CI and z-Test for Population Proportion

As reported by AMA, 16% doctors in any given year are subject to malpractice claims. A hospital of 300 physicians received claims against 58 of their doctors.
Since $\hat{p}=58 / 300=.1933, \hat{\sigma}_{\hat{p}}=$ $\sqrt{.1933(1-.1933) / 300}=.0228$, a $95 \% \mathrm{CI}$ is given by

$$
.1933 \pm 1.96(.0228)
$$

or $(0.1486,0.2380)$.
To test for $H_{0}: p=.16$,

$$
z=\frac{\hat{p}-.16}{\sqrt{.16(1-.16) / 300}}=1.575,
$$

with a 2 -sided p-value of 0.115 .

Consider $X \sim \operatorname{Bin}(n, p)$. For n large, by CLT,

$$
P\left(\frac{X / n-p}{\sqrt{p(1-p) / n}} \leq z\right) \approx \Phi(z)
$$

The sample proportion $\hat{p}=X / n$ is actually an \bar{X}. As an estimate of $\sigma_{\hat{p}}=\sqrt{p(1-p) / n}$, one may use

$$
\hat{\sigma}_{\hat{p}}=\sqrt{\hat{p}(1-\hat{p}) / n} .
$$

A $(1-\alpha) 100 \%$ CI for p is thus

$$
\hat{p} \pm z_{\alpha / 2} \hat{\sigma}_{\hat{p}}
$$

To test $H_{0}: p=p_{0}$ vs. $H_{a}: p \neq p_{0}$,

$$
Z=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}} .
$$

χ^{2}-Test for Binary Proportions

Let $Z_{i} \sim N(0,1), i=1, \ldots, n$, independent. The distribution of

$$
\sum_{i=1}^{n} Z_{i}^{2}
$$

is a χ^{2}-distribution with n degrees of freedom. Selected percentiles of χ^{2}-distributions, $\chi_{\alpha, \nu}^{2}$, can be found in Table A.11.

Chisq(5)

The z-test is equivalent to a χ^{2} test based on the expected and observed cell counts.

E	$n p_{0}$	$n\left(1-p_{0}\right)$
O	Y	$n-Y$

One rejects H_{0} if

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E} \geq \chi_{\alpha, 1}^{2} .
$$

For the malpractice data,

E	48	252
O	58	242

$\chi^{2}=\frac{(58-48)^{2}}{48}+\frac{(252-242)^{2}}{252}=2.480$

- $2.480=(1.575)^{2}, \chi_{\alpha, 1}^{2}=1.96^{2}$.

Testing for Multiple Cell Proportions

According to a certain Mendelian genetic model, self-pollination of pink-flowered plants of snapdragon should produce progeny that are red, pink, and white in the ratio 1:2:1.

$$
H_{0}: p_{1}=.25, p_{2}=.5, p_{3}=.25
$$

Data were obtained on 209 plants.

E	52.25	104.5	52.25
O	52	128	29

$$
\begin{aligned}
\chi^{2} & =\frac{.25^{2}}{52.25}+\frac{23.5^{2}}{104.5}+\frac{23.25^{2}}{52.25} \\
& =15.63
\end{aligned}
$$

Since $P\left(\chi_{2}^{2}>15.63\right)=.0004$, evidence was strong against H_{0}.

The χ^{2}-test applies to many testing problems involving cell proportions. To test for given proportions of multiple, say k, cells

$$
H_{0}: p_{i}=p_{i 0} \quad \text { vs. } \quad H_{a}: \text { o.w. }
$$

one obtains the expected and observed cell counts,

E	$n p_{10}$	\cdots	$n p_{k 0}$
O	Y_{1}	\cdots	Y_{k}

and rejects H_{0} if

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E} \geq \chi_{\alpha, k-1}^{2}
$$

Note that $\sum Y_{i}=n$ and $\sum p_{i}=1$. H_{0} has $0 \mathrm{df} ; H_{a}$ has $k-1$.

χ^{2}-Test for Composite Hypothesis

2 alleles at a locus yield 3 blood types, MM, MN, and NN. In equilibrium, the 3 types should have probabilities $\theta^{2}, 2 \theta(1-\theta)$, and $(1-\theta)^{2}$, respectively, where θ is the prevalence of M in the population. A sample of size 500 gives 125:225:150.
Based on $\hat{\theta}=(2(125)+225) / 1000=$.475 , the estimated expected \hat{E} 's are 112.8:249.4:137.8. One has

$$
\begin{aligned}
\chi^{2} & =\frac{12.2^{2}}{112.8}+\frac{24.4^{2}}{249.4}+\frac{12.2^{2}}{137.8} \\
& =4.787
\end{aligned}
$$

Since $P\left(\chi_{1}^{2}>4.787\right)=.0287$, evidence was moderately strong against equilibrium.

