Types of Data

Qualitative or categorical:

- Nominal: blood type (A/B/AB/O), sex (M/F), color, etc.
- Ordinal: response to therapy (none/partial/complete), etc.

Quantitative or numerical:

- Continuous: weight, concentration, length, etc.
- *Discrete*: number of eggs in nest, etc.

A data set is often called a **sample**. The "readings" are of the **observed variable** taken from the **observational units**. The number of readings in a sample is called the **sample size**.

Bar Plot for Categorical Data

Poinsettias can be red, pink, or white. The color of 182 poinsettias is summarized as follows.

Color	Freq.	Rel. Freq.
Red	108	0.593
Pink	34	0.187
White	40	0.220
Total	182	1.000

- Categories should be **mutually exclusive** and **exhaustive**.
- May use relative frequency on vertical axis. (alt.: pie chart)

Freq. Dist. of Numerical Data

Preening times (sec) of 20 fruitflies during a six-minute observation period are listed below.

Sorted Data:	Class	Freq.	Class	Freq.
	8-19	4	10-19	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20-31	7	20-29	6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	32-43	3	30-39	4
$\begin{vmatrix} 20 & 23 & 51 & 52 \\ 33 & 34 & 46 & 48 \end{vmatrix}$	44-55	4	40-49	3
1000000000000000000000000000000000000	56-67	1	50-59	2
$\frac{40}{\text{Bange}} \cdot \frac{76 - 10}{76 - 10} = 66$	68-79	1	60-69	0
10 - 00			70-79	1

• The solution is not unique.

More on Frequency Distribution and Histogram

- Classes in a frequency distribution should be *nonoverlapping* and of *equal width*. The latter is for the histogram to convey the correct visual perception of data density.
- There is a class number versus class width tradeoff. More classes (tighter class width) gets more details at the expense of "unstable" global picture.
- To be effective as data summarizing tools, transformations are sometimes needed, as the following example shows.

0.02	0.11	0.18	0.19	0.20	0.28	0.58	0.85	1.18	2.00	7.30
-1.68	-0.97	-0.75	-0.72	-0.71	-0.55	-0.24	-0.07	0.07	0.30	0.86

Some R Commands

Colors of Poinsettias.

barplot(c(108,34,40),col=c("red","pink","white"))
pie(c(108,34,40),col=c("red","pink","white"))

Preening times of fruitflies.

Measures of Location: Mean and Median

Data are often denoted by x_1, x_2, \ldots, x_n , with n the sample size.

Mean: $\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$. Median: The number in the middle, that splits x_i 's to half-half.

Toy example 1:
 Toy example 2:

 Data: 1 2 4 8 6 12
 Data: 4 5 7 6 6

$$\bar{x} = \frac{1+2+4+8+6+12}{6} = 5.5$$
 Data: 4 5 7 6 6

 Median = $\frac{4+6}{2} = 5$
 Median = 6

The mean \$\overline{x}\$ is most commonly used, but can be misleading for highly skewed data. Consider \$\{1, 1, 1, 1, 1, 10\}\$: \$\overline{x} = 2.5\$ is in the middle of nowhere.

STAT 511

• s^2 is the average squared deviation from \bar{x} .

• s has the same unit as x_i 's.

Percentiles and Quartiles

Percentile: The 100*p*th percentile has 100p% of data at or below it and 100(1-p)% at or above.

Quartile: The 25th, 50th, and 75th percentiles are quartiles.

1	$0\ 6\ 8\ 9$	
2	$2\ 4\ 4\ 5\ 6\ 9$	
3	$1 \ 2 \ 3 \ 4$	
4	688	
5	27	
6		
7	6	

$Q_1 = (22 + 24)/2 = 23$	(np = 5)
$Q_2 = (29 + 31)/2 = 30$	(np = 10)
$Q_3 = (46 + 48)/2 = 47$	(np = 15)
17 th = 19 (np = 3.4)	
93rd = 57 (np = 18.6)	

Calculation: For k = np an integer, average kth and (k + 1)st ordered data; o.w. round k up and find the ordered datum.

Alternative Variability Measure

Interquartile Range: $IQR = Q_3 - Q_1$.

Coefficient of Variation: $CV = s/\bar{x}$.

1	0689	
2	$2\;4\;4\;5\;6\;9$	$\bar{x} = 33.5$
3	$1\ 2\ 3\ 4$	s = 16.31
4	688	$Q_2 = 30$
5	27	IOP O O 47 92 94
6		$IQR = Q_3 - Q_1 = 47 - 25 = 24$
7	6	CV = $s/\bar{x} = 0.487 = 48.7\%$
	l	

• For bell-shaped distribution, $Q_3 - Q_1 \approx 1.35s$.

• CV is unitless and is only meaningful for positive data.

Box Plots

Box plot sketches a distribution in a compact form, and is especially appropriate for comparative purposes.

New Jersey Pick-3 Lottery

- The box contains the center half of the data, with Q₁ and Q₃ on the edges and Q₂ inside.
- The lines extend to data within 1.5 IQR from the box.
- Outliers are marked individually.

Linear Transformation

Linear Transformation: y = ax + b, where a and b are constants. It shifts and scales but preserves the shape.

- $\bar{y} = a\bar{x} + b$. Similar results hold for other *location* measures.
- $s_y = |a|s_x$. Similar for other *dispersion* measures.
- With b = 0 and a > 0, $CV_x = CV_y$.

Example: Consider temperature measured in $y^{o}C$ or $x^{o}F$.

$$y = \frac{5}{9}(x - 32) = \frac{5}{9}x - \frac{160}{9}$$

If $\bar{x} = 86$ and $s_x = 9$, then $\bar{y} = 30$ and $s_y = 5$. Note that it does not make sense to compute CV for temperature.

Nonlinear Transformation

Nonlinear Transformation: x = f(y), where f(y) is anything but ay + b. Examples of f(y) include $\log(y)$, \sqrt{y} , etc.

- Shape of the distribution changes.
- No simple formula for mean and SD.
- Percentiles are "transparent" for monotone f(y): for f(y) increasing,

 $Q_3(x) = f(Q_3(y)).$

Some R Commands

Data summaries and transformations.

```
mean(x); mean(x,trim=.1); median(x) ## location
sd(x); IQR(x) ## variability
mean(2*x+3); sd(2*x+3) ## linear transform
mean(exp(x)); exp(mean(x)) ## nonlinear transform
quantile(x); quantile(x,c(.05,.95)) ## percentiles
quantile(exp(x)); exp(quantile(x))
```

Boxplots.

```
## dump(c("lot.pay","lot.num"),"lottery.R")
source("lottery.R") ## restore dumped data
boxplot(split(lot.pay,lot.num%/%100))
boxplot(x,x+10,x-20)
```

Samples and Population

One usually collects **samples** to learn about **population**.

Poinsettias color: Observing 108 reds out of 182, can we conclude that about 60% of all poinsettias are red?

Fruitfly preening time: Seeing 10 of 20 fruitflies preen less than 30 sec, can we say half of all fruitflies preen less than 30 sec?

	Popu	Smpl
Mean	μ	$ar{x}$
SD	σ	s
Prop	p	\hat{p}
Dist	dsty	hist

Sampling draws samples from population.Inference infers population from sample.

- Samples should represent population.
- Inference is always with error.

Description of Data: Summary

Bar plot, histogram, stem-and-leaf display, and box plot plot frequency distributions which summarize data.

Location measures: mean, median, quartiles, etc.

Variability measures: SD, IQR, CV, etc.

Linear transformations shift and scale but do not reshape distributions, **nonlinear** ones change everything.

Samples serve as windows for us to look into **population**.