STAT 520

FINAL EXAM

- 1. Consider the model $(1 .5B)(1 B)z_t = 2 + (1 + .5B)a_t$ with $\sigma_a^2 = .25$.
- (12 pts.) (a) Given $z_{85} = 5$, $z_{84} = 2$, $a_{85} = -1$, $a_{84} = .5$, obtain $\hat{z}_{85}(l)$, l = 1, 2, 3.
- (8 pts.)
- (b) Find the ψ weights ψ_j , j = 1, 2, 3. State the recursive formula one may use to calculate ψ_j for j > 3.
- (8 pts.) (c) Calculate the variances of the forecasting errors $e_{85}(l) = z_{85+l} \hat{z}_{85}(l), l = 1, 2, 3,$ and construct 95% prediction intervals for z_{86}, z_{87}, z_{88} .
- (8 pts.) (d) State the difference equation satisfied by the "eventual" forecasting function, and give an expression of the general form of the forecasting function $\hat{z}_t(l)$ with all deterministic constants specified.
 - 2. Consider $z_t = x_t + b_t$, where $(1 B^4)x_t = a_t$, and a_t , b_t are independent white noise with variances σ_a^2 , σ_b^2 .
- (12 pts.) (a) Show that z_t is a seasonal ARIMA model. Find its orders and derive the relations between σ_a^2 , σ_b^2 and the parameters of the seasonal ARIMA model.
- (10 pts.)
 (b) Based on the form of the seasonal ARIMA model, give an expression for the forecasting function \$\hat{z}_t(l)\$; specify all deterministic constants.
 [Hint: the roots of 1 B⁴ are ±1, ±i.]
 - 3. Let $x_t = \alpha \sin(\pi t/3) + \beta \cos(\pi t/3) + n_t$, where n_t satisfies $n_t = \phi n_{t-1} + a_t \theta a_{t-1}$ with $|\phi| < 1$ and a_t a white noise, $E[a_t] = \sigma_a^2$.
- (12 pts.) (a) Passing x_t through a linear filter with transfer function $v(B) = 1 B + B^2$, one has $z_t = x_t x_{t-1} + x_{t-2}$. Show that z_t is a stationary ARMA process and specify its orders. [Hint: $1 - B + B^2 = (1 - e^{i\pi/3}B)(1 - e^{-i\pi/3}B)$, and $\alpha \sin(\pi t/3) + \beta \cos(\pi t/3) = A(e^{i(\pi t/3+\delta)} + e^{-i(\pi t/3+\delta)})$ for some A, δ depending on α, β .]
- (8 pts.) (b) Give the power spectra of n_t and z_t .
 - 4. A time series of n = 100 observations gave the following sample ACF,

with sample mean $\bar{z} = 12.0$ and sample variance $c_0 = 9.0$.

- (10 pts.) (a) Consider a AR(2) model $(1 \phi_1 B \phi_2 B^2)(z_t \mu) = a_t$. Obtain the Yule-Walker estimates $\hat{\phi}_1$ and $\hat{\phi}_2$. Also obtain estimates for μ and σ_a^2 .
- (12 pts.) (b) Consider a ARMA(1,1) model $(1 \phi B)(z_t \mu) = a_t \theta a_{t-1}$. Find the moment estimates of ϕ , and specify an equation that the moment estimate of θ satisfies.