1. Let $\left\{a_{t}\right\}_{-\infty}^{\infty}$ be a white noise process with $E\left[a_{t}\right]=0$ and $\operatorname{var}\left[a_{t}\right]=\sigma_{a}^{2}$. Define $z_{t}=$ $\mu+a_{t}-.5 a_{t-1}$. Find the mean, autocovariance, and autocorrelation of $z_{t}$, and verify that $\left\{z_{t}\right\}_{-\infty}^{\infty}$ is stationary.

## Solution:

$E\left[z_{t}\right]=\mu . \operatorname{var}\left[z_{t}\right]=1.25 \sigma_{a}^{2}, \operatorname{cov}\left[z_{t}, z_{t-1}\right]=-.5 \sigma_{a}^{2}, \operatorname{cov}\left[z_{t}, z_{t-k}\right]=0, k>1 . \rho_{1}=-.4$, $\rho_{k}=0, k>1$. All are independent of $t$.
2. Let $\left\{y_{t}\right\}$ be a stationary process with mean $\mu_{y}$ and autocovariance $\gamma_{y}(s)=\operatorname{cov}\left[y_{t}, y_{t-s}\right]$. Define $z_{t}=y_{t}-y_{t-1}$. Obtain the mean and autocovariance of $\left\{z_{t}\right\}_{-\infty}^{\infty}$ in terms of those of $y_{t}$ and verify that it is stationary.

## Solution:

$E\left[z_{t}\right]=0 \cdot \operatorname{cov}\left[z_{t}, z_{t-k}\right]=\operatorname{cov}\left[y_{t}-y_{t-1}, y_{t-k}-y_{t-k-1}\right]=2 \gamma_{y}(k)-\gamma_{y}(k-1)-\gamma_{y}(k+1)$.
All are independent of $t$.
3. Let $\left\{y_{t}\right\}_{-\infty}^{\infty}$ and $\left\{z_{t}\right\}_{-\infty}^{\infty}$ be two stationary processes with means $\mu_{y}$ and $\mu_{z}$ and autocovariances $\gamma_{y}(s)$ and $\gamma_{z}(s)$, independent of each other. Find the mean and autocovariance of $w_{t}=a y_{t}+b z_{t}$, where $a$ and $b$ are constants, and show that $\left\{w_{t}\right\}_{-\infty}^{\infty}$ is stationary.

## Solution:

$E\left[w_{t}\right]=a \mu_{y}+b \mu_{z} . \operatorname{cov}\left[w_{t}, w_{t-k}\right]=a^{2} \gamma_{y}(k)+b^{2} \gamma_{z}(k)$. All are independent of $t$.
4. Let $a_{i}, b_{i}$ be independent r.v.'s with $E\left[a_{i}\right]=E\left[b_{i}\right]=0$ and $\operatorname{var}\left[a_{i}\right]=\operatorname{var}\left[b_{i}\right]=\sigma_{i}^{2}$. Compute the mean and autocovariance of $z_{t}=\sum_{i=1}^{m}\left(a_{i} \cos 2 \pi \omega_{i} t+b_{i} \sin 2 \pi \omega_{i} t\right)$ and show that it is stationary. [Hint: you may want to use the trigonometric identity $\cos x \cos y+\sin x \sin y=\cos (x-y)$.

## Solution:

$E\left[z_{t}\right]=0 . \operatorname{cov}\left[z_{t}, z_{t-k}\right]=\sum_{i=1}^{m} \sigma_{i}^{2} \cos 2 \pi \omega_{i} k$. All are independent of $t$.
5. Let $\left\{a_{t}\right\}_{1}^{\infty}$ be a white noise process with mean 0 and variance $\sigma_{a}^{2}$. Define $z_{0}=0$, $z_{t}=\phi z_{t-1}+a_{t}, t=1,2, \ldots$, where $|\phi|<1$.
(a) Express $z_{t}$ explicitly in terms of $a_{t}$.
(b) Calculate the autocovariance $\operatorname{cov}\left[z_{t}, z_{t+s}\right]$ for $s>0$, and show that for large $t, z_{t}$ is approximately stationary.

