- 1. Consider the MA(2) process $z_t = a_t a_{t-1} + \frac{2}{9}a_{t-2}$, $var[a_t] = \sigma_a^2 = 3$.
 - (a) Find the variance and autocorrelation function of $\{z_t\}$.
 - (b) Determine if the process is invertible, and if so express the process in the infinite autoregressive form, $z_t = \sum_{j=1}^{\infty} \pi_j z_{t-j} + a_t$, providing numerical values for π_1, \ldots, π_5 .
 - (c) Show that $\pi_j \theta_1 \pi_{j-1} \theta_2 \pi_{j-2} = 0$ for j > 0, where $\pi_{-1} = 0$. Find a general expression for π_j .
- 2. Consider the AR(2) process $z_t = 1.6z_{t-1} .89z_{t-2} + a_t$, $\sigma_a^2 = 2$.
 - (a) Verify that $\{z_t\}$ is stationary, and find the variance γ_0 .
 - (b) Solve the first 2 Yule-Walker equations for ρ_1 and ρ_2 , and then compute ρ_k for $k = 3, \ldots, 8$ using the recursive equation $\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$.
 - (c) Give a general formula for ρ_k as the solution of the linear difference equation, $\rho_k - 1.6\rho_{k-1} + .89\rho_{k-2} = 0, k > 0$. Do express your result in terms of real numbers and real functions.
 - (d) Consider the infinite moving average form of the process, $z_t = a_t + \sum_{j=1}^{\infty} \psi_j a_{t-j}$. Show that $\psi_j - 1.6\psi_{j-1} + .89\psi_{j-2} = 0$, j > 0, where $\psi_{-1} = 0$, and find a general expression for ψ_j .
- 3. Assume that the stationary process $\{z_t\}$ is generated by a low order AR model with $p \leq 4$, and that $\{z_t\}$ has the following variance and autocorrelation function,

$$\gamma_0 = 12, \quad \rho_1 = .8, \quad \rho_2 = .46, \quad \rho_3 = .152, \quad \rho_4 = -.0476.$$

- (a) For each of the possible orders 1, 2, 3, solve the first sets of Yule-Walker equations to obtain the corresponding ϕ_j 's and σ_a^2 .
- (b) What is the actual AR order p of this process?
- 4. Suppose a sequence of real numbers $\{x_t\}_0^\infty$ satisfy the linear difference equation,

$$x_t + ax_{t-1} + bx_{t-2} = 0, \quad t > 1.$$

(a) Find the coefficients a, b, such that x_t is sinusoidal with period 12,

$$x_t = a_1 \cos(2\pi t/12) + a_2 \sin(2\pi t/12).$$

(b) Find the coefficients a, b, such that x_t is damped sinusoidal with damping factor .8 and period 12,

$$x_t = (.8)^t \{ a_1 \cos(2\pi t/12) + a_2 \sin(2\pi t/12) \}.$$