Experiment, Sample Space, and Event

Experiment: the process of obtaining observations.
Sample space: all possible outcomes of an experiment.
Event: certain outcomes of an experiment.

Toy example 1: Coin flips.

Experiment: Flip a coin twice. Sample space: $\{h h, h t, t h, t t\}$.

Event	description
$\{h h\}$	two heads
$\{h h, h t, t h\}$	at least one head
$\{h h, t t\}$	two of same side

Toy example 2: Rolls of dice. Experiment: Roll a pair of dice. Sample space: $\{11,12, \ldots, 66\}$.

Event	description
$\{66\}$	double sixes
$\{12,21\}$	total 3
$\{22,24, \ldots, 66\}$	both even

Event Operations

Sample space is usually denoted by S, events by A, B, C, \ldots
Union $A \cup B$: at least one; either; "or".
Intersection $A \cap B$: both; "and".
Complement \bar{A} or A^{\prime} : anything but; "not".

Toy example 1: Coin flips.
$A=\{h h\}, B=\{h h, h t, t h\}$,
$C=\{h h, t t\}, D=\{h t, t t\}$.
$A \cap B=A, \quad A \cup B=B$,
$C \cup D=\{h h, h t, t t\}$,
$C \cap D=\{t t\}=\bar{B}$,
$\bar{A}=\{h t, t h, t t\}$.

- A is a subset of $B: A \subset B$.
- A and D disjoint: $A \cap D=\{ \}=\Phi$.

$$
\begin{aligned}
& \text { For arbitrary } A, \Phi \subseteq A \subseteq S . \\
& \text { de Morgan's Law: } \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \overline{A \cap B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

Trivia: $A \cup \bar{A}=S, A \cap \bar{A}=\Phi$.

Probability as Relative Frequency

Urn Model: Consider an urn containing n balls, of which s are black. The probability of getting a black ball in a random draw is $p=s / n$.

- Random draw: All balls have equal chance to be drawn.
- Need counting rules for computing n and s.

Toy example 1: Coin flips.

 Assume a fair coin.$$
\begin{aligned}
P(\{h h\}) & =1 / 4, \\
P(\{h h, h t, t h\}) & =3 / 4, \\
P(\{h h, t t\}) & =2 / 4 .
\end{aligned}
$$

Toy example 2: Rolls of dice.

 Assume a pair of fair dice.$$
\begin{aligned}
P(\text { double sixes }) & =1 / 36, \\
P(\text { total } 3) & =2 / 36, \\
P(\text { both even }) & =9 / 36 .
\end{aligned}
$$

Objective and Subjective Probability

After rolling a die 1000 times, Alan tallied 150 sixes. He concluded that the probability of getting a six with the die is about $p=.15$.

Without knowing Alan's results, Andy was asked to assess the probability of getting a six with the die. He suggested $p=.1667$.

Who's right?

Objective: Relative frequency in repeated experiments.

Subjective: Beliefs, bets, odds, etc.

- In science, one usually is concerned about objective probability.

Alan is objective, but are 1000 rolls enough to establish "trend"?

Assuming a fair die, Andy is objective. But the assumption of fairness can be subjective.

Axioms of Probability

1. For any event $A, 0 \leq P(A) \leq 1$.
2. $P(S)=1$.
3. If $A \cap B=\Phi$, then $P(A \cup B)=P(A)+P(B)$.

- It is impossible to have $P(A)=.5, P(B)=.8$, and $P(A \cap B)=.1$.
- It is impossible to have $P(A)=.3$ and $P(A \cap B)=.35$.
- It is impossible to have $P(A)=.3$ and $P(\bar{A})=.6$.

Additive Laws of Probability

1. For A_{1}, \ldots, A_{n} disjoint, $P\left(A_{1} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+\cdots P\left(A_{n}\right)$.
2. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
3. $P(\bar{A})=1-P(A)$.

A circuit chip may have etching defect (12%), crack defect (29%), and maybe both (7\%). What proportion is defect-free?
$P(A)=.12, P(B)=.29$,
$P(A \cap B)=.07$.
$P(A \cup B)=.12+.29-.07=.34$ $P(\overline{A \cup B})=1-.34=.66$.

