- 39.
- 1 p = true proportion of all donors with type A blood
- $H_0: p = .40$
- 3 $H_a: p \neq .40$
- $z = \frac{\hat{p} p_o}{\sqrt{p_o (1 p_o)/n}} = \frac{\hat{p} .40}{\sqrt{.40(.60)/n}}$
- 5 Reject H_0 if $z \ge 2.58$ or $z \le -2.58$
- $6 z = \frac{82/150 .40}{\sqrt{.40(.60)/150}} = \frac{.147}{.04} = 3.667$
- Reject H_0 . The data does suggest that the percentage of all donors with type A blood differs from 40%. (at the .01 significance level). Since the z critical value for a significance level of .05 is less than that of .01, the conclusion would not change.

- 50.
- a. H_0 will be rejected if $|z| \ge 1.96$. With $\hat{p}_1 = \frac{63}{300} = .2100$, and $\hat{p}_2 = \frac{75}{180} = .4167$, $\hat{p} = \frac{63 + 75}{300 + 180} = .2875$, $z = \frac{.2100 .4167}{\sqrt{(.2875)(.7125)(\frac{1}{300} + \frac{1}{180})}} = \frac{-.2067}{.0427} = -4.84$. Since $-4.84 \le -1.96$, H_0 is rejected.

7. We test $H_o: p_1 = p_2 = p_3 = p_4 = .25$ vs. $H_a:$ at least one proportion $\neq .25$, and df = 3. We will reject $H_0:$ if the p-value < .01.

Cell	. 1	2	3	4
Observed	328	334	372	327
Expected	340.25	→ 340.25	340.25	34.025
χ^2 term	.4410	.1148	2.9627	.5160

 $\chi^2 = 4.0345$, and with 3 df., p-value > .10, so we fail to reject H₀. The data fails to indicate a seasonal relationship with incidence of violent crime.

17.
$$\hat{\lambda} = \frac{380}{120} = 3.167$$
, so $\hat{p} = e^{-3.167} \frac{(3.167)^x}{x!}$.

x	0	1	2	3	4	5	6	≥ 7
\hat{p}	.0421	.1334	.2113	.2230	.1766	.1119	.0590	.0427
пр̂	5.05	16.00	25.36	26.76	21.19	13.43	7.08	5.12
obs	24	16	16	18	15	9	6	16

The resulting value of $\chi^2 = 103.98$, and when compared to $\chi^2_{.01,7} = 18.474$, it is obvious that the Poisson model fits very poorly.

19. With
$$A = 2n_1 + n_4 + n_5$$
, $B = 2n_2 + n_4 + n_6$, and $C = 2n_3 + n_5 + n_6$, the likelihood is proportional to $\theta_1^A \theta_2^B \left(1 - \theta_1 - \theta_2\right)^C$, where $A + B + C = 2n$. Taking the natural log and equating both $\frac{\partial}{\partial \theta_1}$ and $\frac{\partial}{\partial \theta_2}$ to zero gives $\frac{A}{\theta_1} = \frac{C}{1 - \theta_1 - \theta_2}$ and $\frac{B}{\theta_2} = \frac{C}{1 - \theta_1 - \theta_2}$, whence $\theta_2 = \frac{B\theta_1}{A}$. Substituting this into the first equation gives $\theta_1 = \frac{A}{A + B + C}$, and then $\theta_2 = \frac{B}{A + B + C}$. Thus $\hat{\theta}_1 = \frac{2n_1 + n_4 + n_5}{2n}$, $\hat{\theta}_2 = \frac{2n_2 + n_4 + n_6}{2n}$, and $\left(1 - \hat{\theta}_1 - \hat{\theta}_2\right) = \frac{2n_3 + n_5 + n_6}{2n}$. Substituting the observed n_1 's yields

