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✫

✩

✪

General Linear Process

Consider a general linear process of the form

zt = at +
∑∞

j=1 ψjat−j = (1 +
∑∞

j=1 ψjB
j)at = ψ(B)at,

where at is a white noise process with var[at] = σ2
a, B is the

backward shift operator, Bzt = zt−1, B
jzt = zt−j , and ψ(B) is

called the transfer function. Alternatively, one may write

(1−
∑∞

j=1 πjB
j)zt = π(B)zt = at,

where the current value of zt is “regressed” on the past values zt−j .

It is easily seen that π(B)ψ(B) = 1.

It is known that any zero-mean stationary Gaussian process can be

written in the MA form zt = ψ(B)at with
∑∞

j=1 |ψj | <∞.

The transfer function ψ(B) defines a linear filter that transforms

the input at to output zt. The filter is stable with
∑∞

j=1 |ψj | <∞.

C. Gu Spring 2024



STAT 520 Linear Stationary and Nonstationary Models 2✬

✫

✩

✪

Autocovariance and Spectrum

Set ψ0 = 1 and ψh = 0, h < 0. It is easy to calculate

γk = σ2
a

∑∞

j=0 ψjψj+k. Write γ(B) =
∑∞

k=−∞
γkB

k as the

autocovariance generating function. It follows that

γ(B) = σ2
a

∑

k

∑

j ψjψj+kB
k

= σ2
a

∑

j ψjB
−j
∑

k ψj+kB
j+k = σ2

aψ(B
−1)ψ(B),

where B−1 = F is the forward shift operator.

Recall the definition of the power spectrum,

p(ω) =
∑∞

k=−∞
γke

−i2πkω.

Substituting e−i2πω for B in ψ(B), one has

p(ω) = σ2
aψ(e

i2πω)ψ(e−i2πω) = σ2
a|ψ(e−i2πω)|2.
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✫

✩

✪

Stationarity and Invertibility

For the linear process zt = ψ(B)at to be a valid stationary process,

ψ(e−i2πω) =
∑∞

j=0 ψje
−i2πωj must be convergent, i.e., ψ(B) be

convergent for |B| ≤ 1. It suffices to have
∑∞

j=0 |ψj | <∞.

A process is invertible if π(B) is convergent for |B| ≤ 1. It suffices

to have
∑∞

j=0 |πj | <∞. To illustrate the idea, consider the MA(1)

process zt = (1− θB)at. Since
∑k

0 x
j(1− x) = 1− xk+1, one has

zt = −∑k
j=1 θ

jzt−j + at − θk+1at−k−1.

For |θ| < 1, one may let k → ∞ and “invert” the process into an

AR(∞) process, with πj = θj dying out as j → 0. For |θ| ≥ 1,

θk+1at−k−1 6→ 0. Also note that ρ1 = −1/(θ + θ−1), so θ = b±1 are

not identifiable. Invertibility removes the ambiguity and assures

practical sensibility.
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✫

✩

✪

AR(p) Process: Stationarity

An autoregressive process of order p (i.e., AR(p)) is defined by

zt = φ1zt−1 + · · ·+ φpzt−p + at,

or (1− φ1B − · · · − φpB
p)zt = φ(B)zt = at. The transfer function

is given by ψ(B) = φ−1(B). AR(p) is invertible by definition.

Write φ(B) =
∏p

j=1(1−GjB), where G−1
j are the roots of

φ(B) = 0. One has (assuming distinctive roots),

ψ(B) =
∏p

j=1
1

1−GjB
=
∑p

j=1
Kj

1−GjB
,

so one must have |Gi| < 1 for ψ(B) to be convergent for all |B| ≤ 1.

In other words, one needs the roots of φ(B) to lie outside of the

unit circle for zt = φ−1(B)at to be stationary.

To get the roots of 1+ .6x+ .5x2, use polyroot(c(1,.6,.5)) in R.
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✫

✩

✪

Examples: AR(1) and AR(2)

Stationarity condition

For AR(1), one needs |φ1| < 1.

For AR(2), one needs |gj | < 1 in the expression

φ(B) = (1− g1B)(1− g2B) = 1− (g1 + g2)B − (−g1g2)B2.

