1. Express an MA(2) process as a state space model and derive the corresponding Kalman filter.
Solution: Following Slide 2, one has the state equation

$$
\mathbf{Y}_{t}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \mathbf{Y}_{t-1}+\left(\begin{array}{c}
1 \\
-\theta_{1} \\
-\theta_{2}
\end{array}\right) a_{t}
$$

where $y_{t}^{(1)}=a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}=z_{t}, y_{t}^{(2)}=-\theta_{1} a_{t}-\theta_{2} a_{t-1}$, and $y_{t}^{(3)}=-\theta_{2} a_{t}$. The observation equation is simply

$$
z_{t}=(1,0,0) \mathbf{Y}_{t}
$$

The stationary distribution of \mathbf{Y}_{t} has mean $\mathbf{y}_{0}=\mathbf{0}$ and

$$
\begin{aligned}
V_{0} & =\sigma_{a}^{2}\left(\begin{array}{ccc}
1+\theta_{1}^{2}+\theta_{2}^{2} & -\theta_{1}+\theta_{1} \theta_{2} & -\theta_{2} \\
-\theta_{1}+\theta_{1} \theta_{2} & \theta_{1}^{2}+\theta_{2}^{2} & \theta_{1} \theta_{2} \\
-\theta_{2} & \theta_{1} \theta_{2} & \theta_{2}^{2}
\end{array}\right) \\
& =\sigma_{a}^{2}\left[\left(\begin{array}{c}
-\theta_{2} \\
0 \\
0
\end{array}\right)\left(-\theta_{2}, 0,0\right)+\left(\begin{array}{c}
-\theta_{1} \\
-\theta_{2} \\
0
\end{array}\right)\left(-\theta_{1},-\theta_{2}, 0\right)+\left(\begin{array}{c}
1 \\
-\theta_{1} \\
-\theta_{2}
\end{array}\right)\left(1,-\theta_{1},-\theta_{2}\right)\right] \\
& =\sigma_{a}^{2}\left[\left(\begin{array}{cc}
\tilde{V}_{0} & \mathbf{0} \\
\mathbf{0}^{\mathbf{T}} & 0
\end{array}\right)+\left(\begin{array}{c}
1 \\
-\theta_{1} \\
-\theta_{2}
\end{array}\right)\left(1,-\theta_{1},-\theta_{2}\right)\right] .
\end{aligned}
$$

Write $\Phi=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $A=\sigma_{a}^{2}\left(\begin{array}{c}1 \\ -\theta_{1} \\ -\theta_{2}\end{array}\right)\left(1,-\theta_{1},-\theta_{2}\right)$. One has $\mathbf{y}_{1 \mid 0}=\Phi \mathbf{y}_{\mathbf{0}}=\mathbf{0}$ and $V_{1 \mid 0}=\Phi V_{0} \Phi^{T}+A=V_{0}$. Observing z_{1}, the conditional distribution of $\mathbf{Y}_{1} \mid z_{1}$ has mean

$$
\mathbf{y}_{1}=\mathbf{y}_{1 \mid 0}+K_{1} z_{1}=\left(\begin{array}{c}
z_{1} \\
\rho_{1} z_{1} \\
\rho_{2} z_{1}
\end{array}\right)=\left(\begin{array}{c}
z_{1} \\
-\theta_{1} \tilde{a}_{1 \mid 1}-\theta_{2} \tilde{a}_{0 \mid 1} \\
-\theta_{2} \tilde{a}_{1 \mid 1}
\end{array}\right)
$$

where $\tilde{a}_{1 \mid 1}=E\left[a_{1} \mid z_{1}\right]$ and $\tilde{a}_{0 \mid 1}=E\left[a_{0} \mid z_{1}\right]$, and covariance

$$
V_{1}=\left(I-K_{1}(1,0,0)\right) V_{1 \mid 0}=\sigma_{a}^{2}\left(\begin{array}{cc}
0 & \mathbf{0}^{\mathbf{T}} \\
\mathbf{0} & \tilde{V}_{1}
\end{array}\right) ;
$$

the Kalman gain matrix K_{1} is given by

$$
K_{1}=V_{1 \mid 0}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \frac{1}{\sigma_{a}^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)}=\mathbf{v}_{1 \mid 0} / v_{1 \mid 0}=\left(\begin{array}{c}
1 \\
\rho_{1} \\
\rho_{2}
\end{array}\right)
$$

where $\mathbf{v}_{\mathbf{1} \mid 0}$ is the first column of $V_{1 \mid 0} / \sigma_{a}^{2}, v_{1 \mid 0}$ is the $(1,1)$ th entry of $V_{1 \mid 0} / \sigma_{a}^{2}, \rho_{1}=$ $\left(-\theta_{1}+\theta_{1} \theta_{2}\right) /\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)$ and $\rho_{2}=\left(-\theta_{2}\right) /\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)$.