$$\begin{split} \hat{\theta}_2 &= \frac{2n_2 + n_4 + n_6}{2n} \text{, and } \left(1 - \hat{\theta}_1 - \hat{\theta}_2\right) = \frac{2n_3 + n_5 + n_6}{2n} \text{. Substituting the observed } n_1\text{'s yields} \\ \hat{\theta}_1 &= \frac{2(49) + 20 + 53}{400} = .4275 \text{, } \hat{\theta}_2 = \frac{110}{400} = .2750 \text{, and } \left(1 - \hat{\theta}_1 - \hat{\theta}_2\right) = .2975 \text{, from which} \\ \hat{p}_1 &= (.4275)^2 = .183 \text{, } \hat{p}_2 = .076 \text{, } \hat{p}_3 = .089 \text{, } \hat{p}_4 = 2(.4275)(.275) = .235 \text{, } \hat{p}_5 = .254 \text{, } \\ \hat{p}_6 &= .164 \text{.} \end{split}$$

Category	1	2	3	4 ∗²	5	6
np	36.6	15.2	17.8	47.0	50.8	32.8
observed	49	26	14	20	53	38

This gives $\chi^2 = 29.1$. With $\chi^2_{.01,6-1-2} = \chi^2_{.01,3} = 11.344$, and $\chi^2_{.01,6-1} = \chi^2_{.01,5} = 15.085$, according to (14.15) H₀ must be rejected since $29.1 \ge 15.085$.

Let p_{i1} = the probability that a fruit given treatment i matures and p_{i2} = the probability that a fruit given treatment i aborts. Then H_0 : $p_{i1} = p_{i2}$ for i = 1, 2, 3, 4, 5 will be rejected if $\chi^2 \ge \chi^2_{.01,4} = 13.277$.

Obse	erved		Estimated		
Matured	Aborted		Matured	Aborted	n_i
141	206		110.7	236.3	347
28	69		30.9	66.1	97
25	73		31.3	66.7	98
24	78		32.5	69.5	102
20 ,	82		32.5	69.5	102
		;*	238	508	746

Thus
$$\chi^2 = \frac{\left(141 - 110.7\right)^2}{110.7} + ... + \frac{\left(82 - 69.5\right)^2}{69.5} = 24.82 \ge 13.277$$
, so H₀ is rejected at level .01.

32.
$$\chi^{2} = \frac{(479 - 494.4)^{2}}{494.4} + \frac{(173 - 151.5)^{2}}{151.5} + \frac{(119 - 125.2)^{2}}{125.2} + \frac{(214 - 177.0)^{2}}{177.0} + \frac{(47 - 54.2)^{2}}{54.2}$$
$$= \frac{(15 - 44.8)^{2}}{44.8} + \frac{(172 - 193.6)^{2}}{193.6} + \frac{(45 - 59.3)^{2}}{59.3} + \frac{(85 - 49.0)^{2}}{49.0} = 64.65 \ge \chi^{2}_{.01.4} = 13.277 \text{ so the}$$

independence hypothesis is rejected in favor of the conclusion that political views and level of marijuana usage are related.

36.

n	
а	٠

Observed					Estimated Expe			
	13	19	28	60	12	18		
	7	11	22	40	8	12		
Ī	20	30	50	100				

$$\chi^2 = \frac{(13-12)^2}{12} + ... + \frac{(22-20)^2}{20} = .6806$$
. Because $.6806 < \chi^2_{.10,2} = 4.605$, H₀ is not rejected.

- b. Each observation count here is 10 times what it was in a, and the same is true of the estimated expected counts, so now $\chi^2 = 6.806 \ge 4.605$, and H_0 is rejected. With the much larger sample size, the departure from what is expected under H_0 , the independence hypothesis, is statistically significant it cannot be explained just by random variation.
- c. The observed counts are .13n, .19n, .28n, .07n, .11n, .22n, whereas the estimated expected $\frac{(.60n)(.20n)}{n} = .12n$, .18n, .30n, .08n, .12n, .20n, yielding $\chi^2 = .006806n$. H₀ will be rejected at level .10 iff .006806 $n \ge 4.605$, i.e., iff $n \ge 676.6$, so the minimum n = 677.