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✫

✩

✪

Basic Structure of Inference

Statistical Inference makes educated guesses about the

population based on information from the sample. All guesses

are prone to error, and the quantification of imprecision is an

important part of statistical inference.

1. Estimation estimates the state of population, which is

typically characterized by some parameter, say θ.

2. Hypothesis testing chooses from among postulated states of

population, such as H0 : θ = θ0 versus Ha : θ 6= θ0, where θ0 is

a known number.
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✫

✩

✪

Examples of Estimation and Testing

A plant physiologist grew 13 soy-

bean seedlings of the type “Wells

II”. She measured the total stem

length (cm) for each plant af-

ter 16 days of growth, and got

ȳ = 21.34 and s = 1.22.

She may estimate the “average”

stem length by a point esti-

mate,
µ ≈ 21.34,

or by an interval estimate,

18.68<µ<24.00.

As reported by AMA, 16 out of

every 100 doctors in any given

year are subject to malpractice

claims. A hospital of 300 physi-

cians received claims against 58

of their doctors in one year. Was

the hospital simply “unlucky”?

Or does the number possibly in-

dicate some systematic “wrong-

doings” at the hospital?

The number 58/300 is “within

chance variation” of θ0 = .16.
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✫

✩

✪

Estimating Population Mean

Observing X1, . . . , Xn from a population with mean µ and

variance σ2, one is to estimate µ. The procedure (or formula) one

uses is called an estimator, which yields an estimate after the

data are plugged in.

Observing X1, . . . , X5, one may

use one of the following point

estimators for µ:

µ̂1 = X̄

µ̂2 = X1

µ̂3 = (X1 +X3)/2

µ̂4 = Median

µ̂5 = µ0

Observing 5.1, 5.1, 5.3, 5.2, 5.2,

one may use one of the following

point estimates for µ:

µ̂1 = x̄ = 5.18

µ̂2 = x1 = 5.1

µ̂3 = (x1 + x3)/2 = 5.2

µ̂4 = Median = 5.2

µ̂5 = 5
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✫

✩

✪

Properties of Point Estimators

To choose among all possible esti-

mators, one compares properties of

the estimators.

• Unbiasedness: µ
θ̂
= θ.

• Small SD: σ
θ̂
.

µ̂1, µ̂2, and µ̂3 are all unbiased.

µX̄ = µX1
= µ(X1+X3)/2 = µ

σ2
X̄ = σ2/5

σ2
X1

= σ2

σ2
(X1+X3)/2 = σ2/2

• A better estimator yields bet-

ter estimates on average.

• A better estimator may not al-

ways yield a better estimate.
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✫

✩

✪

Mean Versus Median: A Simulation Study

Consider the estimation of the population mean/median µ of a

symmetric distribution by the sample mean and the sample median.

x <- matrix(rnorm(100000),ncol=10000)

mn <- apply(x,2,mean) ## sample mean of 10

md <- apply(x,2,median) ## sample median of 10

mean(mn); mean(md) ## unbiasedness

mean(mn^2); mean(md^2) ## mean is a better estimator

plot(density(mn)); xx <- seq(-1,1,len=101)

lines(xx,dnorm(xx,0,1/sqrt(10)),col=3)

lines(density(md),col=5); abline(v=0,lty=2)

sum(abs(mn)<abs(md)) ## mean can be the worse estimate
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✫

✩

✪

Sample Mean As Estimator of Population Mean

One usually uses the sample mean x̄ to estimate the population

mean µ, as X̄ has the smallest standard deviation among all

unbiased estimators of µ.

To quantify the imprecision of the estimation of µ by x̄, one

estimates σ
X̄

= σ
√

n
by σ̂X̄ = s

√

n
, the standard error of the

sample mean X̄.

Soybean stem length: n = 13,

x̄ = 21.34, and s = 1.22.

σ̂X̄ =
s√
n

=
1.22√
13

= .338

• For X̄ nearly normal, x̄ lies

within ±2 σ
√

n
of µ about 95%

of the time.

• Do not confuse σX̄ , σ̂X̄ with

σ.
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✫

✩

✪

Confidence Intervals

A point estimate will almost surely miss the target, although its

standard error indicates by how far the miss is likely to be. An

interval estimate provides a range for the parameter estimate.

