1. Consider the MA(2) process $z_{t}=a_{t}-a_{t-1}+\frac{2}{9} a_{t-2}, \operatorname{var}\left[a_{t}\right]=\sigma_{a}^{2}=3$.
(a) Find the variance and autocorrelation function of $\left\{z_{t}\right\}$.
(b) Determine if the process is invertible, and if so express the process in the infinite autoregressive form, $z_{t}=\sum_{j=1}^{\infty} \pi_{j} z_{t-j}+a_{t}$, providing numerical values for π_{1}, \ldots, π_{5}.
(c) Show that $\pi_{j}-\theta_{1} \pi_{j-1}-\theta_{2} \pi_{j-2}=0$ for $j>0$, where $\pi_{-1}=0$. Find a general expression for π_{j}.
2. Consider the $\mathrm{AR}(2)$ process $z_{t}=1.6 z_{t-1}-.89 z_{t-2}+a_{t}, \sigma_{a}^{2}=2$.
(a) Verify that $\left\{z_{t}\right\}$ is stationary, and find the variance γ_{0}.
(b) Solve the first 2 Yule-Walker equations for ρ_{1} and ρ_{2}, and then compute ρ_{k} for $k=3, \ldots, 8$ using the recursive equation $\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}$.
(c) Give a general formula for ρ_{k} as the solution of the linear difference equation, $\rho_{k}-1.6 \rho_{k-1}+.89 \rho_{k-2}=0, k>0$. Do express your result in terms of real numbers and real functions.
(d) Consider the infinite moving average form of the process, $z_{t}=a_{t}+\sum_{j=1}^{\infty} \psi_{j} a_{t-j}$. Show that $\psi_{j}-1.6 \psi_{j-1}+.89 \psi_{j-2}=0, j>0$, where $\psi_{-1}=0$, and find a general expression for ψ_{j}.
3. Assume that the stationary process $\left\{z_{t}\right\}$ is generated by a low order AR model with $p \leq 4$, and that $\left\{z_{t}\right\}$ has the following variance and autocorrelation function,

$$
\gamma_{0}=12, \quad \rho_{1}=.8, \quad \rho_{2}=.46, \quad \rho_{3}=.152, \quad \rho_{4}=-.0476
$$

(a) For each of the possible orders $1,2,3$, solve the first sets of Yule-Walker equations to obtain the corresponding ϕ_{j} 's and σ_{a}^{2}.
(b) What is the actual AR order p of this process?
4. Suppose a sequence of real numbers $\left\{x_{t}\right\}_{0}^{\infty}$ satisfy the linear difference equation,

$$
x_{t}+a x_{t-1}+b x_{t-2}=0, \quad t>1 .
$$

(a) Find the coefficients a, b, such that x_{t} is sinusoidal with period 12 ,

$$
x_{t}=a_{1} \cos (2 \pi t / 12)+a_{2} \sin (2 \pi t / 12)
$$

(b) Find the coefficients a, b, such that x_{t} is damped sinusoidal with damping factor .8 and period 12,

$$
x_{t}=(.8)^{t}\left\{a_{1} \cos (2 \pi t / 12)+a_{2} \sin (2 \pi t / 12)\right\} .
$$

