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✫

✩

✪

Maximum Likelihood Estimates

The maximum likelihood estimates are more efficient than moment

estimates, and are the ones to use in practice. For ARMA models,

the log likelihood is of the form

l(φ,θ, σ2
a) = −n

2 log σ2
a − 1

2 logD(φ,θ)− 1
2S(φ,θ)/σ

2
a + C,

where D(φ,θ), S(φ,θ) are independent of σ2
a. Maximizing

l(φ,θ, σ2
a) w.r.t. σ

2
a, one has σ̂2

a = S(φ̂, θ̂)/n, where (φ̂, θ̂)

maximizes the profile likelihood

l̃(φ,θ) = −n
2 logS(φ,θ)− 1

2 logD(φ,θ) + C̃.

To obtain (φ̂, θ̂), iterations are needed, for which the moment

estimates may serve as starting values. The ML estimates are also

needed for the exact evaluation of AIC or BIC for model selection.

The minimizer of S(φ,θ) gives the LS estimates of φ, θ.
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✫

✩

✪

Conditional Likelihood for ARIMA(p,d,q)

Observing z1, . . . , zn from ARMA(p,q), the log likelihood

conditional on z∗ = (z0, . . . , z1−p) and a∗ = (a0, . . . , a1−q) is

l∗(φ,θ, σ
2
a) = −n

2
log σ2

a −
1

2σ2
a

n
∑

t=1

a2t + C

= −n
2
log σ2

a −
1

2σ2
a

S∗(φ,θ) + C,

where at = zt − φ1zt−1 − · · · − φpzt−p + θ1at−1 + · · ·+ θqat−q.

For n large, one may choose to sum from a2p+1 onward and set

previous a’s equal to 0. For q = 0, this yields the estimation of φj
via the minimization of the LS score,

∑n
t=p+1(zt − φ1zt−1 − · · · − φpzt−p)

2.

For ARIMA(p,d,q), take wt = ∇dzt and work on wt.
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✫

✩

✪

Exact Likelihood for AR(p)

Observing z1, . . . , zn from AR(p), one has

f(z|φ, σ2
a) = f(z(p)|zp,φ, σ

2
a)f(zp|φ, σ

2
a),

where zp = (z1, . . . , zp)
T and z(p) = (zp+1, . . . , zn)

T . One has

f(z(p)|zp,φ, σ
2
a) ∝ (σ2

a)
−(n−p)/2 exp(−

∑n
t=p+1 a

2
t/2σ

2
a),

where at = zt − φ1zt−1 − · · · − φpzt−p, and

f(zp|φ, σ
2
a) ∝ (σ2

a)
−p/2|Mp|

1/2 exp(−z
T
p Mpzp/2σ

2
a),

where Mp = (σ2
a/γ0)P

−1
p . The exact log likelihood is thus

l(φ, σ2
a) = −n

2
log σ2

a + 1
2
log |Mp| −

1
2
S(φ)/σ2

a,

where S(φ) = z
T
p Mpzp +

∑n
t=p+1 a

2
t is the exact least squares.

For zt = φzt−1 + at, M1 = |M1| = 1− φ2, so

l(φ, σ2
a) = −n

2
log σ2

a+
1
2
log(1−φ2)− 1

2
{(1−φ2)z21+

∑n
t=2(zt−φzt−1)

2}/σ2
a.
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✫

✩

✪

Innovations Algorithm

For {zt} with E[zt] = 0 and E[ztzs] = κt,s, consider the one-step

prediction of zt+1 given zt, . . . , z1, ẑt+1 = E[zt+1|zt, . . . , z1]. One

has E[(zt+1 − ẑt+1)zj ] = 0, for all j ≤ t. Note that ẑ1 = 0. Write

ẑt+1 =
∑t−1

j=0 θt,t−j(zj+1 − ẑj+1) =
∑t−1

j=0 θt,t−jej+1,

where the innovations ej+1 = zj+1 − ẑj+1 are uncorrelated. Write

var[et+1] = vt; v0 = κ1,1. For 0 ≤ j < t, one has

θt,t−j = v−1
j E[zt+1(zj+1 − ẑj+1)]

= v−1
j E[zt+1(zj+1 −

∑j−1
k=0 θj,j−k(zk+1 − ẑk+1))]

= v−1
j (κt+1,j+1 −

∑j−1
k=0 θj,j−kθt,t−kvk),

vt = κt+1,t+1 −
∑t−1

j=0 θ
2
t,t−jvj .