Consider drawing a card from a deck of 52 .

$$
\begin{aligned}
P(\text { Red } \mathrm{K}) & =\frac{2}{52} \\
P(\{3,4,5,6\}) & =\frac{4}{13}
\end{aligned}
$$

$P(\operatorname{Red} \mathrm{~A}$ or Blk Q$)=\frac{4}{52}$

$$
P(\text { Red or } \mathrm{K})=\frac{1}{2}+\frac{1}{13}-\frac{2}{52}
$$

Counting Rule: Multiplication

Consider k drawers containing $n_{1}, n_{2}, \ldots, n_{k}$ distinctive items, respectively. The total number of ways to pick one item each from the k drawers is: $n_{1} n_{2} \cdots n_{k}$.

- The number of outcomes from k coin flips: 2^{k}.
- The number of outcomes from k rolls of a die: 6^{k}.
- The number of even-even outcomes from 2 rolls of a die: 3^{2}.
- The number of letter-digit combinations: $26(10)$.
- The probability of winning pick-3 lottery: $1 / 10^{3}$.

Counting Rule: Permutation

Consider a pool of n candidates. The number of ways to rank the top r is: $n(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!}=P_{r}^{n}=P_{r, n}$.

- The number of ways to assign the top 3 seeds in the Big 10 conference: $P_{3}^{14}=14(13)(12)=2184$.
- The number of ways to assign 4 brands of grass seeds to 4 plots of experimental field: $P_{4}^{4}=4!=24$.
- The number of ways to seat Wheel-of-Fortune players: $3!=6$. In R, n ! can be calculated via factorial (n).

Counting Rule: Combination

Consider a pool of n candidates. The number of ways to pick r
from the pool is: $\frac{P_{r}^{n}}{r!}=\frac{n!}{r!(n-r)!}=\binom{n}{r}=C_{r}^{n}=C_{r, n}=C_{n-r}^{n}$.

- The number of possible starting lineups for each basketball team: $C_{5}^{12}=792$.
- The probability of hitting a jack-pot: $\frac{1}{C_{6}^{44}}=\frac{1}{7059052}$.
- The probability of winning a Power-Ball: $\frac{1}{44 C_{5}^{44}}=\frac{1}{47784352}$ In R, C_{r}^{n} can be calculated via choose (n, r).

Counting Rules: Examples

Excercise 2.90 on page 88: Pick a crew of 3 from 20 machinists.

1. There are $C_{3}^{20}=1140$ possible crews.
2. $C_{0}^{1} C_{3}^{19}=969$ crews do not include the best machinist.
3. $C_{1}^{5} C_{2}^{15}+C_{2}^{5} C_{1}^{15}+C_{3}^{5} C_{0}^{15}=685$ crews have at least one of the 5 best machinists.

Excercise 2.40 on page 72: 3 each of A, B, C, D are to be arranged into a chain.

1. There are $P_{12}^{12} /\left(P_{3}^{3}\right)^{4}=12!/(3!)^{4}=369600$ possible chains.
2. There are $P_{4}^{4}=4!=24$ chains with the same letter next to each other.

Conditional Probability and Independence

Conditional Probability: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.
Independence: A and B are independent if $P(A \mid B)=P(A)$.

Chip defects.
$P(A)=.12, P(B)=.29$, $P(A \cap B)=.07$.
$P(A \mid B)=\frac{.07}{.29}=.241 \neq .12$
$P(B \mid A)=\frac{.07}{.12}=.583 \neq .29$
A and B are dependent.

- Conditioning reduces sample space.
- Conditioning can simplify calculation.
- Independence is often established before calculation.

Multiplicative Laws of Probability

1. $P(A \cap B)=P(A) P(B \mid A)=P(B) P(A \mid B)$.
2. For A and B independent, $P(A \cap B)=P(A) P(B)$.

Consider drawing two cards w/o replacement from a deck of 52 .

$$
\begin{aligned}
P(\text { Both Red }) & =\frac{26}{52} \frac{25}{51} \\
P(\text { Two Colors }) & =2 \frac{26}{52} \frac{26}{51}
\end{aligned}
$$

Using counting rules,

$$
\begin{aligned}
P(\text { Both Red }) & =\frac{C_{2}^{26}}{C_{2}^{52}} \\
P(\text { Two Colors }) & =\frac{C_{1}^{26} C_{1}^{26}}{C_{2}^{52}}
\end{aligned}
$$

Consider five rolls of a fair die.

$$
\begin{aligned}
& P(\overline{6} \overline{6} \overline{6} \overline{6} \overline{6})=\left(\frac{5}{6}\right)^{5} \\
& P(\overline{6} \overline{6} \overline{6} \overline{6} 6)=\left(\frac{5}{6}\right)^{4}\left(\frac{1}{6}\right) \\
& P(o 55 a a)=\left(\frac{3}{6}\right)^{2}\left(\frac{1}{6}\right)^{2} \\
& P(12345)=\left(\frac{1}{6}\right)^{5}
\end{aligned}
$$

where o is odd and a is any.