With gj real, (φ1, φ2) = (g1 + g2,−g1g2) over g1, g2 ∈ (−1, 1). With

gj a conjugate pair Ae±i2πω, one has (φ1, φ2) = (2A cos 2πω,−A2)

over ω ∈ (−1/2, 1/2), A ∈ (0, 1).

Autocorrelation

For AR(1), ρk = φk1 , k ≥ 0.

For AR(2), ρk = φ1ρk−1 + φ2ρk−2, k > 0; ρ0 = 1, ρ1 = φ1/(1− φ2).
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✫

✩

✪

Examples: AR(1) and AR(2)

Variance

For AR(1), γ0 = φ1γ1 + σ2
a, so γ0 = σ2

a/(1− φ1ρ1) = σ2
a/(1− φ21).

For AR(2), γ0 = φ1γ1 + φ2γ2 + σ2
a, so

γ0 =
σ2
a

1− φ1ρ1 − φ2ρ2
=

1− φ2
1 + φ2

σ2
a

{(1− φ2)2 − φ21}
.

Power spectrum

For AR(1), p(ω) = σ2
a/|1− φ1e

−i2πω|2 = σ2
a/(1 + φ21 − 2φ1 cos 2πω).

For AR(2),

p(ω) =
σ2
a

|1− φ1e−i2πω − φ2e−i4πω|2

=
σ2
a

1 + φ21 + φ22 − 2φ1(1− φ2) cos 2πω − 2φ2 cos 4πω
.
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✫

✩

✪

AR(p) Process: Yule-Walker Equations

Taking expectations of the expression,

zt−kzt = φ1zt−kzt−1 + · · ·+ φpzt−kzt−p + zt−kat,

one has, after dividing by γ0,

ρk = φ1ρk−1 + · · ·+ φpρk−p, k > 0.

Substituting k = 1, . . . , p, one obtains the Yule-Walker equations














1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

...
...

... . . .
...

ρp−1 ρp−2 ρp−3 . . . 1





























φ1

φ2

...

φp















=















ρ1

ρ2
...

ρp















,

or Ppφ = ρp, and φ = P−1
p ρp expresses φj ’s in terms of ACF’s.
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✫

✩

✪

Partial Autocorrelation Function

Consider a Gaussian stationary process. The partial autocorrelation

function at lag k is defined by

αk = corr(zk, z0|z1, . . . , zk−1).

It can be shown that αk equals the kth element of φk = P−1
k ρk,

φkk. Replacing ρv by rv in the Yule-Walker equations, one gets the

sample PACF φ̂kk as the kth element of φ̂k = P̂−1
k ρ̂k.

For AR(p) processes at lag k > p, one has φkk = 0, and it can be

shown that, asymptotically, φ̂kk ∼ N(0, 1
N ). Sample PACF’s are

available in R via acf with type="partial", or via pacf.

For non-Gaussian processes, one may still calculate φkk via ACFs

as diagnostics for AR(p) models, though they may no longer be

perceived as conditional correlations.
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✫

✩

✪

Recursive Yule-Walker Solutions and PACF

Let h = k − 1. Partition Pk = (
Ph ρ̃h

ρ̃
T
h 1

), where ρ̃h is ρh in reverse order,

and write d = 1− ρ̃T
hP

−1
h ρ̃h = 1− ρT

hP
−1
h ρh = 1− φT

hρh. One has

P
−1
k =

(

P
−1
h

+d−1
P

−1
h

ρ̃hρ̃
T
hP

−1
h

−d−1
P

−1
h

ρ̃h

−d−1
ρ̃
T
hP

−1
h

d−1

)

.

Write φ̃h = P
−1
h ρ̃h. Straightforward algebra yields,

φk = P
−1
k





ρh

ρk



 =





φh − d−1(ρk − φT
h ρ̃h)φ̃h

d−1(ρk − φT
h ρ̃h)



 =





φh − φkkφ̃h

φkk



,

which gives the recursive formulas for Yule-Walker solutions.

Consider Gaussian process with γ0 = 1. The conditional covariance

matrix of (z0, zk)|(z1, . . . , zk−1) is given by
(

1 ρk
ρk 1

)

−
(

ρ
T
h

ρ̃
T
h

)

P
−1
h (ρh, ρ̃h).

