A retailer sells two brands of 12 oz tuna cans. Random samples of sizes 20 from each brand are opened and weighed with results $\bar{X}_{A}=12.04, s_{A}=.05, \bar{X}_{B}=12.02$, and $s_{B}=.04$. Assume the weights follow normal distributions with a common population variance.

1. Calculate a 95% confidence interval for the difference in population means of the two brands $\mu_{A}-\mu_{B}$.
2. Obtain the p-value for the test $H_{0}: \mu_{A}=\mu_{B}$ vs. $H_{a}: \mu_{A} \neq \mu_{B}$.

Solution:

1. $s_{p}^{2}=\frac{19(.05)^{2}+19(.04)^{2}}{38}=0.04527693^{2}$. The 95% CI for $\mu_{A}-\mu_{B}$ is $\left(\bar{x}_{A}-\bar{x}_{B}\right) \pm t_{.025,38} s_{p} \sqrt{1 / n_{1}+1 / n_{2}}=$ $(12.04-12.02) \pm 2.024394(0.04527693) \sqrt{2 / 20}=(-0.008984914,0.048984914)$.
2. $t=\frac{12.04-12.02}{0.04527693 \sqrt{1 / 10}}=1.396860$, so $p=P\left(\left|t_{38}\right|>1.396860\right)=0.1705607$ (using R), or approximately $P(|Z|>1.396860)=0.1624557$ (using Table A.3). Using Table A.5, the two-sided p-value is in the range $(0.10,0.20)$.