Note that θt,t−j and vt can be obtained recursively in the order of

v0; θ1,1, v1; θ2,2, θ2,1, v2; θ3,3, θ3,2, θ3,1, v3; . . . .
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✫

✩

✪

Exact Likelihood for MA(q)

Consider an MA(q) process with autocovariance γk. For t− j > q,

from κt+1,j+1 = γt−j = 0 and the recursion formula for θt,j , one has

θt,t−j = 0. It follows that

ẑt+1 =







∑t
j=1 θt,j(zt−j+1 − ẑt−j+1), t = 1, . . . , q − 1,

∑q
j=1 θt,j(zt−j+1 − ẑt−j+1), t ≥ q.

Write vt = ṽtσ
2
a, where ṽt do not depend on σ2

a, one has

l(θ, σ2
a) = −n

2
log σ2

a −
1

2

n
∑

t=1

log ṽt −
1

2σ2
a

n
∑

t=1

(zt − ẑt)
2

ṽt−1
.

For zt = at − θat−1, one has θt,1 = −θ/ṽt−1, θt,j = 0, j > 1, where

ṽ0 = 1 + θ2, ṽt = 1 + θ2(ṽt−1 − 1)/ṽt−1 → 1. It follows that

ẑ1 = 0, ẑt+1 = −θ(zt − ẑt)/ṽt−1, t ≥ 1.
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✫

✩

✪

Exact Likelihood for ARMA(p,q) – I

For φ(B)zt = θ(B)at with autocovariance γk, define

ut = zt I[t≤m] + φ(B)zt I[t>m],

where m = max(p, q). E[utus] = κt,s is given by

κt,s =















γt−s, s ≤ t ≤ m,

γt−s −
∑p

k=1 φjγt−s−k, s ≤ m < t,

σ2
a

∑q
k=0 θkθk+t−s, m < s ≤ t

where θ0 = −1 and θk = 0, k > q. When t ≥ m and t− j > q,

κt+1,j+1 = 0, so θt,t−j = 0. It follows that

ût+1 =







∑t
j=1 θt,j(ut−j+1 − ût−j+1), t < m,

∑q
j=1 θt,j(ut−j+1 − ût−j+1), t ≥ m.

Note that for t > m, ût = ẑt − φ1zt−1 − · · · − φpzt−p.
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✫

✩

✪

Exact Likelihood for ARMA(p,q) – II

It is easily seen that ut − ût = zt − ẑt, hence the log likelihood has

the same expression as for MA(q), but

ẑt+1 =







∑t
j=1 θt,j(zt−j+1 − ẑt−j+1), t < m,

∑p
j=1 φjzt−j +

∑q
j=1 θt,j(zt−j+1 − ẑt−j+1), t ≥ m.

Consider zt = φzt−1 + at − θat−1. One has

κt,s =



























σ2
a(1 + θ2 − 2φθ)/(1− φ2), t = s = 1,

σ2
a(1 + θ2), t = s ≥ 2,

σ2
a(−θ), t− s = 1,

0, otherwise.

