Semi-Nonparametric Inference for Massive Data

Guang Cheng1

Department of Statistics
Purdue University

Statistics Seminar at Univ of California, Davis
January 26, 2015

1Acknowledge NSF, Simons Foundation and Princeton
The massive sample size of Big Data introduces unique computational and statistical challenges summarized as 4Ds:

- Distributed: computation and storage bottleneck;
- Dirty: the curse of heterogeneity;
- Dimensionality: scale with sample size;
- Dynamic: non-stationary underlying distribution;

This talk focuses on “Distributed” and “Dirty”.
Challenges of Big Data

The massive sample size of Big Data introduces unique computational and statistical challenges summarized as 4Ds:

- Distributed: computation and storage bottleneck;
- Dirty: the curse of heterogeneity;
- Dimensionality: scale with sample size;
- Dynamic: non-stationary underlying distribution;

This talk focuses on “Distributed” and “Dirty”.
The massive sample size of Big Data introduces unique computational and statistical challenges summarized as 4Ds:

- **Distributed**: computation and storage bottleneck;
- **Dirty**: the curse of heterogeneity;
- **Dimensionality**: scale with sample size;
- **Dynamic**: non-stationary underlying distribution;

This talk focuses on “Distributed” and “Dirty”.
The massive sample size of Big Data introduces unique computational and statistical challenges summarized as 4Ds:

- Distributed: computation and storage bottleneck;
- Dirty: the curse of heterogeneity;
- Dimensionality: scale with sample size;
- Dynamic: non-stationary underlying distribution;

This talk focuses on “Distributed” and “Dirty”.
The massive sample size of Big Data introduces unique computational and statistical challenges summarized as 4Ds:

- Distributed: computation and storage bottleneck;
- Dirty: the curse of heterogeneity;
- Dimensionality: scale with sample size;
- Dynamic: non-stationary underlying distribution;

This talk focuses on “Distributed” and “Dirty”.
The massive sample size of Big Data introduces unique computational and statistical challenges summarized as *4Ds*:

- Distributed: computation and storage bottleneck;
- Dirty: the curse of heterogeneity;
- Dimensionality: scale with sample size;
- Dynamic: non-stationary underlying distribution;

This talk focuses on “Distributed” and “Dirty”.
General Goal

In the era of massive data, here are my questions of curiosity:

- Can we guarantee a high level of statistical inferential accuracy under a certain computation/time constraint?
- Or what is the least computational cost in obtaining the best possible statistical inferences?
- How does model regularity affect the computational cost?
- How to break the curse of heterogeneity by exploiting the commonality information?
- How to perform a large scale heterogeneity testing?
General Goal

In the era of massive data, here are my questions of curiosity:

- Can we guarantee a high level of statistical inferential accuracy under a certain computation/time constraint?
- Or what is the least computational cost in obtaining the best possible statistical inferences?
- How does model regularity affect the computational cost?
- How to break the curse of heterogeneity by exploiting the commonality information?
- How to perform a large scale heterogeneity testing?
General Goal

In the era of massive data, here are my questions of curiosity:

- Can we guarantee a high level of statistical inferential accuracy under a certain computation/time constraint?
- Or what is the least computational cost in obtaining the best possible statistical inferences?
- How does model regularity affect the computational cost?
- How to break the curse of heterogeneity by exploiting the commonality information?
- How to perform a large scale heterogeneity testing?
General Goal

In the era of massive data, here are my questions of curiosity:

- Can we guarantee a high level of statistical inferential accuracy under a certain computation/time constraint?
- Or what is the least computational cost in obtaining the best possible statistical inferences?
- How does model regularity affect the computational cost?
- How to break the curse of heterogeneity by exploiting the commonality information?
- How to perform a large scale heterogeneity testing?
In the era of massive data, here are my questions of curiosity:

- Can we guarantee a high level of statistical inferential accuracy under a certain computation/time constraint?
- Or what is the least computational cost in obtaining the best possible statistical inferences?
- How does model regularity affect the computational cost?
- How to break the curse of heterogeneity by exploiting the commonality information?
- How to perform a large scale heterogeneity testing?
In the era of massive data, here are my questions of curiosity:

