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/ Minimum Mean Square Error Forecasts' \

520 Forecasting 1

Consider the forecasting, or prediction, of z;1; given z;,2¢_1,. ..,
assuming {z;} follows some known ARIMA (p,d,q) model.

Let Z;(1) be any function of Z; = (2¢,2¢_1,...). The mean square

error of forecasting z;4; by Z:(l) is seen to satisfy
Elzen — Z(D)° = Elzn — Elzen| Z4)) + E[Elee] 2] — Z(1))°
> Elzesr — Elzn|Z:])*.
Hence, E|z411|Z¢] is the minimum mean square error forecast of

zi11 given Zy, to be denoted by Z;(1).

Recall the truncated MA form z;.; = I;(l) + C¢(l), where
I(l) = Z;_:t Yiary;—; and Cy(l) is the complimentary function at
origin t. It is easily seen that 2;(l) = C¢(l). I;() is the forecasting

\3‘1‘01‘, to be denoted by e (1). /
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STAT 520 Forecasting 2

/ Other Forms of Forecasts, Updating' \

Consider the difference equation form of the model

d
“t+l = Z?Zl PjZtti—j T Q41 — Z;I-:l Ojatyi—j.
Taking conditional expectations at time ¢, one has
. +d A .
20 =251 piz(l =) = 25— 05aey1—j,

where 2;(k) = z¢4x for k < 0.

Based on the AR form of the model, z;; = Z;’;l TiZt4i—j + Gyl

one has Z;(l) = Z;il m;2¢(l — j), where 2;(k) = 244+ for k <0.

From z;.; = Zg;% Yiarri—j + 2¢(1), it is easy to show that
Zir1(l—1) = 2.(1) + Yr—1ap41.

As soon as z;11 becomes available, one may calculate

\ﬁH_l = z;41 — 2¢(1) and update the forecast of z;y; by Z;41(l — 1)/
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: Erampics) A

Consider an ARI(1,1,0) model (1 — 1.8B + .8B%)z; = a;. One has
Z¢(1 )—18zt— 8zi—1,
24(2) = 1.824(1) — .82,

Zi(1) =1.82,(1—1) —.82,(l—2), [>2.

The 1) weights for updating are given by 1¢; = 1.8¢;_1 — .8¢;_2,
4 >0, with g =1, ¢v_1 =0.

Consider an IMA(0,2,2) model VZz; = (1 — .9B + .5B?%)a;. One has
Ze(1) = 22y — 1241 — .9a; + .Bag_1,
Z1(2) = 224(1) — 2z + .bay,
Z(0)=2210-1)—2(1-2), [>2.

The 1 weights are given by ©; = 2¢;_1 —;_9, j > 2, with ¢y = 1,

\\¢1:2—.9:1.1, Yo =2(1.1) = 1+.5=17. /
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which naturally increases with [. The formula can be used to

Probability Limits of Forecasts'

. [—1 .
The forecasting error (1) = > ¥jat1i—; has variance

V(1) = (1+ 50 ¢))os,

calculate “prediction intervals” for z;.,

For the examples above, (1 — 1.8B + .8B%)z; = a; (model A) and
V2z = (1 - 9B + .5B%)a; (model B), \/V(I)/o2 at | =1,...,6 are

2 (

) £ 1.96V (1 + 02} ¢2)o,

calculated and listed below.

[ |1 2 3 4 5! 6
A1l 206 319 435 550 6.62
B|1 149 226 322 4.34 5.57

~
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/ Forecast Function and Welghtsl \

For 1 > q, 2,(1) = Y71 gojzt(l 7), so the “eventual” forecasting
function satisfies the equation ¢(B)Z:(l) = 0, hence are of the form

275([) = bét)f()(l) + -t bl()t_?_d_lfp—l—d—l(l)a

where f;(l) are determined by the roots of ¢(B) and b§-t> by the
initial values. Recall the form of complimentary function Cy(1).

From 2;() = Zjil m;2:(l — 7), one may express 2;(l) directly in

2 o0 [
terms of 2¢, ze—1,..., (1) = 32, 7T§ )Zt—j—|—1-
’7375(1> = T2t + T22¢—1 + T32¢—2 + -
Z/:t(2> — 7-‘-12?15(1) + Mozt + T32¢—1 + -+

= (mym + m2)2ze + (mime + T3) 21 + - -

oooooo

- /
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/ General Form of Forecast Weights' \

-1 .
From z;4; =), Yk@ryi—k + 2¢(1), one has

2e(1) = 2oy (1) = D22 a1k

= M12t4+1—1 + T22¢41—2 + -+ T—12¢t4+1 + T2t + T14+12¢—1 + - -

+1(—2ztp1—1+T12¢41—2+ - +T—2zip1+T—12e+ T 201+ -+ )
+ -+ Y1 (=21 Tz T2z ).

Adding up the coefficients of z;,z;_1,..., one has

l [—
7T§' ) = Mot F T T = 7Tg('+11) + 1 7;.

For example, 7T§2) = Tjt1 T ¢17Tja

7Tj(-3> = Mjt2 + Y1711 + Yoy = ﬁ)l + Ya;.