The same as for MA(q), θt,1 = −θ/ṽt−1, θt,j = 0, j > 1, and

ṽt = 1 + θ2(ṽt−1 − 1)/ṽt−1. Setting θ = 0, one has ṽ0 = (1− φ2)−1,

and for t ≥ 2, ẑt = φzt−1 and ṽt−1 = 1.
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✫

✩

✪

Non-recursive Likelihood of ARMA(p,q) – I

Setting θ0 = −1 and writing zt−k =
∑

j ψjat−k−j =
∑

j ψj−kat−j ,

where ψj = 0 for j < 0, one has

γk = E[ztzt−k] = E
[
∑p

j=1 φjzt−j −
∑q

j=0 θjat−j)zt−k

]

=
∑p

j=1 φjγk−j − σ2
a

∑q
j=0 θjψj−k =

∑p
j=1 φjγk−j − σ2

a bk,

where bk =
∑q

j=0 θjψj−k. The covaviance of (z1, . . . , zn) is seen to

be, for γ̃k = γk/σ
2
a,

σ2
a















γ̃0 γ̃1 γ̃2 . . . γ̃n−1

γ̃1 γ̃0 γ̃1 . . . γ̃n−2

...
...

... . . .
...

γ̃n−1 γ̃n−2 γ̃n−3 . . . γ̃0















.
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✫

✩

✪

Non-recursive Likelihood of ARMA(p,q) – II

Given (γ̃0, . . . , γ̃p−1), γ̃k, k ≥ p can be obtained recursively, and one

has p+ 1 linear equations involving (γ̃0, . . . , γ̃p),

γ̃0 = φ1γ̃1 + · · ·+ φpγ̃p − b0,

γ̃1 = φ1γ̃0 + · · ·+ φpγ̃p−1 − b1,

. . .

γ̃p = φ1γ̃p−1 + · · ·+ φpγ̃0 − bp.

For example, with p = 3, one solves












1 −φ1 −φ2 −φ3

−φ1 1− φ2 −φ3 0

−φ2 −φ1 − φ3 1 0

−φ3 −φ2 −φ1 1

























γ̃0

γ̃1

γ̃2

γ̃3













= −













b0

b1

b2

b3













.
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✫

✩

✪

Parameterization of ARMA(p,q)

Recall the Durbin-Levinson algorithm for recursive solutions to the

Yule-Walker equations of an AR(p) model: for k = 1, . . . , p,

φkk = . . . , φk,k−1 = φk−1 − φkkφ̃k−1, where φT
k = (φT

k,k−1, φkk),

φ̃h is φh in reverse order, and φkk is corr(z0, zk|z1, . . . , zk−1).

As long as φkk ∈ (−1, 1), φp resulting from the Durbin-Levinson

algorithm ensures a φ(B) with roots outside of the unit circle.

Numerically, one may transform via φkk = (1− e−βk)/(1 + e−βk)

and work with βk ∈ (−∞,∞); this allows the use of unconstrained

optimization.

To ensure invertibility, one may parameterize θ(B) similarly.
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✫

✩

✪

Numerical Optimization

Using the proceeding techniques, one is able to calculate the log

likelihood function l(γ) for given parameters γ, but analytical

derivatives are in general not available.

A standard approach to optimization using only function

evaluations is quasi-Newton methods with numerical derivatives.

Quasi-Newton builds up Hessian using gradients, and numerical

differentiation approximates f ′(x) by
(

f(x+ δ)− f(x− δ)
)

/2δ with

δ of adequate size.

Assuming convexity with continuous Hessian near the bottom, the

algorithms converge to the minimizer reasonably fast, and also

return the Hessian at the minimizer if needed.

In R, one may use optim or nlm.
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✫

✩

✪

Asymptotic Properties, Regression

With correct model identification and sufficiently large sample size,

the ML estimates (φ̂, θ̂) are consistent and asymptotically normal

with mean (φ,θ). The approximate covariance matrix of

γ̂ = (φ̂, θ̂) is given by I−1(γ̂), where I(γ) = −∂2l/∂γ∂γT is the

(observed) information matrix.

For regression models with ARIMA errors,

zt = x
T
t β + ǫt, ϕ(B)ǫt = θ(B)at,

the likelihood is easily evaluated with z′t = zt − x
T
t β replacing zt.

Note that with d > 0, ∇xt is taken along with ∇zt, so coefficients

for monomials in t up to order d− 1 are not estimable.