Bayes' Theorem

Let B_{i} be a partition of $S: S=B_{1} \cup \cdots \cup B_{k}, B_{i}$ disjoint.

$$
P\left(B_{j} \mid A\right)=\frac{P\left(B_{j}\right) P\left(A \mid B_{j}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}
$$

Consider an AIDS test.

$$
\begin{aligned}
& P\left(T^{+} \mid D\right)=.98, \\
& P\left(T^{-} \mid \bar{D}\right)=.99 .
\end{aligned}
$$

	D	\bar{D}
T^{+}	$.000019(.98)$	$.999981(.01)$
T^{-}	$.000019(.02)$	$.999981(.99)$

Also known,

$$
P(D)=.000019
$$

Find $P\left(\bar{D} \mid T^{+}\right), P\left(D \mid T^{-}\right)$.

$$
\begin{aligned}
& P\left(\bar{D} \mid T^{+}\right)=\frac{.999981(.01)}{.01001843}=.998, \\
& P\left(D \mid T^{-}\right)=\frac{.000019(.02)}{.9899816}=3.84 \times 10^{-7} .
\end{aligned}
$$

Random Variables

Random variable assumes numerical values according to the outcome of an experiment. Random variables are usually denoted by X, Y, Z, etc.

Examples of random variables:

1. No. of heads in 5 coin flips.
2. Total of a pair of dice.
3. No. of crossovers between a pair of chromosomes.
4. Miles between oil changes.
5. Temperature at noon.

- Continuous r.v. takes value on a continuum such as $[0,1]$; discrete r.v. takes value on a discrete set such as $\{1,2, \ldots\}$.
- A r.v. is not a fixed number.
- The behavior of a r.v. is characterized by its distribution.

Discrete Probability Distribution

Discrete probability distribution consists of a set of possible values and the associated probabilities: | x | x_{1} | x_{2} | \cdots |
| :---: | :---: | :---: | :---: |
| $P(x)$ | p_{1} | p_{2} | \cdots |

$X=$ no. of heads in 3 coin flips.

x	0	1	2	3
$P(x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

$P(X=2)=P(2)=3 / 8$.

- The set $\left\{x_{1}, x_{2}, \ldots\right\}$ can be finite or infinite, and x_{i} 's need not to be integers.
- $P\left(X=x_{i}\right)=P\left(x_{i}\right)=p_{i}$.
- $0 \leq p_{i} \leq 1 . \sum_{i} p_{i}=1$.

Mean and Standard Deviation

Mean summarizes the central location: $\mu=\sum_{i} x_{i} p_{i}$.
Standard deviation summarizes the spread: $\sigma=\sqrt{\sigma^{2}}$, with σ^{2} the variance given by $\sigma^{2}=\sum_{i}\left(x_{i}-\mu\right)^{2} p_{i}=\sum_{i} x_{i}^{2} p_{i}-\mu^{2}$.
$X=$ no. of heads in 3 coin flips.

x	0	1	2	3
$P(x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$
$\mu=0 \frac{1}{8}+1 \frac{3}{8}+2 \frac{3}{8}+3 \frac{1}{8}=\boxed{1.5}$,				
$\sigma^{2}=\frac{3}{8}+\frac{12}{8}+\frac{9}{8}-1.5^{2}=.75$.				

- On average, one gets 1.5 heads in 3 flips of a fair coin.
- Imagine a data set of size 8 m , with 1m 0's, 3m 1's, 3m 2's, and 1 m 3 's. One should get $\bar{x}=1.5$ and $s^{2}=.75$.
- The mean is also called the expected value.

Bernoulli Trials

A series of trials are Bernoulli Trials if:

1. The outcome of each trial is binary, say Y / N.
2. $P(Y)=p$ remains the same for all trials.
3. The trials are independent.

Examples of Bernoulli trials:

- Multiple flips of a coin.
- Defectiveness of light bulbs on the store shelves.
- Genders of people picked from the phone books.
- Responses of patients to a certain antibiotic.

Binomial and Geometric Distributions

Binomial distribution characterizes the total number of Y's in a fixed number of Bernoulli trials: $\operatorname{Bin}(n, p)$.

$$
\begin{array}{r|l}
\text { Possible values } & x=0,1,2, \ldots, n \\
\text { Probabilities } & P(x)=C_{x}^{n} p^{x}(1-p)^{n-x} \\
\text { Parameters } & \mu=n p, \sigma=\sqrt{n p(1-p)} \\
\hline
\end{array}
$$

Geometric distribution characterizes the trial number of the first Y in a series of Bernoulli trials.