Soybean stem length: Assume

normality with σ = 1.2 known.

One has X̄ ∼ N(µ, (1.2)2/13), so

P (
|X̄ − µ|
1.2/

√
13

≤1.96) = .95.

Solving for µ, one obtains

X̄−1.96
1.2√
13

≤µ≤X̄+1.96
1.2√
13

For Xi ∼ N(µ, σ2), i = 1, . . . , n

with σ2 known,

X̄ ± zα/2

σ√
n

provides an interval estimator that

covers µ with probability (1 − α).

It yields a (1−α)100% confidence

interval for µ, with a confidence

coefficient (1− α)100%.
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✫

✩

✪

Coverage, Large Sample CIs

As an estimator, a CI is a moving

bracket “chasing” a fixed target.

As an estimate, a CI may or may

not cover the “truth”.

With a large sample from an

“arbitrary” distribution for σ un-

known, an confidence interval

for µ with an approximate conf.

coef. (1−α)100% is given by

X̄ ± zα/2

s√
n

.

• Normality comes from CLT.

• Unknown σ estimated by s.

• Replace s by σ if known.
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✫

✩

✪

Small Sample CIs based on t-Distribution

For a small sample with σ unknown, one “has to” assume

normality.

Consider Zi ∼ N(0, 1), i =

1, . . . , n. The distribution of
Z̄

s/
√

n
is called a t-distribution

with a degree of freedom (df)

ν = n − 1. A t-distribution with

ν = ∞ reduces to N(0, 1).
df=1,10,100

-2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

For Xi ∼ N(µ, σ2), i = 1, . . . , n,

P (
|X̄ − µ|
s/
√
n

≤ tα/2,n−1) = 1− α, so

X̄ ± tα/2,n−1

s√
n

provides a (1− α)100% CI for µ.

• tα,ν ↓ as ν ↑: more data allow

more accurate σ̂, hence tighter

bounds.

• For σ known, use zα/2 and σ.
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✫

✩

✪

Simulations of Coverage

x <- matrix(rnorm(100000),ncol=10000)

mn <- apply(x,2,mean); v <- apply(x,2,var)

hwd <- 1.96/sqrt(10); lcl <- mn-hwd; ucl <- mn+hwd

mean((lcl<0)&(ucl>0)) ## z-interval

hwd<-qt(.975,9)*sqrt(v/10); lcl<-mn-hwd; ucl<-mn+hwd

mean((lcl<0)&(ucl>0)) ## t-interval

x <- matrix(runif(100000),ncol=10000)

mn <- apply(x,2,mean); v <- apply(x,2,var)

hwd<-1.96*sqrt(1/120); lcl<-mn-hwd; ucl<-mn+hwd

mean((lcl<.5)&(ucl>.5)) ## z-interval

hwd<-qt(.975,9)*sqrt(v/10); lcl<-mn-hwd; ucl<-mn+hwd

mean((lcl<.5)&(ucl>.5)) ## t-interval
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✫

✩

✪

Confidence Intervals for µ: Summary

An agronomist measured stem

diameter (mm) in 8 plants of a

variety of wheat, and calculated

x̄ = 2.275 and s = .2375.

Assuming normality, a 95% CI

for µ is given by

2.275± 2.365(.2375)/
√
8,

or (2.076, 2.474), where t.025,7 =

2.365. If one further knows that

σ = .25, then he can use

2.275± 1.96(.25)/
√
8,

or (2.102, 2.448).

• In the “ideal” situation with

normality and known σ, al-

ways use

X̄ ± zα/2

σ√
n

• With a small normal sample

but unknown σ, estimate σ by

s and replace zα/2 by tα/2,n−1

to allow for the uncertainty.

• When n is large, CLT grants

normality, s estimates σ reli-

ably, and zα/2 ≈ tα/2,n−1.

• The procedures may work un-

der violated assumptions.
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✫

✩

✪

Coverage versus Precision

To cover the truth more often, one needs a higher confidence

coefficient, but at the expense of wider intervals.

• The interval (−∞,∞) has 100% coverage but is useless.

• A point estimate is the most precise but always misses.

• Given sample size n, X̄ ± zα/2σ/
√
n is the shortest interval

estimate for µ among all that have a confidence coefficient

(1− α)100%.