To explore the proper form of xT
t β, one may use the standard

regression tools and count on the robustness of LS estimates of β.
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✫

✩

✪

Residual Analysis

Statistical model building is typically an iterative process, in which

one cycles through model identification, model fitting, and model

checking. As in a standard regression analysis, a major source of

information for model checking is in the residuals.

For an invertible ARMA model φ(B)zt = θ(B)at, one may simply

take as residuals ât = θ̂−1(B)φ̂(B)zt, where the needed starting

values z0, z−1, z−2, . . . , can be obtained through “back-forecasting”

using the reverse-time model. Alternatively, one may take

ât = et/
√
vt−1, where et = zt − ẑt are the innovations with

variances vt−1. The latter is suspected to be the ones from arima.

For a good fit, ât should behave as white noise. Among simple

tools for checking the “whiteness” of the residuals are the raw

residual plot, the ACFs and the PACFs.
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✫

✩

✪

Ljung-Box-Pierce Portmanteau Tests

The sample ACFs rk(â) of the residuals ât are correlated, and for

small lags, their variances can be substantially smaller than the

nominal n−1 calculated for the “true” white noise at. Individual

assessment of rk(â) thus can mislead.

To collectively digest the information contained in the leading lag

rk(â)’s, portmanteau tests were developed by Box-Pierce and

Ljung-Box. Under the null that the ARMA(p,q) model is correct,

one has the asymptotic χ2
K−p−q statistics,

Q = n
∑K

k=1 r
2
k(â), Q̃ = n(n+ 2)

∑K
k=1(n− k)−1r2k(â).

The null distribution of Q̃ is closer to χ2
K−p−q than that of Q. The

choice of K is somewhat arbitrary, but a larger K tends to lower

the power of the test. Box.test in ts implements these tests.
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✫

✩

✪

Cumulative Periodogram

Recall the periodogram of z1, . . . , zn from a stationary process,

I(ωj) =
1
n (

∑n
t=1 zt cos 2πtωj)

2 + 1
n (

∑n
t=1 zt sin 2πtωj)

2,

where ωj = j/n. The cumulative periodogram on (0, 1/2),

C(ω) =
∑

0<ωj≤ω I(ωj)/
∑

0<ωj≤1/2 I(ωj),

is the empirical version of P (ω) =
∫ ω

−ω
p(λ)dλ = 2

∫ ω

0
p(λ)dλ, where

p(λ) is the spectral density. To test the hypothesis that the

spectral distribution is given by some known P (ω), one may use

the Kolmogorov-Smirnov statistic, sup |C(ω)− P (ω)|.

For white noise, the spectral density p(ω) = 1 is uniform, and

P (ω) = 2ω. Tolerance band for C(ω) under the null can be

constructed from the Kolmogorov-Smirnov distribution. The

cumulative periodogram check is implemented in cpgram.
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✫

✩

✪

Model Modification and Testing

Suppose that a model ϕ0(B)zt = θ0(B)at is fitted and the residuals

ât are obtained. After examining the ât’s, it is suggested that at
may not be white, but rather is of the form ϕ̃(B)at = θ̃(B)bt with

bt white. Straightforward algebra yields

ϕ(B)zt = ϕ̃(B)ϕ0(B)zt = θ̃(B)θ0(B)bt = θ(B)bt.

Hence, to modify the model, one simply increases the respective

orders of ϕ(B) = φ(B)∇d and θ(B).

To validate the modification, one may use the likelihood ratio test

of nested models. Let l0(ϕ̂0, θ̂0, σ̂
2
a), l(ϕ̂, θ̂, σ̂

2
b ) be the maximized

log likelihoods. Under the null of ϕ0(B)zt = θ0(B)at,

2(l(ϕ̂, θ̂, σ̂2
b )− l0(ϕ̂0, θ̂0, σ̂

2
a)) ∼ χ2

p̃+q̃,

where p̃, q̃ are the orders of φ̃(B), θ̃(B).
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