Possible values	$x=1,2, \ldots$
Probabilities	$P(x)=(1-p)^{x-1} p$
Parameters	$\mu=1 / p, \sigma=\sqrt{1-p} / p$

Binomial Probabilities

When two carriers of gene for albinism marry, each child has $1 / 4$ chance of being albino. Let X be the number of albino children in such a family with 5 children. $X \sim \operatorname{Bin}(5, .25)$.

$$
P(0)=C_{0}^{5}(.25)^{0}(.75)^{5}=.237
$$

$$
P(1)=C_{1}^{5}(.25)(.75)^{4}=.396
$$

$$
P(X \leq 1)=.237+.396=.633
$$

$$
P(X \geq 1)=1-.237=.763
$$

About one-third Americans 20 or older are at high risk for coronary disease due to high cholesterol levels. Let X be the number of high risk adults in a sample of 20. $X \sim \operatorname{Bin}(20,1 / 3)$.

$$
\begin{aligned}
P(3) & =C_{3}^{20}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{17}=.0429 \\
P(0) & =\left(\frac{2}{3}\right)^{20}=.0003 \\
P(X \geq 1) & =1-.0003=.9997
\end{aligned}
$$

- $b(x ; n, p)$ can be calculated in R via dbinom $(\mathrm{x}, \mathrm{n}, \mathrm{p})$.

Binomial Probabilities

The sex-ratio data of 72069 sixchild families are given below.

Boys	Freq.	Prop.	Fit
0	1096	.0152	.0130
1	6233	.0865	.0830
2	15700	.2178	.2202
3	22221	.3083	.3117
4	17332	.2405	.2481
5	7908	.1097	.1053
6	1579	.0219	.0186

Are children within families independent?

- The overall proportion of boys is $\hat{p}=.5149$, which corresponds to a 106:100 sex-ratio.
- The fit column contains probabilities of $\operatorname{Bin}(6, \hat{p})$.
- The data seem to favor "runs" within families. We will come back later with formal analysis.

If $X \sim \operatorname{Bin}(n, p), Y \sim \operatorname{Bin}(m, p)$, and independent, then

$$
X+Y \sim \operatorname{Bin}(n+m, p)
$$

Cumulative Distribution Function

Cumulative distribution function is often tabulated to facilitate probability calculations: $F(x)=\sum_{x_{i} \leq x} P\left(x_{i}\right)$.

Consider X the number of heads in 6 flips of a fair coin.

$$
\begin{aligned}
& P(X=3)=P(3)=.3125 \\
& P(X=3)=F(3)-F(2)=.3124 \\
& P(X \geq 2)=1-F(1)=.8906 \\
& P(X \leq 3)=F(3)=.6562
\end{aligned}
$$

- It is easier to calculate probabilities of "blocks" using $F(x)$.
$\operatorname{Bin}(6, .5)$ distribution:

x	$P(x)$	$F(x)$
0	.0156	.0156
1	.0938	.1094
2	.2344	.3438
3	.3125	.6562
4	.2344	.8906
5	.0938	.9844
6	.0156	1.0000

Hypergeometric Distribution

Hypergeometric distribution characterizes draws from an urn without replacement: N balls in the urn with k of them black; draw n balls from the urn and count X blacks.

$$
\begin{array}{r|l}
\text { Possible values } & x=\max (0, n-(N-k)), \ldots, \min (n, k) \\
\text { Probabilities } & P(x)=\frac{C_{x}^{k} C_{n-x}^{N-k}}{C_{n}^{N}} \\
\text { Parameters } & \mu=n \frac{k}{N}, \sigma=\sqrt{n \frac{k}{N}\left(1-\frac{k}{N}\right) \frac{N-n}{N-1}} \\
\hline
\end{array}
$$

Of 8 patients given a cold medicine 5 recovered in 3 days. Of 10 given placebo 4 did so. What's the probability that this just happened "by chance"? $C_{5}^{8} C_{4}^{10} / C_{9}^{18}$

- With replacement one gets Binomial with $p=k / N$.
- The same μ as for Binomial, but smaller σ.