It follows that αk = (ρk − ρT
hP

−1
h ρ̃h)/(1− ρT

hP
−1
h ρh) = φkk.
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✫

✩

✪

Yule-Walker (Moment) Estimates for AR(p)

Since γ0 =
∑p

j=1 φjγj + σ2
a, so σ

2
a = γ0(1− φT

p ρp). Substituting

ρ̂j = rj , γ̂0 = c0, one has φ̂p = P̂−1
p ρ̂p, σ̂

2
a = c0(1− φ̂

T

p ρ̂p) = v̂p.

Recall the recursive Yule-Walker solutions, and verify that

(1− φT
k ρk) = (1− φT

k−1ρk−1)(1− φ2kk), one has

φkk =
ρk − ρT

k−1φ̃k−1

1− φT
k−1ρk−1

= γ0(ρk − ρT
k−1φ̃k−1)/vk−1,

φk,k−1 = φk−1 − φkkφ̃k−1,

vk = γ0(1− φT
k ρk) = vk−1(1− φ2kk),

where φT
k = (φT

k,k−1, φkk). Putting hats on the parameters and

starting with φ̂11 = r1 and v̂1 = c0(1− r21), one obtains the

Durbin-Levinson algorithm for fitting AR models.
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✫

✩

✪

Examples: AR(1), AR(2), and AR(3)

The Y-W equations for AR(1), AR(2), and AR(3) are φ1 = ρ1,

(

1 ρ1

ρ1 1

)(

φ1

φ2

)

=

(

ρ1

ρ2

)

, and









1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

















φ1

φ2

φ3









=









ρ1

ρ2

ρ3









.

The Durbin-Levinson algorithm proceeds as follows:

1. φ11 = r1; v1 = c0(1− r21).

2. φ22 = c0(r2 − r1φ11)/v1; φ21 = φ11 − φ22φ11; v2 = v1(1− φ222).

3. φ33 = c0(r3 − r1φ22 − r2φ21)/v2;

(φ31, φ32) = (φ21, φ22)− φ33(φ22, φ21); v3 = v2(1− φ233).
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✫

✩

✪

MA(q) Process: Invertibility

A moving average process of order q (i.e., MA(q)) is defined by

zt = at − θ1at−1 − · · · − θqat−q,

or zt = (1− θ1B − · · · − θqB
q)at = θ(B)at. The transfer function is

given by ψ(B) = θ(B). MA(q) is stationary by definition.

Similar to the stationarity condition for AR(p), one needs the roots

of θ(B) to lie outside of the unit circle for zt = θ(B)at to be

invertible. Let G−1
j be the roots of θ(B) and consider the spectrum

p(ω) = σ2
a

∏q
j=1 |1−Gje

−i2πω|2. For Gj real,

|1−Gje
−i2πω|2 ∝ (Gj +G−1

j − 2 cos 2πω),

so G±1
j are exchangeable. Similar arguments can be made for

conjugate pairs of complex roots. Hence, MA(q) models come in

“2q-plet”, of which only one is invertible, barring |Gj | = 1.
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✫

✩

✪

Examples: MA(1) and MA(2)

Invertibility condition

The invertibility of MA(1) and MA(2) is dual to the stationarity of

AR(1) and AR(2).

Variance and autocorrelation

For MA(1), γ0 = σ2
a(1 + θ21); ρ1 = −θ1/(1 + θ21), ρk = 0, k > 1.

For MA(2), γ0 = σ2
a(1 + θ21 + θ22);

ρ1 =
−θ1(1− θ2)

1 + θ21 + θ22
, ρ2 =

−θ2
1 + θ21 + θ22

, ρk = 0, k > 2.

Power spectrum

Replacing φ1 by θ1 and φ2 by θ2 in the power spectrums of AR(1)

and AR(2), and move the denominators to the numerators, one

gets the power spectrums of MA(1) and MA(2).
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✫

✩

✪

Multiplicity: MA(1) and MA(2)

Consider zt = (1− 2B)at, which has the same autocorrelation

function as the invertible zt = (1− 0.5B)at.

Consider zt = (1−B −B2)at = (1 + 0.618B)(1− 1.618B)at, which

has the same autocorrelation function as the invertible

zt = (1− 0.382B2)at = (1 + 0.618B)(1− 0.618B)at, where

1/1.618 = 0.618. The other two members of the family are

zt = (1− 2.618B2)at = (1 + 1.618B)(1− 1.618B)at and

zt = (1 +B −B2)at = (1 + 1.618B)(1− 0.618B)at.

