1. Consider the ARIMA model $\left(1-1.4 B+.49 B^{2}\right)(1-B) z_{t}=(1-.5 B) a_{t}$.
(a) Find the coefficients $\psi_{1}, \ldots, \psi_{6}$ in the MA form of z_{t}.
(b) Give a general expression of ψ_{j} for $j>1$.
(c) Express z_{t} in a truncated MA form with respect to the time origin $t=3$.
(d) Find the π weights in the infinite order AR form, $\left(1-\sum_{j=1}^{\infty} \pi_{j} B^{j}\right) z_{t}=a_{t}$, and verify that $\sum_{j=1}^{\infty} \pi_{j}=1$.
(e) Find the variance and autocorrelation of $w_{t}=z_{t}-z_{t-1}$.

Solution:

(a) $\left(\psi_{1}, \ldots, \psi_{6}\right)=(1.9,2.67,3.307,3.8215,4.22967,4.549003)$.
(b) Since $1-1.4 x+.49 x^{2}=(1-.7 x)^{2}, \psi_{j}=A_{1}+A_{2}(.7)^{j}+A_{3} j(.7)^{j}, j>1$. From $A_{1}+.7 A_{2}+.7 A_{3}=\psi_{1}=1.9, A_{1}+A_{2}=\psi_{0}=1$, and $A_{1}+A_{2} / .7-A_{3} / .7=\psi_{-1}=0$, one solves for $A_{1}=50 / 9, A_{2}=-41 / 9, A_{3}=-2 / 3$.
(c) One has for $t>4$

$$
z_{t}=\sum_{j=0}^{t-4}\left(A_{1}+A_{2}(.7)^{j}+A_{3} j(.7)^{j}\right) a_{t-j}+b_{0}+b_{1}(.7)^{t-3}+b_{2}(t-3)(.7)^{t-3}
$$

where $\left(A_{1}, A_{2}, A_{3}\right)$ are as given in (b) and $\left(b_{0}, b_{1}, b_{2}\right)$ satisfy

$$
\begin{aligned}
a_{4}+b_{0}+.7 b_{1}+.7 b_{2} & =z_{4}=2.4 z_{3}-1.89 z_{2}+.49 z_{1}+a_{4}-.5 a_{3}, \\
b_{0}+b_{1} & =z_{3}, \\
b_{0}+b_{1} / .7-b_{2} / .7 & =z_{2},
\end{aligned}
$$

yielding

$$
\begin{aligned}
& b_{0}=\left(z_{3}-1.4 z_{2}+.49 z_{1}-.5 a_{3}\right) / .09 \\
& b_{1}=z_{3}-b_{0} \\
& b_{2}=z_{3}-.7 z_{2}-.3 b_{0}
\end{aligned}
$$

(d) Since

$$
\pi(B)=\frac{1-2.4 B+1.89 B^{2}-.49 B^{3}}{1-.5 B}=\left(1-2.4 B+1.89 B^{2}-.49 B^{3}\right)\left(1+\sum_{j=1}^{\infty}(.5)^{j} B^{j}\right)
$$

one has

$$
\begin{aligned}
& \pi_{1} \\
&=1.9 \\
& \pi_{2}=-.94 \\
& \\
& \pi_{j}=.02(.5)^{j-3}, \quad j>2 . \\
& \sum_{j=1}^{\infty} \pi_{j}=1.9-.94+.02 /(1-.5)=1
\end{aligned}
$$

(e) For $w_{t}=(1-B) z_{t}$ an $\operatorname{ARMA}(2,1)$ process, one has

$$
\begin{aligned}
& \gamma_{0}=\phi_{1}^{2} \gamma_{0}+\phi_{2}^{2} \gamma_{0}+2 \phi_{1} \phi_{2} \gamma_{1}-2 \phi_{1} \theta \sigma_{a}^{2}+\sigma_{a}^{2}+\theta^{2} \sigma_{a}^{2} \\
& \gamma_{1}=\phi_{1} \gamma_{0}+\phi_{2} \gamma_{1}-\theta \sigma_{a}^{2}
\end{aligned}
$$

Plugging in $\phi_{1}=1.4, \phi_{2}=-.49$, and $\theta=.5$, one has

$$
\left(\begin{array}{cc}
-1.2001 & 1.372 \\
-1.4 & 1.49
\end{array}\right)\binom{\gamma_{0}}{\gamma_{1}}=\binom{-0.15}{-0.5}
$$

or $\gamma_{0}=3.486593$ and $\gamma_{1}=2.940423$. Thus $\rho_{1}=\gamma_{1} / \gamma_{0}=0.8433514$. For $k>1$, $\rho_{k}=1.4 \rho_{k-1}-.49 \rho_{k-2}$, so $\rho_{k}=A_{1}(.7)^{k}+A_{2} k(.7)^{k}$, with $A_{1}=1$ and $A_{2}=$ 0.2047877 determined by $\rho_{0}=1$ and $\rho_{1}=0.8433514$.
2. Consider $Z_{t}=z_{t}+b_{t}$, where $z_{t}=z_{t-1}+a_{t}$ with a_{t} a white noise, $\sigma_{a}^{2}=1$, and b_{t} is another white noise independent of $a_{t}, \sigma_{b}^{2}=2$. Show that Z_{t} is an $\operatorname{IMA}(0,1,1)$ process, and specify all its parameters.
Solution: Consider $w_{t}=(1-B) Z_{t}=a_{t}+b_{t}-b_{t-1}$. One has $\gamma_{w}(0)=\sigma_{a}^{2}+2 \sigma_{b}^{2}=5$, $\gamma_{w}(1)=-\sigma_{b}^{2}=-2, \gamma_{k}=0, k>1$. So Z_{t} is $\operatorname{IMA}(0,1,1)$.
Write $w_{t}=u_{t}-\Theta u_{t-1}$. From $\gamma_{0}=5=\sigma_{u}^{2}\left(1+\Theta^{2}\right)$ and $\gamma_{1}=-2=-\Theta \sigma_{u}^{2}$, one solves for $\Theta=0.5$ and $\sigma_{u}^{2}=4$.
3. Consider $Z_{t}=z_{t}+b_{t}$, where $z_{t}=\phi z_{t-1}+a_{t}$ is stationary with a_{t} a white noise, and b_{t} is another white noise independent of a_{t}.
(a) Show that Z_{t} is an ARMA process and identify its orders.
(b) Express the parameters of Z_{t} in terms of ϕ, σ_{a}^{2}, and σ_{b}^{2}.

Solution:

(a) $(1-\phi B) Z_{t}=a_{t}+b_{t}-\phi b_{t-1}$, so Z_{t} is $\operatorname{ARMA}(1,1)$.
(b) Write $w_{t}=(1-\phi B) Z_{t}=u_{t}-\theta u_{t-1}$. From $\gamma_{w}(0)=\sigma_{u}^{2}\left(1+\theta^{2}\right)=\sigma_{a}^{2}+\sigma_{b}^{2}\left(1+\phi^{2}\right)$ and $\gamma_{w}(1)=-\theta \sigma_{u}^{2}=-\phi \sigma_{b}^{2}$, one solves

$$
\begin{aligned}
\theta & =\left(r+1+\phi^{2}-\sqrt{r^{2}+2 r\left(1+\phi^{2}\right)+\left(1-\phi^{2}\right)^{2}}\right) / 2 \phi, \\
\sigma_{u}^{2} & =\sigma_{b}^{2}(\phi / \theta)
\end{aligned}
$$

where $r=\sigma_{a}^{2} / \sigma_{b}^{2}$. The ϕ parameter remains the same.