When H_{0} is not completely specified but pending on knowledge of some parameter(s), say

$$
H_{0}: p_{i}=p_{i}(\theta) \text { vs. } H_{a}: \text { o.w., }
$$

one has to estimate the unknown parameter(s) θ then calculate the estimated expected $\hat{E}=n p_{i}(\hat{\theta})$.
H_{0} will be rejected if

$$
\chi^{2}=\sum \frac{(O-\hat{E})^{2}}{\hat{E}} \geq \chi_{\alpha, k-1-d}^{2},
$$

where d is the number of parameters to be estimated $(\operatorname{dim}(\theta))$.
H_{0} has $d \mathrm{df} ; H_{a}$ has $k-1$.

Testing for Distributional Models

The sex-ratio data of 72069 sixchild families are given below.

Boys	O	\hat{E}
0	1096	939.5
1	6233	5982.5
2	15700	15873.1
3	22221	22461.8
4	17332	17879.3
5	7908	7590.2
6	1579	1342.6

The boy ratio is estimated to be $\hat{p}=.5148723$.

Are the boy counts binomial?

$$
H_{0}: p_{i}=C_{i}^{6} p^{i}(1-p)^{6-i}
$$

H_{a} : otherwise
H_{0} has 1 df; H_{a} has 6 df .
First calculate the estimated expected cell counts

$$
\hat{E}_{i}=n C_{i}^{6} \hat{p}^{i}(1-\hat{p})^{6-i} .
$$

Then calculate

$$
\chi^{2}=\sum_{i=0}^{6} \frac{\left(O_{i}-\hat{E}_{i}\right)^{2}}{\hat{E}_{i}}=112.7 .
$$

Since $P\left(\chi_{5}^{2}>112.7\right)=0_{+}$, evidence is overwhelming against a binomial model.

2×2 Table: Homogeneity - I

In a study to evaluate the effectiveness of the drug Timolol in preventing angina attacks, patients were randomly allocated to receive Timolol or placebo for 28 weeks.

	Timolol	Placebo
A-free	44	19
Not A-free	116	128

One has $\hat{p}_{1}=\frac{44}{44+116}=.275, \hat{p}_{2}=$ $\frac{19}{19+128}=.129$, and

$$
\sqrt{\frac{.275(.725)}{160}+\frac{.129(.871)}{147}}=.045 .
$$

A $95 \% \mathrm{CI}$ for $p_{1}-p_{2}$ is thus
$(.275-.129) \pm 1.96(.045)$,
or (.058, .234).

Consider $X_{i} \sim \operatorname{Bin}\left(n_{i}, p_{i}\right), i=1,2$.
For n_{1}, n_{2} large,

$$
\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}} \sim N(0,1)
$$

which can be used to construct CI for $p_{1}-p_{2}$.

To test the hypotheses

$$
H_{0}: p_{1}=p_{2} \quad \text { vs. } H_{a}: p_{1} \neq p_{2}
$$ calculate

$$
Z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$$
\text { where } \hat{p}=\left(X_{1}+X_{2}\right) /\left(n_{1}+n_{2}\right)
$$ and reject H_{0} when $|Z|>z_{\alpha / 2}$.

- Plug in H_{0} in $\hat{\sigma}_{\hat{p}_{1}-\hat{p}_{2}}$ for test.

2×2 Table: Homogeneity - II

For the angina data, the pooled estimate is $\hat{p}=\frac{44+19}{160+147}=.205$, and

$$
\sqrt{.205(.795)\left(\frac{1}{160}+\frac{1}{147}\right)}=.046
$$

To test $H_{0}: p_{1}=p_{2}$, calculate

$$
Z=\frac{.275-.129}{.046}=3.159,
$$

with p-value $P(|Z|>3.16)=.0016$.
The estimated expected cell counts under H_{0} are

	Timolol	Placebo
A-free	32.83	30.17
Not A-free	127.17	116.83

One calculates

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}=9.98=3.159^{2}
$$

One can also use the χ^{2}-test for $H_{0}: p_{1}=p_{2}$. Under H_{0}, the expected cell counts are

	$\operatorname{trt} 1$	$\operatorname{trt} 2$
s	$n_{1} p$	$n_{2} p$
f	$n_{1}(1-p)$	$n_{2}(1-p)$

with p estimated by $\hat{p}=\frac{Y_{1}+Y_{2}}{n_{1}+n_{2}}$. The resulting $\chi^{2}=Z^{2}$.