The at in different expressions are independent but may have

different variances.
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✫

✩

✪

ARMA(p, q) Process

An ARMA(p,q) model is of the form

zt − φ1zt−1 − · · · − φpzt−p = at − θ1at−1 − · · · − θqzt−q,

or φ(B)zt = θ(B)at, where φ(B) and θ(B) are polynomials of

degree p and q in B. The stationarity and invertibility are governed

by the roots of φ(B) and θ(B).

For k > q, since φ(B)zt = θ(B)at is uncorrelated with zt−k, one has

cov[φ(B)zt, zt−k] = φ(B)ρk = 0, or more explicitly,

ρk = φ1ρk−1 + · · ·+ φpρk−p, k > q.

With the transfer function ψ(B) = φ−1(B)θ(B), the power

spectrum of ARMA(p,q) is seen to be

p(ω) = σ2
a |θ(e−i2πω)|2/|φ(e−i2πω)|2.
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✫

✩

✪

Example: ARMA(1,1)

Stationarity and invertibility condition

For stationarity, one needs |φ1| < 1, for invertibility, |θ1| < 1.

Variance and autocorrelation

Note that E[ztat] = E[(φ1zt−1 + at − θ1at−1)at] = σ2
a, one has

γ0 = E[(φ1zt−1 + at − θ1at−1)
2] = φ21γ0 + σ2

a + θ21σ
2
a − 2φ1θ1σ

2
a,

so γ0 = σ2
a(1 + θ21 − 2φ1θ1)/(1− φ21). Similarly, one has

ρ1 = φ1 − θ1σ
2
a/γ0 = (φ1−θ1)(1−φ1θ1)

1+θ2
1−2φ1θ1

,

ρk = φk−1
1 ρ1, k > 1.

Power spectrum

p(ω) = σ2
a

|1− θ1e
−i2πω|2

|1− φ1e−i2πω|2 = σ2
a

1 + θ21 − 2θ1 cos 2πω

1 + φ21 − 2φ1 cos 2πω
.
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✫

✩

✪

Moment Estimates for MA(q) and ARMA(p,q)

For an MA(q) model, one has γ0 = σ2
a(1 +

∑q
j=1 θ

2
j ) and

γk = σ2
a(−θk +

∑q−k
j=1 θjθj+k), k ≥ 1. The moment estimates of σ2

a,

θq, . . . , θ1 can be obtained through a simple iteration,

σ2
a = c0/(1 +

∑q

j=1 θ
2
j ),

θk = −(ck/σ
2
a −

∑q−k

j=1 θjθj+k), k = q, . . . , 1.

Remember that the solutions of θj and σ2
a are not unique.

For an ARMA(p,q) model, one needs to use cj , j = 0, . . . , p+ q.

One can solve φj from the equations,

γk = φ1γk−1 + · · ·+ φpγk−p, k = q + 1, . . . , q + p.

Note that wt = φ(B)zt = θ(B)at, and the ACF of wt is

γ′k = φTΓkφ, where φT = (1,−φ1, . . . ,−φp) and Γk has (i, j)th

entry γk+j−i. Use c′k = φ̂
T
Γ̂kφ̂ in the MA iteration above to get θj .
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✫

✩

✪

Moment Estimates: ARMA(1,1)

When applied to an ARMA(1,1) process (1− φB)zt = (1− θB)at,

the algorithm for moment estimates proceeds as follows:

1. Solve φ from r2 = φ r1.

2. Calculate

c′0 = (1,−φ)
(

c0 c1

c1 c0

)(

1

−φ

)

, c′1 = (1,−φ)
(

c1 c2

c0 c1

)(

1

−φ

)

.

3. Solve θ, σ2
a from equations

σ2
a =

c′0
1 + θ2

, θ = − c′1
σ2
a

.
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✫

✩

✪

Estimation of Mean

Consider φ(B)zt = µ+ θ(B)at. It is easily seen that

E[zt] = µ/(1− φ1 − · · · − φp). Recall the “large sample” variance of

the sample mean z̄,

var[z̄] =
1

n

∞
∑

k=−∞

γk =
γ(1)

n
=
σ2
a

n
ψ2(1) =

σ2
a

n

θ2(1)

φ2(1)
=
p(0)

n
,

where γ(B) = σ2
aψ(B)ψ(B−1) is the covariance generating function

and p(ω) is the power spectrum. The moment estimate of µ is thus

µ̂ = φ̂(1)z̄ with approximate standard error σ̂a|θ̂(1)|/
√
n.

