1. For an $\operatorname{AR}(1)$ process $z_{t}=\phi z_{t-1}+a_{t},|\phi|<1$, its spectral density can be shown to be $f(\omega)=\left(\sigma_{2}^{2} / \gamma_{0}\right)\left|1-\phi e^{-i 2 \pi \omega}\right|^{-2}$. Verify that $f(\omega)=\left(1-\phi^{2}\right) /\left(1-2 \phi \cos 2 \pi \omega+\phi^{2}\right)$.
Solution: Note that $\gamma_{0}=\sigma_{a}^{2} /\left(1-\phi^{2}\right)$, and

$$
\begin{aligned}
\left|1-\phi e^{-i 2 \pi \omega}\right|^{2} & =1+\phi^{2}-\phi e^{-i 2 \pi \omega}-\phi e^{i 2 \pi \omega} \\
& =1+\phi^{2}-2 \phi \cos 2 \pi \omega
\end{aligned}
$$

2. For an MA(1) process $z_{t}=a_{t}-\theta a_{t-1}$, its spectral density can be shown to be $f(\omega)=$ $\left(\sigma_{2}^{2} / \gamma_{0}\right)\left|1-\theta e^{-i 2 \pi \omega}\right|^{2}$. Verify that $f(\omega)=1-2 \theta \cos 2 \pi \omega /\left(1+\theta^{2}\right)$.
Solution: Note that $\gamma_{0}=\sigma_{a}^{2}\left(1+\theta^{2}\right)$, and

$$
\begin{aligned}
\left|1-\theta e^{-i 2 \pi \omega}\right|^{2} & =1+\theta^{2}-\theta e^{-i 2 \pi \omega}-\theta e^{i 2 \pi \omega} \\
& =1+\theta^{2}-2 \theta \cos 2 \pi \omega
\end{aligned}
$$

3. Let $\left\{y_{t}\right\}$ be a stationary process with the power spectrum $p_{y}(\omega)$. Define $z_{t}=y_{t}-y_{t-1}$. Obtain the power spectrum of z_{t} in terms of $p_{y}(\omega)$.

Solution:

$$
\begin{aligned}
p_{z}(\omega) & =\sum_{k} \gamma_{z}(k) e^{-i 2 \pi k \omega} \\
& =\sum_{k}\left(2 \gamma_{y}(k)-\gamma_{y}(k-1)-\gamma_{y}(k+1)\right) e^{-i 2 \pi k \omega} \\
& =p_{y}(\omega)\left(2-e^{-i 2 \pi \omega}-e^{i 2 \pi \omega}\right) \\
& =p_{y}(\omega)\left|1-e^{-i 2 \pi \omega}\right|^{2}
\end{aligned}
$$

4. Let $\left\{y_{t}\right\}_{-\infty}^{\infty}$ and $\left\{z_{t}\right\}_{-\infty}^{\infty}$ be two stationary processes, independent of each other, with power spectrums $p_{y}(\omega)$ and $p_{z}(\omega)$. Find the power spectrum of the stationary process $w_{t}=a y_{t}+b z_{t}$ in terms of $p_{y}(\omega)$ and $p_{z}(\omega)$, where a and b are constants.
Solution: Since $\gamma_{w}(k)=a^{2} \gamma_{y}(k)+b^{2} \gamma_{z}(k), p_{w}(\omega)=a^{2} p_{y}(\omega)+b^{2} p_{z}(\omega)$.
5. Let a_{i}, b_{i} be independent r.v.'s with $E\left[a_{i}\right]=E\left[b_{i}\right]=0$ and $\operatorname{var}\left[a_{i}\right]=\operatorname{var}\left[b_{i}\right]=\sigma_{i}^{2}$. Find the spectral distribution of the stationary process $z_{t}=\sum_{i=1}^{m}\left(a_{i} \cos 2 \pi \omega_{i} t+b_{i} \sin 2 \pi \omega_{i} t\right)$. Note that the spectral density does not exist since the spectral distribution is discrete.
Solution: Since $\gamma_{k}=\sum_{i=1}^{m} \sigma_{i}^{2} \cos 2 \pi \omega_{i} k, F(\omega)$ has jumps of size $\sigma_{i}^{2} / 2 \sum_{j=1}^{m} \sigma_{j}^{2}$ at $\omega=$ $\pm \omega_{i}$.