• To achieve both coverage and precision, one has to take a large

enough sample.
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✫

✩

✪

Planning Sample Size

The agronomist is planning a

new study of wheat stem diam-

eter, and wants a 95% CI of µ no

wider than .2 mm. From experi-

ence and pilot study, he believes

that σ = .25 is about right.

The half-width of CI is

z.025
σ√
n

= 1.96
.25√
n
.

Solving for n from

1.96(.25)/
√
n ≤ .1,

one gets n ≥ 24 .

Let h be the desired half-width for

a (1 − α)100% CI. Solving for n

from zα/2

σ√
n

≤ h, one has

n ≥
(zα/2σ

h

)2

• For n large, zα/2 ≈ tα/2,n−1.

• Need a conservative estimate

of σ.

• To cut the width by half, one

needs to quadruple the sample

size n.
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✫

✩

✪

CI for Population Proportion

123 adult female deer were cap-

tured and 97 found to be preg-

nant. Construct a 95% CI for

pregnant proportion in the pop-

ulation.

Since p̂ = 97
123

= .7886, σ̂p̂ =
√

.7886(1−.7886)
123

= .0368, the 95%

CI is given by

.7886± 1.96(.0368),

or (.7165, .8607).

For a 95% CI with half-width h ≤
3%, it is safe to have

n ≥ (1.96(0.5)/0.03)2 = 1067.1.

Consider Xi ∼ Bin(1, p), i =

1, . . . , n, independent. One has

X =
∑

i Xi ∼ Bin(n, p).

For n large, by CLT,

P (
X/n− p

√

p(1− p)/n
≤z) ≈ Φ(z).

The sample proportion p̂ = X/n

is actually an X̄. As an estimate

of σp̂ =
√

p(1− p)/n one may use
√

p̂(1− p̂)/n. A (1 − α)100% CI

for p is thus

p̂± zα/2

√

p̂(1− p̂)/n.

• σ =
√

p(1− p) ≤ 0.5.
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✫

✩

✪

Structure of Hypothesis Testing

A drug maker claimed that the

mean potency of one of its an-

tibiotics was 80%. A sample of

100 capsules were tested and pro-

duced x̄ = 80.2% and s = .8%.
Decide between the alternatives

H0 : µ=80% and Ha : µ 6=80%.

If H0 is true, then by CLT,

Z =
X̄ − 80

s/
√
100

∼ N(0, 1).

Large magnitude of Z indicates

departure of µ from 80%.

One may decide to accept H0

when |Z| ≤ 1.96, and reject o.w.

Statistical tests test hypotheses

concerning the state of population,

which is often characterized by the

value of some parameter. A test

involves four elements.

1. Null hypothesis H0: the pos-

tulated “default” state.

2. Alternative hypothesis Ha:

the “abnormal” state.

3. Test statistic: the empirical

information from data.

4. Rejection region: the decision

rule.
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✫

✩

✪

Formulation of Hypotheses

As will be seen later, it takes “effort” to “prove” the alternative Ha

whereas H0 is assumed but never established, so one usually sets

the “hoped-for” or “feared-of” hypothesis as the alternative.

♣ In fear of being cheated, we may set H0 : µ ≤ 80% versus

Ha : µ > 80% for the antibiotic potency, and refuse the product

when H0 is accepted.

♣ To monitor industrial pollution to the environment, the

regulating agency may set H0 : µ ≥ µ0 versus Ha : µ < µ0, and

punish the polluter when H0 is not rejected.

♣ When testing a new drug, one usually presumes (H0) that the

new drug has no effect.
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✫

✩

✪

Construction of Tests

Suppose σ = .8 is known and one

is to take a sample of size 100.

For H0 : µ = 80 vs. Ha : µ 6= 80,

one may calculate

Z =
X̄ − 80

√

.82/100
=

X̄ − 80

.08

and reject H0 when |Z| > 1.96,

or X̄ < 79.8432, X̄ > 80.1568.

• When µ = 80, Z ∼ N(0, 1), so

P (reject H0|µ = 80) = .05.

For H0 : µ ≤ 80 vs. Ha : µ > 80,

one calculates Z = (X̄ − 80)/.08,

and rejects H0 when Z > 1.645,

or X̄ > 80.1316.