Fitting an ARMA(1,1) model to Series A, one has φ̂ = .8683,

θ̂ = .4804, and σ̂2
a = .09842. Further, z̄ = 17.06 with

s.e.[z̄] ≈
√

p̂(0)/n = .0882, and µ̂ = (1− .8683)(17.06) = 2.25 with

s.e.[µ̂] = σ̂a(1− θ̂)/
√
n = .0116.
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✫

✩

✪

Linear Difference Equation and ACF

From the linear difference equation φ(B)ρk = 0, k > q, one can

obtain a general expression for ρk.

Write φ(B) =
∏p

j=1(1−GjB), where G−1
j are the roots of φ(B). It

is easy to verify that (1−GjB)Gt
j = 0, so ρk has a term AjG

k
j .

For a double root G−1
j , one also has (1−GjB)2(tGt

j) = 0, so ρk has

terms (Aj,0 +Aj,1k)G
k
j . In general, a root G−1

j of multiplicity m

contributes terms
∑m−1

v=0 Aj,vk
vGk

j .

For pairs of conjugate complex roots |Gj |−1e±iγj , one has terms

|Gj |k(Aje
iγjk + Āje

−iγjk) = 2|Gj |k|Aj | cos(kγj + αj).

Assuming distinct roots, one has ρk =
∑p

j=1AjG
k
j , where Aj ’s are

determined by the initial values ρq, . . . , ρq−p+1.
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✫

✩

✪

Examples: AR(2) and ARMA(2,1)

For (1− 0.4B − 0.21B2)zt = (1− 0.7B)(1 + 0.3B)zt = at,

ρk = A10.7
k +A2(−0.3)k, k > 0, as φ(B)ρk = 0, k > 0. A1 and A2

can be fixed via ρ0 = 1 and ρ−1 = ρ1 = φ1/(1− φ2).

For (1− 0.8eiπ/3B)(1− 0.8e−iπ/3B)zt = (1− 0.5B)at,

ρk = A(0.8eiπ/3)k + Ā(0.8e−iπ/3)k

= |A|(0.8)kei(α+kπ/3) + |A|(0.8)ke−i(α+kπ/3)

= (0.8)k2|A| cos(kπ/3 + α)

= (0.8)k{B cos(kπ/3) + C sin(kπ/3)}, k > 1,

where B and C can be fixed from ρ0 = 1 and ρ1; ρ1 and κ = σ2
a/γ0

satisfy equations 1 = φ21 + φ22 + 2φ1φ2ρ1 + (1 + θ2 − 2φ1θ)κ and

ρ1 = φ1 + φ2ρ1 − θκ, where φ1 = 0.8, φ2 = −0.64, and θ = 0.5.
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✫

✩

✪

Reverse Time Stationary Models

A stationary process is characterized by its autocovariance and

mean, independent of the time direction. In particular, models

assuming forward or reverse time are mathematically equivalent.

Recall the autocovariance generating function of zt = ψ(B)at,

γ(B) = σ2
aψ(B)ψ(B−1). It is clear that zt = ψ(F )at has the same

autocovariance, where F = B−1 is the forward shift operator. For

ARMA(p,q), let G−1
j be the roots of θ(B) and H−1

j those of φ(B).

The same autocovariance is shared by all processes of the form
∏p

j=1(1−HjB
±1)zt =

∏q
j=1(1−GjB

±1)at.

Consider an MA(1) process zt = at − θat−1. For |θ| > 1, one has

zt = at − θat−1 = (−θ)(−θ−1at + at−1) = ãt − θ−1ãt+1,

an invertible reverse time MA(1) model, where ãt = −θat−1.
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✫

✩

✪

Model Identification via ACF/PACF

For k > q with an MA(q) process, ρk = 0, E[rk] ≈ 0, and

var[rk] ≈ (1 + 2
∑q

j=1 ρ
2
j )/N .

