is. /
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