• By convention, decision rules

are constructed to control the

probability of rejecting a true

null (α-risk) to .05 or .01, and

the resulting tests are said to

be at the 5% or 1% signifi-

cance level.

• The roles of H0 and Ha are

asymmetric. H0 is protected.

• A test parallels a court room:

H0 corresponds to innocence,

Ha to guilt, the test statistic

to evidence, and the decision

to verdict. One is assumed in-

nocent until proven guilty.

C. Gu Fall 2022



STAT 511 Basic Statistical Inferences 18✬

✫

✩

✪

Drawing Conclusions from Tests

Potency of antibiotic: σ = .8,

n = 100, and x̄ = 80.2. Test

H0 : µ = 80 vs. Ha : µ 6= 80.

It is easy to calculate

z =
80.2− 80

.8/
√
100

= 2.5.

Since |z| = 2.5 > 1.96 = z.975,

one rejects H0 at the 5%-level.

Since |z| = 2.5 < 2.576 = z.995,

one accepts H0 at the 1%-level.

• It takes more than data to

reach conclusions.

• With the same empirical evi-

dence, one may draw different

conclusions depending on the

amount of protection desired

for H0. Smaller α favors H0.

• Accepting H0 does not imply

that H0 is true, it merely says

that one does not have strong

enough evidence against H0.

• With a small sample, one of-

ten has to accept H0, simply

because there isn’t much infor-

mation in the data.
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✫

✩

✪

p-Values of Tests

p-value is the probability that the test statistic would look more

“weird” than the observed one if H0 is true.

Potency of antibiotic: σ = .8, n =

100. Observing x̄ = 80.2, test

H0 : µ = 80 vs. Ha : µ 6= 80, or

H0 : µ = 80 vs. Ha : µ > 80,

It was calculated that

z =
x̄− 80

.8/
√
100

=
80.2− 80

.08
= 2.5.

The p-values are

P (|Z| > 2.5) = .0124, or

P (Z > 2.5) = .0062.

• The p-value summarizes the

empirical evidence against H0.

The smaller the p-value is,

the stronger the evidence is

against H0.

• If p < α, one rejects H0 at the

α-level.

• With the same data, one-

tailed and two-tailed tests

have different p-values. The

direction of Ha also matters.
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✫

✩

✪

Type-I/Type-II Errors, α/β-Risks

Tests are prone to errors. Consider H0 : µ = 80 vs. Ha : µ 6= 80.

µ = 80 µ 6= 80

|Z| ≤ 1.96 correct decision type-II error

|Z| > 1.96 type-I error correct decision

The probabilities of type-I and type-II errors are called the α-risk

and β-risk, respectively.

The α-risk and β-risk are properties of the decision rule, similar to

an estimator. For a given sample, the decision made, similar to an

estimate, is either correct or erroneous.

The α-risk and β-risk are in general functions of the true

parameter, which is unknown in practice.
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✫

✩

✪

α/β-Risks of One-Sided Tests

Consider H0 : µ ≤ 80 vs. Ha : µ > 80 with σ = .8 and n = 100.

One rejects H0 when (X̄ − 80)/.08 > 1.645, or X̄ > 80.1316.

When µ = 80, 79.9, the α-risks are:

α(80.0) = P (X̄ > 80.1316) = P ( X̄−80

.08 > 80.1316−80

.08 ) = .05,

α(79.9) = P ( X̄−80

.08 > 1.645) = P ( X̄−79.9
.08 > 1.645 + .1

.08 ) = .0019.

All α-risks are no more than .05, the significance level.

When µ = 80.1, 80.5, the β-risks are:

β(80.1) = P (X̄ ≤ 80.1316) = P ( X̄−80.1
.08 ≤ 80.1316−80.1

.08 ) = .6536,

β(80.5) = P ( X̄−80

.08 ≤ 1.645) = P ( X̄−80.5
.08 ≤ 1.645− .5

.08 ) = 2× 10−6.

All β-risks are no more than .95, 1− α on the border line.
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✫

✩

✪

α/β-Risks of Two-Sided Tests

Consider H0 : µ = 80 vs. Ha : µ 6= 80 with σ = .8 and n = 100. One

accepts H0 when |X̄ − 80|/.08 ≤ 1.96, or 79.8432 ≤ X̄ ≤ 80.1568.