For k > p with an AR(p) process, φkk = 0, E[φ̂kk] ≈ 0, and

var[φ̂kk] ≈ 1/N , where φ̂kk is the Yule-Walker estimate of φkk.

For an stationary ARMA(p,q) process, ρk damps out exponentially.

If φ(B) has a near unit root G−1
i = (1− δi)

−1, ρk has a term

Ai(1− δi)
k ≈ Ai(1− kδi), damping out at a much slower linear

rate. A slowly damping ρk signifies nonstationarity.

In practice, one inspect rk for stationarity, take differences if

nonstationary, and repeat the process. The order identification of

mixed ARMA model is not as straightforward.
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✫

✩

✪

Model Selection via AIC or BIC

To each observed series, one usually can fit several different models

with similar goodness-of-fit. For example, suppose the ARMA(1,1)

model (1 + .2B)zt = (1− .8B)at is a good fit to the data. Since

(1 + .2B)−1(1− .8B) = 1−B + .2B2 − .04B3 + · · · ≈ 1−B + .2B2,

so an MA(2) fit zt = (1−B + .2B2)at is also likely a good fit.

AIC and BIC can be of assistance in the selection of competing

models. Let l(γ|z) be the log likelihood of the model and γ̂ be the

MLE of γ, where γ consists of all model parameters including φj ,

θk, and σ
2
a. AIC and BIC are defined by

AIC = −2l(γ̂|z) + 2r, BIC = −2l(γ̂|z) + r log n,

where r is the number of parameters and n is the sample size.

Models with smaller AIC or BIC are considered better ones.
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✫

✩

✪

ARIMA(p,d,q) Processes

To model nonstationary yet nonexplosive series, a popular device is

the autoregressive integrated moving average (ARIMA) model,

φ(B)∇dzt = ϕ(B)zt = θ(B)at,

where ϕ(B) = φ(B)∇d is a generalized AR operator. Note that

∇d = (1−B)d has roots on the unit circle.

A process with roots of ϕ(B) inside the unit circle is explosive.

Assume stationarity and invertibility for ∇dzt. An ARIMA model

can be written in the AR(∞) form π(B)zt = at, where

π(B) = 1−
∑∞

j=1 πjB
j = θ−1(B)φ(B)(1−B)d.

For d > 0, since π(1) = 0, one has
∑∞

j=1 πj = 1.
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✫

✩

✪

MA form of ARIMA Processes

Symbolically, an ARIMA process can be written in a MA(∞) form

zt = ψ(B)at, ψ(B) = 1+
∑∞

i=1 ψiB
i, although {zt} is nonstationary

and the filter unstable. From ϕ(B)ψ(B) = θ(B), one has

ψj = ϕ1ψj−1 + · · ·+ ϕp+dψj−p−d − θj , j > 0,

where ψ0 = 1, ψj = 0, j < 0. For j > q, ϕ(B)ψj = 0.

Take a time origin k < t and write zt = Ik(t− k) +Ck(t− k), where

Ik(t− k) =
∑t−k−1

j=0 ψjat−j . For t− k > q, ϕ(B)Ik(t− k) = θ(B)at,

so ϕ(B)Ck(t− k) = 0. Ck(t− k) is called the complementary

function, and is seen to be determined by the history up to time k.

It follows that E[zt|zk, zk−1, . . . ] = Ck(t− k).

Note that Ck(t− k) = Ck−1(t− (k − 1)) + ψt−kak.
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✫

✩

✪

ψ Weights and π Weights

(1−ϕ1B−ϕ2B
2−· · · )(ψ0+ψ1B+ψ2B

2+ · · · ) = (1− θ1B− θ2B
2−· · · ).

Matching coefficients, one has

ψ1 − ϕ1ψ0 = −θ1,

ψ2 − ϕ1ψ1 − ϕ2ψ0 = −θ2,

ψ3 − ϕ1ψ2 − ϕ2ψ1 − ϕ3ψ0 = −θ3,

. . . . . .

Likewise, ϕ(B) = θ(B)(−π0 − π1B − π2B
2 − · · · ), for π0 = −1, so

π1 − θ1π0 = ϕ1,

π2 − θ1π1 − θ2π0 = ϕ2,

π3 − θ1π2 − θ2π1 − θ3π0 = ϕ3,

. . . . . .
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✫

✩

✪

MA Form of ARIMA: Some Details

For l > 0, I2(l) uses a3, a4, . . . to represent updates to z2+l after z2.

