STAT 520

EXAM 1

- 1. Consider the IMA(0,1,1) model, $(1-B)z_t = (1-\theta B)a_t$, t = 1, 2, ... with $z_0 = a_0 = 0$, where a_t are *i.i.d.* N(0, 1).
- (6 pts.) (a) Verify that $z_t = a_t + (1-\theta) \sum_{j=1}^{t-1} a_{t-j} = a_t + (1-\theta)(a_{t-1} + \dots + a_1).$
- (8 pts.)
- (b) For a sample z_1, \ldots, z_n , define $\tilde{c}_k = n^{-1} \sum_{t=1}^{n-k} z_t z_{t+k}$. Find an explicit expression for $E[\tilde{c}_k]$, and hence for $E[\tilde{c}_k]/E[\tilde{c}_0]$.
- (8 pts.) (c) Investigate the behavior of $E[\tilde{c}_k]/E[\tilde{c}_0]$ for $\theta = .8$ and n = 100 by calculating the value for the first few lags, and verify that it dies out more linearly than exponentially as k increases. $(E[\tilde{c}_k]/E[\tilde{c}_0]$ is the main term of $E[\tilde{r}_k] = E[\tilde{c}_k/\tilde{c}_0]$.)
 - 2. Consider $z_t = x_t + y_t$, where $\{x_t\}$ represents a "trend component" satisfying the model $(1 B)x_t = (1 \alpha B)a_t$ with a_t *i.i.d.* $N(0, \sigma_a^2)$, and $\{y_t\}$ is stationary satisfying $(1 \beta B)y_t = b_t$ with b_t *i.i.d.* $N(0, \sigma_b^2)$; $\{a_t\}$ and $\{b_t\}$ are independent.
- (8 pts.) (a) Show that $\{z_t\}$ follows an ARIMA(p,d,q) model, and determine the values of p, d, q.
- (10 pts.) (b) Exhibit the basic relations (but do not attempt to solve explicitly) between the parameters of the ARIMA model and the parameters α , β , σ_a^2 , and σ_b^2 .
- (6 pts.) (c) What will the orders p, d, q be if $\beta = 0, 1$?
 - 3. A time series of n = 100 observations gave the following sample ACF and PACF,

Lag k	1	2	3	4	5	6	7	8
r_k	.50	20	48	22	.09	.25	.15	05
ϕ_{kk}	.50	60	04	.12	14	.17	07	05

with sample mean $\bar{z} = 15.0$ and sample variance $c_0 = 4$.

An AR(2) model, $(1 - \phi_1 B - \phi_2 B^2)z_t = \delta + a_t$, appears to be appropriate for the data

- (10 pts.) (a) Obtain the Yule-Walker estimates $\hat{\phi}_1$ and $\hat{\phi}_2$. Also obtain estimates for δ and σ_a^2 .
- (10 pts.) (b) The Yule-Walker estimates $\hat{\phi}$ is asymptotically unbiased with $\operatorname{var}[\hat{\phi}] \approx (\sigma_a^2/n)\Gamma^{-1}$, where $\Gamma = \begin{pmatrix} \gamma_0 & \gamma_1 \\ \gamma_1 & \gamma_0 \end{pmatrix}$. Estimate the asymptotic standard deviations of $\hat{\phi}_1$ and $\hat{\phi}_2$.
- (8 pts.) (c) Using $\hat{\phi}_1$ and $\hat{\phi}_2$ as the "true" values of ϕ_1 and ϕ_2 , calculate ρ_k , k = 1, 2, 3, 4.

4. Consider an ARIMA(1,1,1) model $(1 - .7B)(1 - B)z_t = (1 + .9B)a_t$.

- (6 pts.) (a) Find the first two ψ weights, ψ_0 and ψ_1 .
- (10 pts.) (b) Find a general expression for the ψ weights, ψ_k , k > 1. Calculate ψ_5 .
- (10 pts.) (c) Find the π weights π_k , k = 1, 2.