The coefficients of z;1;_1,..., 211 vanish as Zj TiYk—; = 0 for

\\k>O,Wherew0:—ﬂ0:1,wjzﬂj:O,j<O. /
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/ Example: IMA(0,1,1) I \

Consider the model Vz; = a; — 6a;—1. One has

ZA’t(l) :Zt—e&t, ZA't(l) :é’t(l—l) :ZA’t(].), [ > 1,

which give a constant forecast function. Since ¢; =1 -0, j > 0,
the forecast function can be updated through

2t+1<l) — 2t+1<l - 1) — 275(1) + <]. - 9)at+1, l > 1.
The 7 weights are m; = (1 — 0)67~1. Note that
72 = i iy = (1—0)07 + (1 - 0)209"1 = 7,
so there is no surprise here. The calculation applies recursively to

7T§3>, 7Tj(-4),

V(1) =oz(1+ (1 —-1)1-6)%.
- ) /
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/ Example: TMA(0,2,2) I \

Consider the model V?z; = a; — 01a4_1 — #2a,_5. One has

Ze(1) = 22 — 1241 — 010 — O2a4_1,
24(2) = 224(1) — 2z — O2ay,
(1) =221 —-1)—2:(I—2), [>2.
Since 1; = Ag + A1j, where A\g =1+ 02 and A\ =1 —0; — 05,
Zip1(l—1)=2:(1) + (Ao + A1l —1))ag41, 1 >1.

In the form of the complimentary function, 2;(l) = bgt) + bgt)l, and

b8 =08 + 01 + hoarre, BTV =Y 4+ Ajag.

The variance of e;(l) is given by

\\\VKD:aﬂ1+a—1M%+5@—1X%—1M%+&Mﬂa—ny4//
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/ Examples: AR(1) and ARI(1,1,0) \

Consider the model z; = ¢2;_1 + a;. One has 2,(I) = z¢'. Since

; = ¢’, the variance of e;(l) is given by
V(1) = 023520 6% = 02(1—¢2) /(1 = ¢?).
Consider the model (1 — ¢B)(1 — B)z; = a;. One has
() — 20— 1) = ¢ (2 — z_1).
It follows that 2,(I) = 2z + (35_, ) (2 — ze-1), 1 > 0, or

Zi(l) = 2z + (20 — 2¢—1) (1 — le)/(l — 9),

which “converges” to z; + (2 — z¢—-1)®/(1 — ¢). It can be shown
that 1; = (1 — ¢’*T1) /(1 — ¢), so the variance of e;(l) is given by

V(l) _ O-g 2{l 4+ ¢2(1 B ¢2l) o 2¢(1 B ¢l)}

\ (1-9) 1 —¢? -9 /
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/ Example: ARMA(1,1) I

Consider the model z; = ¢z;_1 + a; — fa;—1. One has

2i(1) = ¢z — Oay,

() =21 —1)=¢" " 15(1), 1>1.
Since ¥; = (¢ — 0)¢? 1, 5 >0, so for | > 1,

Gl = 1) = 2(1) + (¢ — 0)¢' 2ar41.
In particular, one has the updating formula

Z41(1) = 24(2) + (¢ — O)art1 = ¢2(1) + (¢ — O)awa.

variance of e;(l) is seen to be

k V() =oa{l+ (60— 0)°(1—¢*"D)/(1-¢?)}.

The 7 weights are m; = (¢ — )07, so 7T§-l) = ¢! H¢p—0)0771. The

~

/

C. Gu

Spring 2024



STAT 520

Forecasting

Example: ARIMA (1,1,1) I

¢B)(1 — B)zt = a; — fai—1. One has
2(1) = (14 @)zt — pze—1 — bay,
Z2(1) = (14 @)2(l — 1) — 92 (1 — 2),

Since (1 — ¢B)(1 — B)2:(1) =0, 1 > 1, 2:(1) = b” + b\ ¢!, where

= (20 — pze—1 — ) /(1 — @) = 2z, — b,

= (0ar — (2 — 2¢-1)) /(1 — @),

(2 —zem1) — 058 ar. As ar=2— 352 Mz,

—0)(0 — ¢)07 7%, j > 1, some algebra yields

-

Consider the model (1 —

[ > 1.

1—ot

yielding 2:(l) = 2z + gb
where 11 =1+ ¢ —0, m; = (1

~

11

() =1 —apze +a{(1—0)>52, 07z},
where oy =(0—¢)(1—¢")/(1—¢). Now ¢; =[(1-0) + ¢'(0—9)]/(1—¢), so
Y 21— ¢% YN
k‘“”‘u—w”“ 0 + (0= 8)° T gz +2(1-0)(6 ¢>1_¢}./

Spring 2024



STAT

-

C. Gu

520 Forecasting

Forecasting with Finite Samples'

With finite samples (z¢, 2;_1,...,21), the procedure developed
above works without a problem for ¢ = 0. For ¢ > 0, however,
Q,-..,0;—q+1 appearing in 2;(l) also depend on z_1,z_9,..., SO

modifications are needed.

For invertible models, the m weights decay exponentially, so it is

reasonable to set z_1 = z_5 = --- = 0 when calculating a; from

Ry Rle—T19 -

Using the innovations algorithm, one can calculate the exact one

step forecast Z;11 = F|zi11]|2t, .- ., 21] with error variance vy. The
exact multiple step forecast with finite samples will be discussed

along with the state space models.
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