Poisson Distribution

Poisson distribution characterizes the number of incidences occurring in a time interval or space volume: Poisson (λ).

$$
\begin{array}{r|l}
\hline \text { Possible values } & x=0,1,2, \ldots \\
\text { Probabilities } & P(x)=\lambda^{x} e^{-\lambda} / x! \\
\text { Parameters } & \mu=\lambda, \sigma=\sqrt{\lambda}
\end{array}
$$

Examples of Poisson r.v.:

1. No. of crossovers on genome.
2. No. of bacteria in fluid.
3. No. of arrivals at counter.
4. No. of dial-ins at ISP.

- Need to specify volume.
- λ determines intensity.

Poisson Process: cut T into tiny pieces Δt.

1. $P(\mathrm{a}$ hit in $\Delta t) \propto$ size.
2. $P(2+$ hits in $\Delta t) \approx 0$.
3. Pieces are independent.

Poisson Probabilities

A brand of wall paper averages $.3 / f t^{2}$ coating blemishes and $.1 / f t^{2}$ printing blemishes. The two kinds are independent.
$P\left(3\right.$ cb's on $\left.10 f t^{2}\right)=3^{3} e^{-3} / 3$!
$P\left(4 \mathrm{pb}\right.$'s on $\left.20 f t^{2}\right)=2^{4} e^{-2} / 4$! $P\left(\right.$ None on $\left.7 f t^{2}\right)=2.8^{0} e^{-2.8} / 0!$

If $X \sim \operatorname{Pois}\left(\lambda_{1}\right), Y \sim \operatorname{Pois}\left(\lambda_{2}\right)$, and independent, then

$$
X+Y \sim \operatorname{Pois}\left(\lambda_{1}+\lambda_{2}\right)
$$

The number of crossovers X between two points on a genome roughly follows a Poisson distribution. When X is odd, one has a recombination.

$$
\begin{aligned}
P(X \text { odd }) & =\sum_{i=0}^{\infty} \frac{\lambda^{2 i+1} e^{-\lambda}}{(2 i+1)!} \\
& =\frac{1}{2}\left(1-e^{-2 \lambda}\right)
\end{aligned}
$$

Distance on genome is measured in terms of λ, with $\lambda=1$ roughly a Morgan (M) and $\lambda=.01$ a cM.

Probability Approximations

Binomial approximation of hypergeometric: When N is large and n / N is small, say $n / N \leq .05$,

$$
C_{x}^{k} C_{n-x}^{N-k} / C_{n}^{N} \approx C_{x}^{n} p^{x}(1-p)^{n-x}, \text { where } p=k / N .
$$

Poisson approximation of Binomial: When n is large and

$$
n p \leq 5, \text { say, } C_{x}^{n} p^{x}(1-p)^{n-x} \approx \lambda^{x} e^{-\lambda} / x!, \text { where } \lambda=n p .
$$

```
With \(N=100, k=10, n=5\),
and \(x=2\),
```

$$
\begin{aligned}
\frac{C_{2}^{10} C_{3}^{90}}{C_{5}^{100}} & =.0702 \\
C_{2}^{5}(.1)^{2}(.9)^{3} & =.0729
\end{aligned}
$$

With $n=100, p=.03$, and $x=2$,

$$
\begin{aligned}
C_{2}^{100}(.03)^{2}(.97)^{98} & =.2252 \\
3^{2} e^{-3} / 2! & =.2240
\end{aligned}
$$

For n large and p "fixed", use normal approx. discussed later.

Probability Distributions in R

R provides four utility functions for each of the many commonly used distributions: r - for data simulation, d - for probability density function (pdf), p - for cumulative distribution function (cdf), and q- for quantiles (inverse of cdf).

```
rbinom(7,5,0.6); rpois(10,5.5); rhyper(7,9,6,5)
dbinom(0:5,5,0.6); dpois(0:10,5.5); dhyper(0:5,9,6,5)
pbinom(0:5,5,0.6); cumsum(dbinom(0:5,5,0.6))
qpois(c(0,.25,.5,.75,1),5.5); ppois(0:10,5.5)
```

Table A. 1 lists the results of $\mathrm{pbinom}(\mathrm{x}, \mathrm{n}, \mathrm{p})$ for selected (n, p).
Table A. 2 lists the results of ppois ($\mathrm{x}, \mathrm{l} \mathrm{ambda}$) for selected λ.

Continuous Probability Distribution

Probability density function (pdf) specifies a continuous probability distribution: $f(x) \geq 0$.