I2(t − 2) = at + ψ1at−1 + ψ2at−2 + · · · + ψt−3a3,

I2(t − 3) = at−1 + ψ1at−2 + ψ2at−3 + · · · + ψt−4a3.

ϕ(B)I2(t− 2) = I2(t− 2)− ϕ1I2(t− 3)− ϕ2I2(t− 4)− · · · = θ(B)at, for
t− 2 > q, is shown below

1 : at + ψ1at−1 + ψ2at−2 + · · · + ψt−3a3

−ϕ1 : at−1 + ψ1at−2 + · · · + ψt−4a3

−ϕ2 : at−2 + · · · + ψt−5a3

. . . . . .

with coefficients of at, at−1, . . . given by

at : 1

at−1 : ψ1 − ϕ1ψ0 = −θ1

at−2 : ψ2 − ϕ1ψ1 − ϕ2ψ0 = −θ2

. . . . . .

a3 : ψt−3 − ϕ1ψt−4 − · · · − ϕt−3ψ0 = −θt−3
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✫

✩

✪

Example: ARIMA(1,1,1)

Consider p = d = q = 1 with |φ|, |θ| < 1. ϕ(B) = (1− φB)(1−B).

Since ϕ(B)ψj = 0, j > 1, one has ψj = A0 +A1φ
j , where

A0 = (1− θ)/(1− φ) and A1 = (θ − φ)/(1− φ) are determined from

A0 +A1 = ψ0 = 1 and A0 +A1φ = ψ1 = ϕ1 − θ = 1 + φ− θ.

Since Ck(t− k) = b
(k)
0 + b

(k)
1 φt−k for t− k > 1, one has

zt =
∑t−k−1

j=0 (A0 +A1φ
j)at−j + (b

(k)
0 + b

(k)
1 φt−k),

where b
(k)
0 , b

(k)
1 satisfy the initial conditions b

(k)
0 + b

(k)
1 = zk and

b
(k)
0 + b

(k)
1 φ+ ak+1 = zk+1 = (1 + φ)zk − φzk−1 + ak+1 − θak. Solving for

b
(k)
0 , b

(k)
1 from the equations, one has b

(k)
0 = (zk − φzk−1 − θak)/(1− φ),

b
(k)
1 = (−φ(zk − zk−1) + θak)/(1− φ).

With π(B) = (1− θB)−1(1− φB)(1−B), it is easy to verify that

π1 = 1 + φ− θ, πj = (1− θ)(θ − φ)θj−2, j > 1.
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✫

✩

✪

Example: IMA(0,2,2)

Consider p = 0, d = q = 2 with θ(B) invertible. ϕ(B) = (1−B)2.

Since ϕ(B)ψj = 0, j > 2, one has ψj = A0 +A1j, where A0 = 1 + θ2 and

A1 = 1− θ1 − θ2 are solved from A0 +A1 = ψ1 = ϕ1 − θ1 = 2− θ1 and

A0 + 2A1 = ψ2 = ϕ1ψ1 + ϕ2 − θ2 = 2(2− θ1)− (1 + θ2).

Since Ck(t− k) = b
(k)
0 + b

(k)
1 (t− k) for t− k > 2, one has

zt = at +
∑t−k−1

j=1 (A0 +A1j)at−j + (b
(k)
0 + b

(k)
1 (t− k)),

where b
(k)
0 , b

(k)
1 satisfy the initial conditions b

(k)
0 + b

(k)
1 = zk+1 − ak+1 and

b
(k)
0 + 2b

(k)
1 = zk+2 − ak+2 − ψ1ak+1. It follows that

b
(k)
1 = zk+2−zk+1−ak+2−(1−θ1)ak+1 = zk−zk−1−(θ1+θ2)ak−θ2ak−1

and b
(k)
0 = zk+1 − ak+1 − b

(k)
1 = zk + θ2ak. Note that Ck(0) = zk 6= b

(k)
0 .

Since θ(B)π(B) = ϕ(B), one has π1 = 2− θ1,

π2 = π1θ1 − (1 + θ2) = θ1(2− θ1)− (1 + θ2), and θ(B)πj = 0, j > 2.
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✫

✩

✪

ARIMA Processes with Added Noise

The sum of independent MA processes of orders q and q1 is itself

an MA process of order max(q, q1).

