1. Consider the MA(2) process $z_{t}=a_{t}-a_{t-1}+\frac{2}{9} a_{t-2}, \operatorname{var}\left[a_{t}\right]=\sigma_{a}^{2}=3$.
(a) Find the variance and autocorrelation function of $\left\{z_{t}\right\}$.
(b) Determine if the process is invertible, and if so express the process in the infinite autoregressive form, $z_{t}=\sum_{j=1}^{\infty} \pi_{j} z_{t-j}+a_{t}$, providing numerical values for π_{1}, \ldots, π_{5}.
(c) Show that $\pi_{j}-\theta_{1} \pi_{j-1}-\theta_{2} \pi_{j-2}=0$ for $j>0$, where $\pi_{-1}=0$. Find a general expression for π_{j}.

Solution:

(a) $\gamma_{0}=3\left(1+1+(2 / 9)^{2}\right)=166 / 27, \gamma_{1}=3(-1-2 / 9)=-11 / 3, \gamma_{2}=3(2 / 9)=2 / 3$, $\gamma_{k}=0, k>2 . \rho_{1}=-99 / 166, \rho_{2}=9 / 83, \rho_{k}=0, k>2$.
(b) Since $1-x+(2 / 9) x^{2}=(1-(1 / 3) x)(1-(2 / 3) x)$, so the process is invertible. Since

$$
\begin{aligned}
\pi(B) & =\frac{1}{\theta(B)}=\frac{2}{1-(2 / 3) B}-\frac{1}{1-(1 / 3) B} \\
& =1+\sum_{j=1}^{\infty}\left[2(2 / 3)^{j}-(1 / 3)^{j}\right] B^{j}
\end{aligned}
$$

$$
\pi_{1}=-1, \pi_{2}=-7 / 9, \pi_{3}=-5 / 9, \pi_{4}=-31 / 81, \pi_{5}=-7 / 27
$$

(c) One has $-\left(1-\theta_{1} B-\theta_{2} B^{2}\right)\left(\sum_{j=-\infty}^{\infty} \pi_{j} B^{j}\right)=1$, where $\pi_{0}=-1$ and $\pi_{j}=0, j<0$. The coefficient of B^{j} is seen to be

$$
\pi_{j}-\theta_{1} \pi_{j-1}-\theta_{2} \pi_{j-2}=0
$$

$j>0$. Using the difference equation, $\pi_{j}=A_{1}(2 / 3)^{j}+A_{2}(1 / 3)^{j}, j>0$. Solving from $\pi_{-1}=0=A_{1}(3 / 2)+A_{2} 3$ and $\pi_{0}=-1=A_{1}+A_{2}$, one gets $A_{1}=-2$, and $A_{2}=1$, so $\pi_{j}=-2(2 / 3)^{j}+(1 / 3)^{j}$.
2. Consider the $\operatorname{AR}(2)$ process $z_{t}=1.6 z_{t-1}-.89 z_{t-2}+a_{t}, \sigma_{a}^{2}=2$.
(a) Verify that $\left\{z_{t}\right\}$ is stationary, and find the variance γ_{0}.
(b) Solve the first 2 Yule-Walker equations for ρ_{1} and ρ_{2}, and then compute ρ_{k} for $k=3, \ldots, 8$ using the recursive equation $\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}$.
(c) Give a general formula for ρ_{k} as the solution of the linear difference equation, $\rho_{k}-1.6 \rho_{k-1}+.89 \rho_{k-2}=0, k>0$. Do express your result in terms of real numbers and real functions.
(d) Consider the infinite moving average form of the process, $z_{t}=a_{t}+\sum_{j=1}^{\infty} \psi_{j} a_{t-j}$. Show that $\psi_{j}-1.6 \psi_{j-1}+.89 \psi_{j-2}=0, j>0$, where $\psi_{-1}=0$, and find a general expression for ψ_{j}.

Solution:

(a) The roots of $1-1.6 x+.89 x^{2}, 1.059998 e^{ \pm 0.5585993 i}$, are out of the unit circle, so the process is stationary.

$$
\gamma_{0}=\frac{1-(-.89)}{1+(-.89)} \frac{2}{(1-(-.89))^{2}-1.6^{2}}=33.95281
$$