Cumulative distribution function (cdf) facilitates the calculation: $F(x)=\int_{-\infty}^{x} f(t) d t=P(X \leq x)=P(-\infty, x]$.
"Throw darts" on $(0,1)$ and record the locations $X: U(0,1)$.

$$
\begin{aligned}
& f(x)= \begin{cases}0, & x \leq 0 \\
1, & 0<x<1 \\
0, & 1 \leq x\end{cases} \\
& F(x)= \begin{cases}0, & x \leq 0 \\
x, & 0<x<1 \\
1, & 1 \leq x\end{cases}
\end{aligned}
$$

- The pdf $f(x) \geq 0$ is nonnegative.
- The total area under $f(x)$ is 1 .
- $P(a, b]=F(b)-F(a):$ the area under $f(x)$ between a and b.
- $P\{a\}=0$, so $P[a, b]=P(a, b]$.
- $F(-\infty)=0, F(\infty)=1, F(x) \uparrow$.
- If $F(a)=p$, then a is called the $100 p$-th percentile.

Mean and Standard Deviation

Mean summarizes the central location: $\mu=\int_{-\infty}^{\infty} x f(x) d x$.
Standard deviation summarizes the spread: $\sigma=\sqrt{\sigma^{2}}$, with the

$$
\text { variance } \sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2} \text {. }
$$

Darts on $(0,1): U(0,1)$

$$
\begin{aligned}
\mu & =\int_{0}^{1} x d x=\frac{1}{2} \\
\sigma^{2} & =\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x \\
& =\int_{0}^{1} x^{2} d x-\left(\frac{1}{2}\right)^{2}=\frac{1}{12}
\end{aligned}
$$

- The average position is at the center.
- Imagine throwing millions of darts on $(0,1)$ and recording locations x_{i}. One should get $\bar{x}=\frac{1}{2}$ and $s^{2}=\frac{1}{12}$.

Normal Distribution

Normal distribution is the default "measurement error" model and is the "attraction point" under averaging: $N\left(\mu, \sigma^{2}\right)$.
"Measurement errors":

1. Heights of Purdue students.
2. Miles between oil changes.
3. Yields per acre.
4. Weights of tuna cans.
5. SAT scores of students.
6. Reported particle counts.

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- $f(x)$ is symmetric w.r.t. μ.
- $F(x)$ has no explicit form.

Standard Normal Distribution

Normality specifies the shape, and is preserved under linear transformation: If $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$, then $Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$.

Standard normal distribution: $N(0,1)$.
Standardization converts an arbitrary normal r.v. to a standard normal r.v.: If $X \sim N\left(\mu, \sigma^{2}\right)$, then $(X-\mu) / \sigma \sim N(0,1)$.

The heights of male students on a university campus follow $N(68,25)$, in $i n$, or $\quad N\left(2.54(68),(2.54)^{2} 25\right)$, in cm .

- To make calculations concerning normal r.v., it suffices to know $F(x)$ for $N(0,1)$.
- $F(x)$ for $N(0,1)$ is finely tabulated.

Standard Normal Probabilities

- By convention, one writes $Z \sim N(0,1)$ and $P(Z \leq z)=\Phi(z)$.
- $\Phi(z)$ is tabulated (Table A. 3 inside the front cover of textbook).

Using $\Phi(z)$ table and symmetry,

$$
\begin{aligned}
P(Z \leq 0) & =P(Z \geq 0)=.5 \\
P(Z \leq .55) & =\Phi(.55)=.7088 \\
P(Z>.33) & =1-\Phi(.33)=.3707 \\
P(Z \leq-2) & =\Phi(-2)=.0228 \\
P[1.2,2] & =\Phi(2)-\Phi(1.2)=.0923 \\
P(-1.2,2) & =\Phi(2)-\Phi(-1.2) \\
& =.8621 \\
P[-1,1] & =\Phi(1)-\Phi(-1)=.6826
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find } a, b, c \text {, given } \\
& \qquad \begin{array}{r}
P(0, a)=\Phi(a)-\Phi(0)=.4, \\
\\
P(-2, b)=\Phi(b)-\Phi(-2)=.3, \\
\text { As } \Phi(a)=.9, \text { so } a \approx 1.28 . \\
\text { As } \Phi(b)=.3228, \text { or } \Phi(-b)=.6772, \\
\text { so } b=-.46 . \\
\text { As } \Phi(c)=.3332, \text { or } \Phi(-c)=.6668, \\
\text { so } c \approx-.43 .
\end{array}
\end{aligned}
$$

Normal Probabilities

For $X \sim N\left(\mu, \sigma^{2}\right)$, standardize via $Z=\frac{X-\mu}{\sigma}$ and use $\Phi(z)$.

$$
P(a \leq X \leq b)=P\left(\frac{a-\mu}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{b-\mu}{\sigma}\right)=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
$$

- Key to calculations: Standardize, standardize, standardize.

