1. Consider the ARIMA model $\left(1-1.4 B+.49 B^{2}\right)(1-B) z_{t}=(1-.5 B) a_{t}$.
(a) Find the coefficients $\psi_{1}, \ldots, \psi_{6}$ in the MA form of z_{t}.
(b) Give a general expression of ψ_{j} for $j>1$.
(c) Express z_{t} in a truncated MA form with respect to the time origin $t=3$.
(d) Find the π weights in the infinite order AR form, $\left(1-\sum_{j=1}^{\infty} \pi_{j} B^{j}\right) z_{t}=a_{t}$, and verify that $\sum_{j=1}^{\infty} \pi_{j}=1$.
(e) Find the variance and autocorrelation of $w_{t}=z_{t}-z_{t-1}$.
2. Consider $Z_{t}=z_{t}+b_{t}$, where $z_{t}=z_{t-1}+a_{t}$ with a_{t} a white noise, $\sigma_{a}^{2}=1$, and b_{t} is another white noise independent of $a_{t}, \sigma_{b}^{2}=2$. Show that Z_{t} is an $\operatorname{IMA}(0,1,1)$ process, and specify all its parameters.
3. Consider $Z_{t}=z_{t}+b_{t}$, where $z_{t}=\phi z_{t-1}+a_{t}$ is stationary with a_{t} a white noise, and b_{t} is another white noise independent of a_{t}.
(a) Show that Z_{t} is an ARMA process and identify its orders.
(b) Express the parameters of Z_{t} in terms of ϕ, σ_{a}^{2}, and σ_{b}^{2}.