The α-risk only makes sense when µ = 80, which is .05 by design.

When µ = 79.9 (and µ = 80.1, by symmetry), the β-risk is:

P (79.8432 ≤ X̄ ≤ 80.1568) = P ( 79.8432−79.9
.08 ≤ X̄−79.9

.08 ≤ 80.1568−79.9
.08 )

= P (−.71 ≤ X̄−79.9
.08 ≤ 3.21) = .7605

When µ = 80.5, the β-risk is:

P (−1.96 ≤ X̄−80

.08 ≤ 1.96) = P (−1.96− .5
.08 ≤ X̄−80.5

.08 ≤ 1.96− .5
.08 )

= P (−8.21 ≤ X̄−80.5
.08 ≤ −4.29) = 9× 10−6.
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✫

✩

✪

Effects of Sample Size on α/β-Risks

Consider H0 : µ ≤ 80 vs. Ha : µ > 80 with σ = .8 and n = 25. One

rejects H0 when (X̄ − 80)/.16 > 1.645, or X̄ > 80.2632.

When µ = 80, 79.9, the α-risks are:

α(80.0) = P (X̄ > 80.2632) = P ( X̄−80

.16 > 80.2632−80

.16 ) = .05,

α(79.9) = P ( X̄−80

.16 > 1.645) = P ( X̄−79.9
.16 > 1.645 + .1

.16 ) = .0116.

Compared to n = 100, .0116 > .0019.

When µ = 80.1, 80.5, the β-risks are:

β(80.1) = P (X̄ ≤ 80.2632) = P ( X̄−80.1
.16 ≤ 80.2632−80.1

.16 ) = .8461,

β(80.5) = P ( X̄−80

.16 ≤ 1.645) = P ( X̄−80.5
.16 ≤ 1.645− .5

.16 ) = .0694.

Compared to n = 100, .8461 > .6536, .0694 > 2× 10−6.
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✫

✩

✪

Power of Tests

Protection against the type-I error is built into the tests. To guard

against the type-II error, one needs power, P (Reject H0).

The power of tests for H0 : µ=µ0

versus Ha : µ 6= µ0 depends on n

and d =
µ−µ

0

σ
.

a=.05, n=3,10,30,100

d

po
we

r

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

• The power is a property of the

decision rule.

• One gains more power with

larger n.

• To achieve desired power at a

specific d, one needs a large

enough n. This is similar to

sample size planning for CI.

• Power for one-sided tests are

different from two-sided.
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✫

✩

✪

t-Tests For Population Mean

Consider a sample of size 9 with

x̄ = 1.9 and s = .51.
To test for Ha : µ 6= 1.5, one has

t = 1.9−1.5

.51/
√

9
= 2.353

Since |t| > 2.306 = t.025,8, one

rejects H0 : µ = 1.5 at the 5%-

level. The p-value is

p = P (|T8| > 2.353) = .0465.

To test for Ha : µ > 1.5, one re-

jects H0 : µ ≤ 1.5 at the 5%-level

as t > 1.860 = t.05,8. The p-value

is p = P (T8 > 2.353) = .0232.

For Ha : µ < 1.5, the p-value is

p = P (T8 < 2.353) = .9768.

In practice, σ is typically unknown

and is to be estimated by s, and one

may use the t-tests for hypotheses

involving a population mean µ:

1. Calculate t = X̄−µ0

s/
√

n
.

2. Compare t with critical values

from the t-table or calculate p-

value using t-distributions.

• With small samples, one needs to

assume normal population.

• With large samples, CLT grants

normality of X̄, s estimates σ reli-

ably, and tα approaches zα.
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✫

✩

✪

Planning Sample Size For z/t-Tests

Consider H0 : µ ≤ 80 vs. Ha : µ > 80 with σ = .8. One needs a

5%-level test with power 1− β ≥ .9 at µ = 80.2.

The z-test rejects H0 when (X̄ − 80)/(.8/
√
n) > 1.645.

The power at µ = 80.2 is:

1− β(80.2) = P ( X̄−80

.8/
√

n
> 1.645) = P ( X̄−80.2

.8/
√

n
> 1.645− .2

.8/
√

n
) ≥ .9.