Consider $X \sim N(68,25)$.

$$
\begin{aligned}
P(X \leq 68) & =P(X \geq 68)=.5 \\
P(X>72) & =1-\Phi(.8)=.2119 \\
P(63,73) & =\Phi(1)-\Phi(-1)=.6826
\end{aligned}
$$

Find a such that $P(60, a)=.6$.
Since $\Phi\left(\frac{a-68}{5}\right)-\Phi(-1.6)=.6$, or $\Phi\left(\frac{a-68}{5}\right)=.6548$, one has $\frac{a-68}{5} \approx$.4 , or $a \approx 70$.

Find μ, given $X \sim N(\mu, 36)$ and $P(X<5)=.4$.
Since $\Phi\left(\frac{5-\mu}{6}\right)=.4,-\frac{5-\mu}{6} \approx .25$, or $\mu \approx 6.5$

Find σ, given $X \sim N\left(6, \sigma^{2}\right)$ and $P(X<5)=.4$.
Since $\Phi\left(\frac{5-6}{\sigma}\right)=.4, \frac{1}{\sigma} \approx .25$, or $\sigma \approx 4$.

Normal Percentiles

- By convention, z_{α} denotes the $100(1-\alpha)$ th percentile of $N(0,1): \Phi\left(z_{\alpha}\right)=1-\alpha$, or $P\left(Z>z_{\alpha}\right)=\alpha$.
- For $X \sim N\left(\mu, \sigma^{2}\right), P(|X-\mu| \leq k \sigma)=P(|Z| \leq k)=2 \Phi(k)-1$.

α	z_{α}
.005	2.576
.010	2.326
.025	1.960
.050	1.645

k	$P(\|Z\| \leq k)$
1	.6827
2	.9545
3	.9973

A builder believes the material cost for a new project will behave as $N(60,16)$ and the labor cost as $N(30,9)$. What is his chance to keep the total cost below 100 ?

The total cost behaves as $N(90,25)$, so

$$
P(0,100)=\Phi(2)-\Phi(-\infty)=.9772
$$

If $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, and independent, then $X+Y \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.

Exponential Distribution

Exponential distribution provides a simple model for life time data: $f(x)=\lambda e^{-\lambda x}, x>0$.

- $F(x)=1-e^{-\lambda x}, x>0 ; \mu=\frac{1}{\lambda}, \sigma=\frac{1}{\lambda}$.
- When the number of events on unit time interval follows Poisson, the time lag between events follows exponential.

On average, a surveillance camera can run 50 days without being reset.
$P\left(\right.$ run for 60_{+}days $)=e^{-1.2}$
$P($ reset in 20 days $)=1-e^{-.4}$

On average, a customer arrives at a bank counter every 4 minutes. $P(3$ within 6 min$)=\frac{1.5^{3} e^{-1.5}}{3!}$ $P($ next in 3 min$)=1-e^{-3 / 4}$

Probability Distributions in R

The R utility functions for normal and exponential distributions have default parameter values that may be overrided.

```
pnorm(.55); qnorm(.7088)
pnorm(72,mean=68,sd=5); pnorm((72-68)/5)
qnorm(.6548,68,5); 5*qnorm(.6548)+68
pnorm(1)-pnorm(-1); qnorm(1-.025)
pexp(60,rate=1/50); pexp(60/50)
qexp(.5,1/50); 50*qexp(.5)
```

Table A. 3 lists the results of $\operatorname{pnorm}(z$, mean= $0, s d=1)$.

Simple Random Sampling

Simple random sampling selects with equal chance from (available) members of population. The resulting sample is a simple random sample.

Consider an urn containing N balls with numbers x_{i} written on them. Draw n balls from the urn.

- Equal chance for C_{n}^{N} possible samples w/o replacement: finite population.
- Equal chance for N^{n} possible samples w/ replacement: infinite population.
- The x_{i} 's need not to be all different.
- One can let $N \rightarrow \infty$, but then can not sample w/o replacement.
- A sample from an infinite population consists of independent, identically distributed (i.i.d.) observations.

Sampling Distribution

Sampling distribution describe the behavior of sample statistics such as \bar{x} and s^{2}.

In a certain human population, 30% of the individuals have "superior" distance vision (20/15 or better). Consider the sample proportion of superior vision,

$$
\hat{p}=X / n
$$

where X is the number of people in the sample with superior vision. Find the sampling distribution of \hat{p} for $n=20$.