## Solution:

(a) $z_{t}=\sum_{i=0}^{t-1} \phi^{i} a_{t-i}$.
(b) $\operatorname{cov}\left[z_{t}, z_{t+s}\right]=\sum_{i=0}^{t-1} \phi^{2 i+s} \sigma_{a}^{2}=\sigma_{a}^{2} \phi^{s}\left(1-\phi^{2 t}\right) /\left(1-\phi^{2}\right) \rightarrow \sigma_{a}^{2} \phi^{s} /\left(1-\phi^{2}\right)$
6. Observing $z_{1}, \ldots, z_{N}$ from a stationary process with autocovariance $\gamma_{k}$ and autocorrelation $\rho_{k}=\gamma_{k} / \gamma_{0}$. It is known that $\operatorname{var}[\bar{z}]=\left(\gamma_{0} / N\right)\left[1+2 \sum_{k=1}^{N-1}(1-k / N) \rho_{k}\right]$.
(a) If $\rho_{k} \rightarrow 0$ as $k \rightarrow \infty$, show that $\operatorname{var}[\bar{z}] \rightarrow 0$ as $N \rightarrow \infty$.
(b) Compare var $[\bar{z}]$ with the following autocorrelations: (i) $\rho_{k}=0, k \neq 0$; (ii) $\rho_{1}=.8$, $\rho_{2}=.55, \rho_{k}=0, k>2$.

## Solution:

(a) Only need to prove $\sum_{k=1}^{N-1}(1-k / N) \rho_{k} / N \rightarrow 0$. For any $\delta>0$, there exists $M$ such that $\left|\rho_{k}\right|<\delta, k>M$. Let $K>M / \delta$. For $N>K$, one has

$$
\left|\sum_{k=1}^{N-1}(1-k / N) \rho_{k} / N\right| \leq \sum_{k \leq M} N^{-1}+\sum_{k>M} \delta / N<2 \delta
$$

(b) For (i), $\operatorname{var}[\bar{z}]=\gamma_{0} / N$. For (ii),

$$
\operatorname{var}[\bar{z}]=\left(\gamma_{0} / N\right)(1+2(1-1 / N)(.8)+2(1-2 / N)(.55))=\left(\gamma_{0} / N\right)(3.7-3.8 / N)
$$

7. Problem 2.1 in the text (p. 569 in 3rd ed; p. 701 in 4th ed.), plus
(d) After inspecting the graphs in (a)-(c), do you think the series is stationary?
(e) Calculate and plot the sample ACF for lags up to 6.
(f) Assume $\rho_{k}=0, k>2$. Obtain approximate standard errors for $r_{1}, r_{2}$, and $r_{k}$, $k>2$.
(g) Assume $\rho_{k}=0, k>2$. Obtain approximate correlation between $r_{4}$ and $r_{5}$.

## Solution:

Read the data into x in R .
(a) $\operatorname{plot}(\mathrm{ts}(\mathrm{x}))$.
(b) $\operatorname{plot}(x[-36], x[-1])$.
(c) $\operatorname{plot}(x[-(35: 36)], x[-(1: 2)])$.
(d) It appears to be stationary as there is no obvious pattern suggesting otherwise.
(e) $x \cdot \operatorname{acf}<-\operatorname{acf}(x, l a g . \max =6)$; $x . a c f ~ g i v e s$

$$
\left(r_{1}, \ldots, r_{6}\right)=(0.4910,0.1639,-0.0486,-0.1729,-0.2921,-0.5113)
$$

(f) Substituting $r_{1}, r_{2}$ for $\rho_{1}, \rho_{2}$ in the approximate formula for $\operatorname{var}\left[r_{k}\right]$, one has

$$
\begin{aligned}
\text { s.e. }\left[r_{1}\right] & \approx \sqrt{\left[\left(1+2 r_{1}^{2}\right)\left(1+2 r_{1}^{2}+2 r_{2}^{2}\right)+2 r_{2}+r_{1}^{2}-8 r_{1}^{2}\left(1+r_{2}\right)\right] / N}=0.1292, \\
\text { s.e. }\left[r_{2}\right] & \approx \sqrt{\left[\left(1+2 r_{2}^{2}\right)\left(1+2 r_{1}^{2}+2 r_{2}^{2}\right)+r_{2}^{2}-4 r_{2}\left(2 r_{2}+r_{1}^{2}\right)\right] / N}=0.1880, \\
\text { s.e. }\left[r_{k}\right] & \approx \sqrt{\left(1+2 r_{1}^{2}+2 r_{2}^{2}\right) / N}=0.2066, k>2 . \\
(\mathrm{g}) \operatorname{cov}\left[r_{4}, r_{5}\right] & \approx 2\left(r_{1} r_{2}+r_{1}\right) / N=0.0317 . \operatorname{corr}\left[r_{4}, r_{5}\right] \approx 0.03175 / 0.2066^{2}=0.744 .
\end{aligned}
$$