(b) From $\phi_{1}+\rho_{1} \phi_{2}=\rho_{1}$, one has $\rho_{1}=\phi_{1} /\left(1-\phi_{2}\right)=1.6 / 1.89=0.84656085$. From $\rho_{1} \phi_{1}+\phi_{2}=\rho_{2}$, one has $\rho_{2}=0.46449735 . \rho_{k}$ for $k=3, \ldots, 8$ are given by $(-0.01024339,-0.42979206,-0.67855069,-0.70316616,-0.52115575,-0.20803131)$.
(c) $\rho_{k}=(0.9433981)^{k}(a \cos (0.5585993 k)+b \sin (0.5585993 k))$. Solving from $\rho_{-1}=$ $0.84656085=(0.9433981)^{-1}(a 0.8479983-b 0.5299989)$ and $\rho_{0}=1=a$, one has $a=1, b=0.0931217$
(d) $\psi_{k}=(0.9433981)^{k}(a \cos (0.5585993 k)+b \sin (0.5585993 k))$. Solving from $\psi_{-1}=$ $0=(0.9433981)^{-1}(a 0.8479983-b 0.5299989)$ and $\psi_{0}=1=a$, one has $a=1$ and $b=1.6$.
3. Assume that the stationary process $\left\{z_{t}\right\}$ is generated by a low order AR model with $p \leq 4$, and that $\left\{z_{t}\right\}$ has the following variance and autocorrelation function,

$$
\gamma_{0}=12, \quad \rho_{1}=.8, \quad \rho_{2}=.46, \quad \rho_{3}=.152, \quad \rho_{4}=-.0476
$$

(a) For each of the possible orders $1,2,3$, solve the first sets of Yule-Walker equations to obtain the corresponding ϕ_{j} 's and σ_{a}^{2}.
(b) What is the actual AR order p of this process?

Solution:
(a) For order 1, $\phi_{1}=\rho_{1}=$.8. $\sigma_{a}^{2}=\gamma_{0}\left(1-\phi_{1} \rho_{1}\right)=4.32$.

For order 2,

$$
\begin{aligned}
& \binom{\phi_{1}}{\phi_{2}}=\left(\begin{array}{cc}
1 & .8 \\
.8 & 1
\end{array}\right)^{-1}\binom{.8}{.46}=\binom{1.2}{-0.5} . \\
& \sigma_{a}^{2}=\gamma_{0}\left(1-\phi_{1} \rho_{1}-\phi_{2} \rho_{2}\right)=3.24
\end{aligned}
$$

For order 3,

$$
\begin{aligned}
& \left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & .8 & .46 \\
.8 & 1 & .8 \\
.46 & .8 & 1
\end{array}\right)^{-1}\left(\begin{array}{c}
.8 \\
.46 \\
.152
\end{array}\right)=\left(\begin{array}{c}
1.2 \\
-0.5 \\
0
\end{array}\right) \\
& \sigma_{a}^{2}=\gamma_{0}\left(1-\phi_{1} \rho_{1}-\phi_{2} \rho_{2}-\phi_{3} \rho_{3}\right)=3.24 .
\end{aligned}
$$

(b) From (a), it appears that the true order is $p=2$. To confirm, double check that $1.2 \rho_{3}-.5 \rho_{2}=-.0476=\rho_{4}$, or solve the order $4 \mathrm{Y}-\mathrm{W}$ equation.
4. Suppose a sequence of real numbers $\left\{x_{t}\right\}_{0}^{\infty}$ satisfy the linear difference equation,

$$
x_{t}+a x_{t-1}+b x_{t-2}=0, \quad t>1 .
$$

(a) Find the coefficients a, b, such that x_{t} is sinusoidal with period 12 ,

$$
x_{t}=a_{1} \cos (2 \pi t / 12)+a_{2} \sin (2 \pi t / 12) .
$$

(b) Find the coefficients a, b, such that x_{t} is damped sinusoidal with damping factor .8 and period 12,

$$
x_{t}=(.8)^{t}\left\{a_{1} \cos (2 \pi t / 12)+a_{2} \sin (2 \pi t / 12)\right\} .
$$

Solution:

(a) The roots of $1+a x+b x^{2}$ should be $e^{ \pm 2 \pi / 12 i}$, so

$$
1+a x+b x^{2}=\left(1-e^{2 \pi / 12 i} x\right)\left(1-e^{-2 \pi / 12 i} x\right)=1-\sqrt{3} x+x^{2}
$$

or $a=-\sqrt{3}$ and $b=1$.
(b) The roots of $1+a x+b x^{2}$ should be $(.8)^{-1} e^{ \pm 2 \pi / 12 i}$, so

$$
1+a x+b x^{2}=\left(1-.8 e^{2 \pi / 12 i} x\right)\left(1-.8 e^{-2 \pi / 12 i} x\right)=1-.8 \sqrt{3} x+.64 x^{2}
$$ or $a=-.8 \sqrt{3}$ and $b=.64$.

