- 1. Consider the ARIMA model $(1 1.4B + .49B^2)(1 B)z_t = (1 .5B)a_t$.
 - (a) Find the coefficients ψ_1, \ldots, ψ_6 in the MA form of z_t .
 - (b) Give a general expression of ψ_j for j > 1.
 - (c) Express z_t in a truncated MA form with respect to the time origin t = 3.
 - (d) Find the π weights in the infinite order AR form, $(1 \sum_{j=1}^{\infty} \pi_j B^j) z_t = a_t$, and verify that $\sum_{j=1}^{\infty} \pi_j = 1$.
 - (e) Find the variance and autocorrelation of $w_t = z_t z_{t-1}$.
- 2. Consider $Z_t = z_t + b_t$, where $z_t = z_{t-1} + a_t$ with a_t a white noise, $\sigma_a^2 = 1$, and b_t is another white noise independent of a_t , $\sigma_b^2 = 2$. Show that Z_t is an IMA(0,1,1) process, and specify all its parameters.
- 3. Consider $Z_t = z_t + b_t$, where $z_t = \phi z_{t-1} + a_t$ is stationary with a_t a white noise, and b_t is another white noise independent of a_t .
 - (a) Show that Z_t is an ARMA process and identify its orders.
 - (b) Express the parameters of Z_t in terms of ϕ , σ_a^2 , and σ_b^2 .