With \mathbf{y}_{1} and V_{1} given above, one has

$$
\begin{aligned}
& \mathbf{y}_{2 \mid 1}=\Phi \mathbf{y}_{1}=\left(\begin{array}{c}
-\theta_{1} \tilde{a}_{1 \mid 1}-\theta_{2} \tilde{a}_{0 \mid 1} \\
-\theta_{2} \tilde{a}_{1 \mid 1} \\
0
\end{array}\right) \\
& V_{2 \mid 1}=\Phi V_{1} \Phi^{T}+A=\sigma_{a}^{2}\left[\left(\begin{array}{cc}
\tilde{V}_{1} & \mathbf{0} \\
\mathbf{0}^{\mathbf{T}} & 0
\end{array}\right)+\left(\begin{array}{c}
1 \\
-\theta_{1} \\
-\theta_{2}
\end{array}\right)\left(1,-\theta_{1},-\theta_{2}\right)\right]
\end{aligned}
$$

Observing z_{2}, the conditional distribution of $\mathbf{Y}_{2} \mid\left(z_{1}, z_{2}\right)$ has mean and covariance

$$
\begin{aligned}
& \mathbf{y}_{2}=\mathbf{y}_{2 \mid 1}+K_{2} e_{2}=\left(\begin{array}{c}
z_{2} \\
-\theta_{1} \tilde{a}_{2 \mid 2}-\theta_{2} \tilde{a}_{1 \mid 2} \\
-\theta_{2} \tilde{a}_{2 \mid 2}
\end{array}\right), \\
& V_{2}=\left(I-K_{2}(1,0,0)\right) V_{2 \mid 1}=\sigma_{a}^{2}\left(\begin{array}{cc}
0 & \mathbf{0}^{\mathbf{T}} \\
\mathbf{0} & \tilde{V}_{2}
\end{array}\right) ;
\end{aligned}
$$

where $e_{2}=z_{2}-\hat{z}_{2 \mid 1}=z_{2}+\theta_{1} \tilde{a}_{1 \mid 1}+\theta_{2} \tilde{a}_{0 \mid 1}, \tilde{a}_{2 \mid 2}=E\left[a_{2} \mid z_{1}, z_{2}\right], \tilde{a}_{1 \mid 2}=E\left[a_{1} \mid z_{1}, z_{2}\right]$, and the Kalman gain matrix K_{2} is given by

$$
K_{2}=V_{2 \mid 1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \frac{1}{\sigma_{a}^{2} v_{2 \mid 1}}=\mathbf{v}_{2 \mid 1} / v_{2 \mid 1}
$$

where $\mathbf{v}_{\mathbf{2} \mid \boldsymbol{1}}$ is the first column of $V_{2 \mid 1} / \sigma_{a}^{2}$ and $v_{2 \mid 1}$ is the $(1,1)$ th entry of $V_{2 \mid 1} / \sigma_{a}^{2}$. Replacing 1 by $t-1$ and 2 by t, one has the general formula.
2. Repeat the above problem for $\operatorname{ARMA}(2,1)$. Do specify V_{0} in terms of $\gamma_{0}, \gamma_{1}, \sigma_{a}^{2}, \phi_{1}$, ϕ_{2}, and θ as necessary, and do verify $\Phi V_{0} \Phi^{T}+A=V_{0}$.
Solution: Similar to $\operatorname{ARMA}(1,1)$, one has the state equation

$$
\mathbf{Y}_{t}=\left(\begin{array}{ll}
\phi_{1} & 1 \\
\phi_{2} & 0
\end{array}\right) \mathbf{Y}_{t-1}+\binom{1}{-\theta} a_{t}
$$

where $y_{t}^{(1)}=\phi_{1} z_{t-1}+\phi_{2} z_{t-2}+a_{t}-\theta a_{t-1}=z_{t}$ and $y_{t}^{(2)}=\phi_{2} z_{t-1}-\theta a_{t}$. The observation equation is simply

$$
z_{t}=(1,0) \mathbf{Y}_{t}
$$

The stationary distribution of $\mathbf{Y}_{\mathbf{t}}$ has mean $\mathbf{y}_{\mathbf{0}}=\mathbf{0}$ and covariance

$$
V_{0}=\left(\begin{array}{cc}
\gamma_{0} & \phi_{2} \gamma_{1}-\theta \sigma_{a}^{2} \\
\phi_{2} \gamma_{1}-\theta \sigma_{a}^{2} & \phi_{2}^{2} \gamma_{0}+\theta^{2} \sigma_{a}^{2}
\end{array}\right) .
$$