Suppose one observes Zt = zt + bt, where φ(B)∇dzt = θ(B)at and

φ1(B)bt = θ1(B)αt with at, αt being two independent white noise

processes. It follows that

φ1(B)φ(B)∇dZt = φ1(B)θ(B)at + φ(B)θ1(B)∇dαt,

so Zt is of order (p1 + p, d,max(p1 + q, p+ d+ q1)). In particular, an

IMA process with added white noise is of order (0, d,max(q, d)).

If φ(B) and φ1(B) share some common roots, the orders will be

lower. In general, an ARIMA model of form ϕ(B)zt = θ(B)at is

over-parameterized if ϕ(B) and θ(B) have common roots.
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✫

✩

✪

Example: IMA(0,1,1) and Random Walk

Consider Zt = zt + bt, where ∇zt = at − θat−1 and at, bt are

independent white noise with variances σ2
a, σ

2
b .

For the autocovariance of ∇Zt = (1− θB)at + (1−B)bt, one has

γ0 = σ2
a(1 + θ2) + 2σ2

b , γ1 = −θσ2
a − σ2

b , γk = 0, k > 1.

Write ∇Zt = ut −Θut−1 and equate γ0 = σ2
u(1 + Θ2), γ1 = −Θσ2

u,

Θ =
r(1+θ2)+2−

√
4r(1−θ)2+r2(1−θ2)2

2(1+rθ) , σ2
u =

θσ2
a+σ2

b

Θ ,

where r = σ2
a/σ

2
b . Consider a random walk with θ = 0. One has

Θ = (r + 2−
√
4r + r2)/2, σ2

u = σ2
b/Θ.

Hence, an IMA(0,1,1) process with Θ > 0 is seen to be a random

walk buried in a white noise.
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✫

✩

✪

Testing for Unit Root

Consider an AR(1) process zt = φzt−1 + at. Observing z0, . . . , zn
and minimizing the LS criterion

∑n
t=1(zt − φzt−1)

2, one has

φ̂ =
∑n

t=1 ztzt−1/
∑n

t=1 z
2
t−1 = φ+

∑n
t=1 zt−1at/

∑n
t=1 z

2
t−1.

It can be shown through conditioning arguments that

E[
∑n

t=1 zt−1at] = 0, var[
∑n

t=1 zt−1at] = σ2
aE[
∑n

t=1 z
2
t−1].

For |φ| < 1, zt is stationary with γ0 = var[zt] = σ2
a/(1− φ2), so

√

n/(1− φ2)(φ̂− φ) = Op(1).

For φ = 1, E[
∑n

t=1 z
2
t−1] = σ2

an(n+ 1)/2, thus n(φ̂− 1) = Op(1).

A test based on the “t-statistic”, τ̂ = (φ̂− 1)/
√
s2/

∑n
t=1 z

2
t−1,

where s2 =
∑n

t=1(zt − φ̂zt−1)
2/(n− 1), was proposed by Dickey and

Fuller, who derived its asymptotic null distribution under φ = 1.
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✫

✩

✪

Testing for Unit Root

Allowing for a constant, a linear trend, and possibly dependent but

stationary innovations ut with autocovariance γk, one has

zt = β0 + β1(t− n/2) + φzt−1 + ut.

The asymptotic distribution of the “t-statistic”, τ̂ = (φ̂− 1)/s.e.[φ̂],

was derived by Phillips and Perron under φ = 1, which depends on

γ0 and σ2 = pu(0) =
∑∞

k=−∞
γk. Consistent estimates of γ0 and σ2

are γ̂0 =
∑n

t=1 û
2
t/(n− 3) and the Newey-West estimate,

σ̂2 = n−1
∑n

t=1 û
2
t + 2n−1

∑l
s=1 wsl

∑n
t=s+1 ûtût−s,

where ût are the residuals from the LS fit, wsl = 1− s/(l + 1), and

l → ∞, l4/n→ 0 as n→ ∞. The test is implemented in PP.test.

For φ(B)∇zt=θ(B)at, zt=zt−1+
∑p

j=1 φjwt−j+θ(B)at=zt−1+ut,

where wt = ∇zt. The process {ut} is stationary when {wt} is.
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