Clearly, $X=20 \hat{p} \sim \operatorname{Bin}(20, .3)$.
Possible values for \hat{p} are

$$
\{0, .05, .10, \ldots, .95,1\}
$$

with the probabilities given by
$P(\hat{p}=x)=C_{20 x}^{20}(.3)^{20 x}(.7)^{20(1-x)}$.
For example,
$P(\hat{p}=.3)=C_{6}^{20}(.3)^{6}(.7)^{14}=.192$.
In R, use dbinom $(0: 20,20, .3)$.

Simulating Sampling Distributions

When analytical derivation is cumbersome or infeasible, one may use simulation to obtain the sampling distribution.

Example: The sample median of 17 r.v.'s from $N(0,1)$.

```
x <- matrix(rnorm(170000),17,10000)
md <- apply(x,2,median)
hist(md,nclass=50); plot(density(md))
```

Example: The largest of 5 Poisson counts from Poisson(3.3).

```
x <- matrix(rpois(50000,3.3),5,10000)
mx <- apply(x,2,max)
table(mx); table(mx)/10000
ppois(1:13,3.3)^5-ppois(0:12,3.3)^5
```


Sampling Distribution of \bar{X}

Use upper case \bar{X} to denote the sample mean as a r.v. For an infinite population with mean μ and standard deviation σ,

$$
\mu_{\bar{X}}=\mu \quad \text { and } \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
$$

The heights of male students on a large university campus have $\mu=$ 68 and $\sigma=5$. Consider \bar{X} with sample size $n=25$.

$$
\begin{aligned}
& \mu_{\bar{X}}=\mu=68 \\
& \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=\frac{5}{\sqrt{25}}=1
\end{aligned}
$$

- \bar{X} is more concentrated around μ.
- To double the "accuracy" of \bar{X}, one needs to quadruple the sample size n.
For finite population, $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$.

Central Limit Theorem

Consider an infinite population with mean μ and standard deviation σ. For n large,

$$
P\left(\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}} \leq z\right) \approx \Phi(z)
$$

Given $\mu=68$ and $\sigma=5$. Find the probability for the average height of $n=25$ students to exceed 70.
$P(\bar{X}>70)=P\left(\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}>\frac{70-68}{1}\right)$
$\approx 1-\Phi(2)=.0228$.

- The shape of sampling distribution approaches normal as $n \rightarrow \infty$. Usually, an $n \geq 30$ is sufficiently large for CLT to kick in.
- For normal population, \bar{X} is always normal, regardless of n.

Effects of Sample Size

$\mathrm{n}=1$

$\mathrm{n}=4$

$\mathrm{n}=16$

$\mathrm{n}=16$

Normal Approximation of Binomial

Recall that if $X \sim \operatorname{Bin}(n, p)$, then $X=\sum_{i=1}^{n} X_{i}$, where $X_{i} \sim \operatorname{Bin}(1, p)$. By the Central Limit Theorem,

$$
P\left(\frac{X-n p}{\sqrt{n p(1-p)}} \leq z\right)=P\left(\frac{X / n-p}{\sqrt{p(1-p) / n}} \leq z\right) \approx \Phi(z)
$$

Consider $X \sim \operatorname{Bin}(25, .3)$.

$$
\begin{aligned}
P(X \leq 8) & =.6769 \\
P(X \leq 8) & =P(X \leq 8.5) \\
& \approx \Phi\left(\frac{8.5-7.5}{2.291}\right)=.6687 \\
P(X=8) & =.1651 \\
P(X=8) & =P(7.5 \leq X \leq 8.5) \\
& \approx \Phi(.436)-\Phi(0)=.1687
\end{aligned}
$$

- When a continuous distribution is used to approximate a discrete one, continuity correction is needed to preserve accuracy.
- For $n p, n(1-p) \geq 5$, the approximation is reasonably accurate.

Summary

Probability provides a mathematical language for the study of chance phenomena. One can use probability to describe the anticipated behavior of samples from populations with known characteristics.

Topics covered:

- Events in a sample space describe outcomes of a (stochastic) experiment.
- Probability is defined objectively as the relative frequency of events or subjectively as odds or through bets or beliefs. One needs counting rules for the former.
- Probabilities of related events have to conform to certain axioms and follow certain laws.
- Perceived chance, or probability, of an event may depend on what one knows about the occurrence of other events. There lies the joy of independence and conditional probability.
- Random variables assume numerical values according to outcomes of stochastic experiments. Probability distributions describe the behavior of random variables.
- Common distributions: Binomial, Poisson, Normal.
- Sampling distribution describes the behavior of sample statistics. Central Limit Theorem lays technical foundation for basic statistical inferences.