So one needs 1.645− .2/(.8/
√
n) ≤ −1.282, or

n ≥
(

1.645 + 1.282

.2/.8

)2

= 137.07.

• The sample size depends on α, β, as well as d = |µ− µ0|/σ.
• Check the box on page 314 for formulas.

C. Gu Fall 2022



STAT 511 Basic Statistical Inferences 27✬

✫

✩

✪

Relation Between Test and CI

If the two-sided test for H0 : µ = µ0 accepts H0 at the α-level, then

the (1− α)100% CI for µ contains µ0. The converse is also true.

Potency of antibiotic: n = 100,

x̄ = 80.2 and s = .8.

It was calculated that

Z =
80.2− 80

.8/
√
100

= 2.5.

Since |Z| ≤ 2.576 = z.005, H0 :

µ = 80 is accepted at the 1%-

level.

The 99% CI for µ is 80.2 ±
2.576(.08), or (79.994, 80.406),

which contains 80.

The test’s acceptance region is

|X̄ − µ0|
σ/

√
n

≤ zα/2,

which is equivalent to

X̄−zα/2
σ√
n

≤ µ0 ≤ X̄+zα/2
σ√
n
.

Ditto for t-test and t-interval.

• The CI simply provides a range

of values for µ that are compatible

with the data.
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✫

✩

✪

Comparing Two Means

Hematocrit level measures the

red cell concentration in blood.

Large samples of hematocrit val-

ues were obtained for males and

females of 17-year-old.

M F

n 489 469

x̄ 45.8 40.6

s 2.8 2.9

Is there a gender difference?

The SDs appear to be similar,

but the means look different.

Need inferences for µM − µF .

By assumption or by CLT,

X̄1 ∼ N(µ1, σ
2
1/n1),

X̄2 ∼ N(µ2, σ
2
2/n2)

independent, so

(X̄1 − X̄2) ∼ N(µ1 − µ2,
σ2

1

n1
+

σ2

2

n2
),

or, equivalently,

(X̄1 − X̄2)− (µ1 − µ2)
√

σ2

1

n1
+

σ2

2

n2

∼ N(0, 1).

A (1− α)100% CI for (µ1 − µ2) is

given by

(x̄1 − x̄2)± zα/2

√

σ2

1

n1
+

σ2

2

n2
.
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✫

✩

✪

CI with Pooled Variance

For the hematocrit data

x̄1 − x̄2 = 45.8− 40.6 = 5.2,

s21
n1

+
s22
n2

=
2.82

489
+

2.92

469
= .1842.

So a 95% CI for (µ1−µ2) is given by

5.2 ± 1.96(.184), or (4.839, 5.561).

Now as

s2p =
488(2.8)2+468(2.9)2

488 + 468
= 2.852,

1

n1
+

1

n2
=

1

489
+

1

469
= .06462,

2.85(.0646)= .184, so the “pooled”

version yields the same result.

With normality and σ2
1=σ2

2=σ2,

(X̄1 − X̄2)− (µ1 − µ2)

σ
√

1/n1 + 1/n2

∼ N(0, 1),

and σ2 can be estimated by

s2p =
(n1 − 1)s21 + (n2 − 1)s22
(n1 − 1) + (n2 − 1)

,

the pooled variance. Since

(X̄1 − X̄2)− (µ1 − µ2)

sp
√

1/n1 + 1/n2

∼ tν ,

where ν = n1 + n2 − 2, so a CI for

(µ1 − µ2) is given by

(x̄1 − x̄2)± tα/2,νsp
√

1
n1

+ 1
n2

.
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✫

✩

✪

Tests Concerning Two Means

Amine serotonin levels were mea-

sured from heart disease patients

and a control group.

D C

n 8 12

x̄ 3840 5310

s 850 640

s2p =
7(850)2+11(640)2

7 + 11
=7292,

t =
3840− 5310

729
√

1
8
+ 1

12

= −4.42.

As |t| = 4.42 > 2.878 = t.005,18,

reject H0 at the 1%-level. The p-

value is P (|T18| > 4.42) = .00033.