To verify $V_{0}=\Phi V_{0} \Phi^{T}+A=V_{0}$, where $\Phi=\left(\begin{array}{ll}\phi_{1} & 1 \\ \phi_{2} & 0\end{array}\right)$ and $A=\sigma_{a}^{2}\left(\begin{array}{cc}1 & -\theta \\ -\theta & \theta^{2}\end{array}\right)$, note that

$$
\begin{aligned}
\gamma_{0} & =E\left[\phi_{1} z_{t-1}+\phi_{2} z_{t-2}+a_{t}-\theta a_{t-1}\right]^{2} \\
& =\left(\phi_{1}^{2}+\phi_{2}^{2}\right) \gamma_{0}+\left(1+\theta^{2}\right) \sigma_{a}^{2}-2 \phi_{1} \phi_{2} \gamma_{1}-2 \phi_{1} \theta \sigma_{a}^{2}, \\
\gamma_{1} & =E z_{t-1}\left[\phi_{1} z_{t-1}+\phi_{2} z_{t-2}+a_{t}-\theta a_{t-1}\right] \\
& =\phi_{1} \gamma_{0}+\phi_{2} \gamma_{1}-\theta \sigma_{a}^{2}
\end{aligned}
$$

Given \mathbf{y}_{0} and V_{0}, one has $\mathbf{y}_{1 \mid 0}=\Phi \mathbf{y}_{0}=\mathbf{0}$ and $V_{1 \mid 0}=\Phi V_{0} \Phi^{T}+A\left(=V_{0}\right)$. Observing z_{1}, the conditional distribution of $\mathbf{Y}_{1} \mid z_{1}$ has mean

$$
\mathbf{y}_{1}=\mathbf{y}_{1 \mid 0}+K_{1} z_{1}=\binom{z_{1}}{\phi_{2} \tilde{z}_{0}-\theta \tilde{a}_{1}}
$$

where $\tilde{z}_{0}=E\left[z_{0} \mid z_{1}\right]$ and $\tilde{a}_{1}=E\left[a_{1} \mid z_{1}\right]$, and covariance

$$
V_{1}=\left(I-K_{1}(1,0)\right) V_{1 \mid 0}=\left(\begin{array}{cc}
0 & 0 \\
0 & v_{1}
\end{array}\right)
$$

the Kalman gain matrix K_{1} is given by

$$
K_{1}=V_{1 \mid 0}\binom{1}{0} \frac{1}{v_{1 \mid 0}}=\mathbf{v}_{1 \mid 0} / v_{1 \mid 0}=\binom{1}{\kappa_{1}}
$$

where $\mathbf{v}_{\mathbf{1} \mid \mathbf{0}}$ is the first column of $V_{1 \mid 0}$ and $v_{1 \mid 0}$ is the $(1,1)$ th entry of $V_{1 \mid 0}$. With $\mathbf{y}_{\mathbf{1}}$ and V_{1} given above, one has

$$
\begin{aligned}
& \mathbf{y}_{2 \mid 1}=\Phi \mathbf{y}_{1}=\binom{\phi_{1} z_{1}+\phi_{2} \tilde{z}_{0}-\theta \tilde{a}_{1}}{\phi_{2} z_{1}}, \\
& V_{2 \mid 1}=\Phi V_{1} \Phi^{T}+A=\left(\begin{array}{cc}
v_{1} & 0 \\
0 & 0
\end{array}\right)+\sigma_{a}^{2}\left(\begin{array}{cc}
1 & -\theta \\
-\theta & \theta^{2}
\end{array}\right) .
\end{aligned}
$$

Observing z_{2}, the conditional distribution of $\mathbf{Y}_{2} \mid\left(z_{1}, z_{2}\right)$ has mean and covariance

$$
\begin{aligned}
& \mathbf{y}_{2}=\mathbf{y}_{2 \mid 1}+K_{2} e_{2}=\binom{z_{2}}{\phi_{2} z_{1}-\theta \tilde{a}_{2}} \\
& V_{2}=\left(I-K_{2}(1,0)\right) V_{2 \mid 1}=\left(\begin{array}{cc}
0 & 0 \\
0 & v_{2}
\end{array}\right)
\end{aligned}
$$

where $e_{2}=z_{2}-\hat{z}_{2 \mid 1}=z_{2}-\left(\phi_{1} z_{1}+\phi_{2} \tilde{z}_{0}-\theta \tilde{a}_{1}\right), \tilde{a}_{2}=E\left[a_{2} \mid z_{1}, z_{2}\right]$, and the Kalman gain matrix K_{2} is given by

$$
K_{2}=V_{2 \mid 1}\binom{1}{0} \frac{1}{v_{2 \mid 1}}=\mathbf{v}_{2 \mid 1} / v_{2 \mid 1}=\binom{1}{\kappa_{2}}
$$

where $\mathbf{v}_{\mathbf{2} \mid \mathbf{1}}$ is the first column of $V_{2 \mid 1}$ and $v_{2 \mid 1}$ is the $(1,1)$ th entry of $V_{2 \mid 1}$. Replacing 1 by $t-1$ and 2 by t, one has the general formula.

