An experiment to study the relationship between the time spent exercising (x, in minutes) and the amount of oxygen consumed during the exercise period (y, in cm^{3}) resulted in the following summary statistics.

$$
\begin{array}{lll}
n=20 & \sum_{i} x_{i}=50 & \sum_{i} y_{i}=16705 \\
\sum_{i}\left(x_{i}-\bar{x}\right)^{2}=25 & \sum_{i}\left(y_{i}-\bar{y}\right)^{2}=241379.8 & \sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=2431.5
\end{array}
$$

Assume that a simple linear regression model $y=\beta_{0}+\beta_{1} x+\epsilon$ is adequate.

1. Compute the least squares estimates $\hat{\beta}_{0}=b_{0}, \hat{\beta}_{1}=b_{1}$, and the variance estimate $\hat{\sigma}^{2}=s^{2}$.

Solution: $b_{1}=2431.5 / 25=97.26, b_{0}=16705 / 20-97.26(50) / 20=592.1, \mathrm{SSE}=241379.8-$ $(2431.5)^{2} / 25=4892.11, s^{2}=4892.11 / 18=271.78$.
2. Construct a 95% confidence interval for the slope β_{1}.

Solution: $97.26 \pm 2.101 \sqrt{271.78 / 25}$, or $(90.33,104.19)$.
3. You are about to spend 3 minutes on a weight machine. Predict your oxygen consumption during the 3 minute period using a 95% prediction interval.
Solution: $\hat{y}=592.1+97.26(3)=883.88, \bar{x}=50 / 20=2.5 . \quad$ A 95% PI is $883.88 \pm$ $2.101 \sqrt{271.78\left(1 / 20+(3-2.5)^{2} / 25+1\right)}$, or $(848.22,919.54)$.