To test the hypotheses

H0 : µ1−µ2=0 vs. Ha : µ1−µ2 6=0,

calculate

Z =
(X̄1 − X̄2)− 0
√

σ2

1

n1
+

σ2

2

n2

,

or

T =
(X̄1 − X̄2)− 0

sp
√

1
n1

+ 1
n2

,

and reject H0 when |Z| > zα/2 or

|T | > tα/2,ν , where ν = n1 + n2 − 2.

• Use table to bracket p-value for t.
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✫

✩

✪

CIs and Tests With Unequal Variances

For the serotonin data

x̄1 − x̄2 = 3840− 5310 = −1470,

s21
n1

+
s22
n2

=
8502

8
+

6402

12
= 352.82,

with the df given by

( 850
2

8
)2( 1

7
) + ( 640

2

12
)2( 1

11
)

352.84
=

1

12.18
.

Thus a 95% CI for µ1 − µ2 is

given by −1470 ± 2.175(352.8) =

(−2237,−703), where t.025,12.18 =

2.175.

• qt(...) does take fractional df.

For small sample normal data

with unequal variances, one has

(X̄1 − X̄2)− (µ1 − µ2)
√

s21/n1 + s22/n2

approx.∼ tν ,

where the df ν is given by

1

ν
=

(s2
1
/n1)

2

(n1−1)
+

(s2
2
/n2)

2

(n2−1)

(s21/n1 + s22/n2)2
.

Note that when n1 = n2 = n

and s21 = s22, ν = 2(n− 1).

CI’s and tests concerning µ1 −
µ2 can then be constructed ac-

cordingly.
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✫

✩

✪

Paired Data

Blocks of land were divided into

two plots and the plots were

planted with two varieties of

wheat. The yields follow.

Variety

Block 1 2 d

1 32.1 34.5 -2.4

2 30.6 32.6 -2.0

3 33.7 34.6 -0.9

4 29.7 31.0 -1.3

mean 31.53 33.18 -1.65

SD 1.76 1.72 .676

Compare the mean yields of the

two varieties.

• Typical pairing: blocking

designs, before-after stud-

ies, left-right organs, re-

peated measurements, etc.

• Pairing effectively reduces

“background” noise.

• If pairing is ignored, fea-

tures may be swamped by

background noise.

• When done on irrelevant

factors, pairing may yield

loss of power.
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✫

✩

✪

Inference for Paired Data

Working on d, a 95% CI for

wheat yield difference is given

by −1.65 ± 3.182(.676)/
√
4, or

(−2.73,−0.57), where t.025,3 =

3.182. Variety 2 appears to yield

significantly more.

Ignoring pairing,

s2p =
3(1.76)2 + 3(1.72)2

3 + 3
= 1.742,

thus sp

√

1
4
+ 1

4
= 1.23, so a

95% CI is −1.65 ± 2.447(1.23),

or (−4.66, 1.36), where t.025,6 =

2.447. The result is inconclusive.

• Note that σ̂d̄ = .338,

σ̂x̄1−x̄2
= 1.23, almost a 4-

fold difference. σ̂x̄1−x̄2
in-

cludes block to block vari-

ability.

• Pairing results in a loss

of df: compare 3.182 with

2.447. When pairing is in-

effective, say σ̂d̄ ≈ σ̂x̄1−x̄2
,

this would yield loss of

power. This is negligible for

larger sample sizes, though.
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✫

✩

✪

CIs and t-Tests in R

In R, one may use t.test(...) to calculate one or two sample

t-tests and the associated CI’s.

x <- rnorm(30); y <- rnorm(20,mean=2)

t.test(x); t.test(y,mu=2,alt="less"); t.test(x,alt=’gre’)

t.test(x,y) ## unequal var with approximate df

t.test(x,y,var.equal=TRUE) ## with pooled var est

t.test(x,y,conf.level=.9) ## 90% CI

t.test(x[1:20],y,paired=T); t.test(x[1:20]-y)

x <- matrix(rnorm(100000),10,10000) ## coverage simulation

y <- matrix(rnorm(150000,sd=2),15,10000)

fun <- function(x) {t.test(x[1:10],x[11:25])$conf.int}

jk <- apply(rbind(x,y),2,fun); sum(jk[1,]*jk[2,]>0)

C. Gu Fall 2022


