- 1. Consider the ARIMA model $(1 1.4B + .49B^2)(1 B)z_t = (1 .5B)a_t$.
 - (a) Find the coefficients ψ_1, \ldots, ψ_6 in the MA form of z_t .
 - (b) Give a general expression of ψ_j for j > 1.
 - (c) Express z_t in a truncated MA form with respect to the time origin t = 3.
 - (d) Find the π weights in the infinite order AR form, $(1 \sum_{j=1}^{\infty} \pi_j B^j) z_t = a_t$, and verify that $\sum_{j=1}^{\infty} \pi_j = 1$.
 - (e) Find the variance and autocorrelation of $w_t = z_t z_{t-1}$.

Solution:

- (a) $(\psi_1, \dots, \psi_6) = (1.9, 2.67, 3.307, 3.8215, 4.22967, 4.549003).$
- (b) Since $1 1.4x + .49x^2 = (1 .7x)^2$, $\psi_j = A_1 + A_2(.7)^j + A_3j(.7)^j$, j > 1. From $A_1 + .7A_2 + .7A_3 = \psi_1 = 1.9$, $A_1 + A_2 = \psi_0 = 1$, and $A_1 + A_2/.7 A_3/.7 = \psi_{-1} = 0$, one solves for $A_1 = 50/9$, $A_2 = -41/9$, $A_3 = -2/3$.
- (c) One has for t > 4

$$z_t = \sum_{j=0}^{t-4} (A_1 + A_2(.7)^j + A_3 j(.7)^j) a_{t-j} + b_0 + b_1(.7)^{t-3} + b_2(t-3)(.7)^{t-3},$$

where (A_1, A_2, A_3) are as given in (b) and (b_0, b_1, b_2) satisfy

$$a_4 + b_0 + .7b_1 + .7b_2 = z_4 = 2.4z_3 - 1.89z_2 + .49z_1 + a_4 - .5a_3,$$

$$b_0 + b_1 = z_3,$$

$$b_0 + b_1/.7 - b_2/.7 = z_2,$$

yielding

$$b_0 = (z_3 - 1.4z_2 + .49z_1 - .5a_3)/.09,$$

$$b_1 = z_3 - b_0,$$

$$b_2 = z_3 - .7z_2 - .3b_0.$$

(d) Since

$$\pi(B) = \frac{1 - 2.4B + 1.89B^2 - .49B^3}{1 - .5B} = (1 - 2.4B + 1.89B^2 - .49B^3)(1 + \sum_{j=1}^{\infty} (.5)^j B^j),$$

one has

$$\pi_1 = 1.9,$$

$$\pi_2 = -.94,$$

$$\pi_j = .02(.5)^{j-3}, \quad j > 2.$$

$$\sum_{j=1}^{\infty} \pi_j = 1.9 - .94 + .02/(1 - .5) = 1.$$

Due February 26, 2024

(e) For $w_t = (1 - B)z_t$ an ARMA(2,1) process, one has

$$\begin{split} \gamma_0 &= \phi_1^2 \gamma_0 + \phi_2^2 \gamma_0 + 2\phi_1 \phi_2 \gamma_1 - 2\phi_1 \theta \sigma_a^2 + \sigma_a^2 + \theta^2 \sigma_a^2, \\ \gamma_1 &= \phi_1 \gamma_0 + \phi_2 \gamma_1 - \theta \sigma_a^2. \end{split}$$

Plugging in $\phi_1 = 1.4$, $\phi_2 = -.49$, and $\theta = .5$, one has

$$\begin{pmatrix} -1.2001 & 1.372\\ -1.4 & 1.49 \end{pmatrix} \begin{pmatrix} \gamma_0\\ \gamma_1 \end{pmatrix} = \begin{pmatrix} -0.15\\ -0.5 \end{pmatrix},$$

or $\gamma_0 = 3.486593$ and $\gamma_1 = 2.940423$. Thus $\rho_1 = \gamma_1/\gamma_0 = 0.8433514$. For k > 1, $\rho_k = 1.4\rho_{k-1} - .49\rho_{k-2}$, so $\rho_k = A_1(.7)^k + A_2k(.7)^k$, with $A_1 = 1$ and $A_2 = 0.2047877$ determined by $\rho_0 = 1$ and $\rho_1 = 0.8433514$.

2. Consider $Z_t = z_t + b_t$, where $z_t = z_{t-1} + a_t$ with a_t a white noise, $\sigma_a^2 = 1$, and b_t is another white noise independent of a_t , $\sigma_b^2 = 2$. Show that Z_t is an IMA(0,1,1) process, and specify all its parameters.

Solution: Consider $w_t = (1 - B)Z_t = a_t + b_t - b_{t-1}$. One has $\gamma_w(0) = \sigma_a^2 + 2\sigma_b^2 = 5$, $\gamma_w(1) = -\sigma_b^2 = -2$, $\gamma_k = 0$, k > 1. So Z_t is IMA(0,1,1).

Write $w_t = u_t - \Theta u_{t-1}$. From $\gamma_0 = 5 = \sigma_u^2 (1 + \Theta^2)$ and $\gamma_1 = -2 = -\Theta \sigma_u^2$, one solves for $\Theta = 0.5$ and $\sigma_u^2 = 4$.

- 3. Consider $Z_t = z_t + b_t$, where $z_t = \phi z_{t-1} + a_t$ is stationary with a_t a white noise, and b_t is another white noise independent of a_t .
 - (a) Show that Z_t is an ARMA process and identify its orders.
 - (b) Express the parameters of Z_t in terms of ϕ , σ_a^2 , and σ_b^2 .

Solution:

- (a) $(1 \phi B)Z_t = a_t + b_t \phi b_{t-1}$, so Z_t is ARMA(1,1).
- (b) Write $w_t = (1 \phi B)Z_t = u_t \theta u_{t-1}$. From $\gamma_w(0) = \sigma_u^2(1 + \theta^2) = \sigma_a^2 + \sigma_b^2(1 + \phi^2)$ and $\gamma_w(1) = -\theta \sigma_u^2 = -\phi \sigma_b^2$, one solves

$$\begin{aligned} \theta &= (r+1+\phi^2 - \sqrt{r^2 + 2r(1+\phi^2) + (1-\phi^2)^2})/2\phi, \\ \sigma_u^2 &= \sigma_b^2(\phi/\theta), \end{aligned}$$

where $r = \sigma_a^2 / \sigma_b^2$. The ϕ parameter remains the same.