Write the observed table as

n_{11}	n_{12}	$n_{1 .}$
n_{21}	n_{22}	$n_{2 .}$
$n_{\cdot 1}$	$n_{\cdot 2}$	$n .$.

The estimated expected table consists of $e_{i j}=n_{i \cdot n \cdot j} / n \ldots$

2×2 Table: Conditional Probability

To study the relationship between hair color and eye color in a German population, an anthropologist observed a sample of 68000 men.

	Hair		
Eye	Dark	Light	Total
Dark	726	131	857
Light	3129	2814	5943
Total	3855	2945	6800

Simple calculation yields

$$
\begin{aligned}
\hat{P}(D E \mid D H) & =\frac{726}{3855}=.1883 \\
\hat{P}(D E \mid L H) & =\frac{131}{2945}=.0445 \\
\hat{P}(D H \mid D E) & =\frac{726}{857}=.8471
\end{aligned}
$$

2×2 tables also come up with two binary r.v.'s.

	B	$\overline{\mathrm{B}}$	
A	p_{11}	p_{12}	p_{1}.
$\overline{\mathrm{A}}$	p_{21}	p_{22}	p_{2}.
	$p_{\cdot 1}$	$p_{\cdot 2}$	1

It is clear that $P(A \mid B)=p_{11} / p_{\cdot 1}$, $P(B \mid A)=p_{11} / p_{1 .}$, etc.

Estimation of conditional probabilities is straightforward.

$$
\begin{aligned}
& \hat{P}(A \mid B)=n_{11} / n_{\cdot 1} \\
& \hat{P}(A \mid \bar{B})=n_{12} / n_{\cdot 2} \\
& \hat{P}(B \mid A)=n_{11} / n_{1 \cdot}
\end{aligned}
$$

2×2 Table: Independence

For the hair color and eye color data above,

$$
\begin{aligned}
& \hat{P}(D E)=\frac{857}{6800}=.1260, \\
& \hat{P}(D H)=\frac{3855}{6800}=.5669 .
\end{aligned}
$$

The estimated expected are

	Hair		
Eye	Dark	Light	Total
Dark	485.8	371.2	857
Light	3369.2	2573.8	5943
Total	3855	2945	6800

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}=313.6 .
$$

Evidence is overwhelming against $H_{0}: p_{i j}=p_{i \cdot} p_{\cdot j}$.

For A and B indep., $P(A \cap B)=$ $P(A) P(B)$, or $p_{11}=p_{1 \cdot p \cdot 1}$.

To test the hypotheses

$$
H_{0}: p_{i j}=p_{i \cdot p \cdot j} \quad \text { vs. } H_{a}: \text { o.w. }
$$

estimate p_{i}. by $\hat{p}_{i}=n_{i} / n_{. .}, p_{\cdot j}$ by $\hat{p}_{\cdot j}=n_{\cdot j} / n . .$, and calculate the estimated expected under H_{0},

$$
e_{i j}=n . . \hat{p}_{i \cdot} \cdot \hat{p}_{\cdot j}=n_{i} \cdot n \cdot j / n \ldots
$$

- Different problem settings yield the same χ^{2}.
- For homogeneity, H_{0} has 1 df , H_{a} has 2. For independence, H_{0} has $2 \mathrm{df}, H_{a}$ has 3 .

Testing with $r \times c$ Table

Blood types were determined for 1655 ulcer patients and 10000 healthy controls.

	Ulcer	Control	Total
O	911	4578	5489
A	579	4219	4798
B	124	890	1014
AB	41	313	354
Ttl	1655	10000	11655

E's are easily calculated, e.g.,

$$
e_{11}=\frac{5489(1655)}{11655}=779.4
$$

Since $\chi^{2}=49$ and $\chi_{.01,3}^{2}=11.34$, reject homogeneity at the 1% level.

A $r \times c$ table can be r outcomes cross c treatments, or the joint distribution of two discrete r.v.'s.

To test for homogeneity or independence, calculate the estimated expected by

$$
e_{i j}=n_{i} \cdot n_{\cdot j} / n \ldots
$$

The test statistic $\chi^{2}=\sum \frac{(O-E)^{2}}{E}$ has $(r-1)(c-1) \mathrm{df}$.

For homogeneity, H_{0} has $r-1 \mathrm{df}$, H_{a} has $c(r-1)$. For independence, H_{0} has $(r-1)+(c-1) \mathrm{df}, H_{a}$ has $r c-1$.