- Can we guarantee a high level of statistical **inferential** accuracy under a certain computation/time constraint?
- Or what is the least computational cost in obtaining the best possible statistical inferences?
- How does model regularity affect the computational cost?
- How to break the curse of heterogeneity by exploiting the commonality information?
- How to perform a large scale heterogeneity testing?
Oracle rule for massive data is the key.\(^2\)

\(^2\)Simplified technical results are presented for better delivering insights.
Part I: Homogeneous Data
Outline

1. Divide-and-Conquer Strategy
2. Kernel Ridge Regression
3. Nonparametric Inference
4. Simulations
Divide-and-Conquer Approach

- Consider a univariate nonparametric regression model:

\[Y = f(Z) + \epsilon; \]

- Entire Dataset (iid data):

\[X_1, X_2, \ldots, X_N, \text{ for } X = (Y, Z); \]

- Randomly split dataset into \(s \) subsamples (with equal sample size \(n = N/s \)): \(P_1, \ldots, P_s \);

- Perform nonparametric estimating in each subsample:

\[P_j = \{X_1^{(j)}, \ldots, X_n^{(j)}\} \implies \hat{f}_n^{(j)}; \]

- Aggregation such as \(\bar{f}_N = (1/s) \sum_{j=1}^{s} \hat{f}_n^{(j)}. \)
Divide-and-Conquer Approach

Consider a univariate nonparametric regression model:

\[Y = f(Z) + \epsilon; \]

Entire Dataset (iid data):

\[X_1, X_2, \ldots, X_N, \text{ for } X = (Y, Z); \]

Randomly split dataset into \(s \) subsamples (with equal sample size \(n = N/s \)): \(P_1, \ldots, P_s \);

Perform nonparametric estimating in each subsample:

\[P_j = \{X_1^{(j)}, \ldots, X_n^{(j)}\} \implies \hat{f}_n^{(j)}; \]

Aggregation such as \(\bar{f}_N = (1/s) \sum_{j=1}^{s} \hat{f}_n^{(j)} \).
Divide-and-Conquer Approach

- Consider a univariate nonparametric regression model:

\[Y = f(Z) + \epsilon; \]

- Entire Dataset (iid data):

\[X_1, X_2, \ldots, X_N, \text{ for } X = (Y, Z); \]

- Randomly split dataset into \(s \) subsamples (with equal sample size \(n = N/s \)): \(P_1, \ldots, P_s \);

- Perform nonparametric estimating in each subsample:

\[P_j = \{ X_1^{(j)}, \ldots, X_n^{(j)} \} \implies \hat{f}_n^{(j)}; \]

- Aggregation such as \(\bar{f}_N = (1/s) \sum_{j=1}^{s} \hat{f}_n^{(j)}. \)
Divide-and-Conquer Approach

- Consider a univariate nonparametric regression model:
 \[Y = f(Z) + \epsilon; \]
- Entire Dataset (iid data):
 \[X_1, X_2, \ldots, X_N, \text{ for } X = (Y, Z); \]
- Randomly split dataset into \(s \) subsamples (with equal sample size \(n = N/s \)): \(P_1, \ldots, P_s \);
- Perform nonparametric estimating in each subsample:
 \[P_j = \{ X_1^{(j)}, \ldots, X_n^{(j)} \} \implies \hat{f}_n^{(j)}; \]
- Aggregation such as \(\bar{f}_N = (1/s) \sum_{j=1}^{s} \hat{f}_n^{(j)}. \)
Divide-and-Conquer Approach

- Consider a univariate nonparametric regression model:

\[Y = f(Z) + \epsilon; \]

- Entire Dataset (iid data):

\[X_1, X_2, \ldots, X_N, \text{ for } X = (Y, Z); \]

- Randomly split dataset into \(s \) subsamples (with equal sample size \(n = N/s \)): \(P_1, \ldots, P_s \);

- Perform nonparametric estimating in each subsample:

\[P_j = \{X_1^{(j)}, \ldots, X_n^{(j)}\} \rightarrow \hat{f}_n^{(j)}; \]

- Aggregation such as \(\bar{f}_N = (1/s) \sum_{j=1}^{s} \hat{f}_n^{(j)} \).
A Few Comments

- As far as we are aware, the *statistical studies* of the D&C method focus on either parametric inferences, e.g., Bootstrap (Kleiner et al, 2014, JRSS-B) and Bayesian (Wang and Dunson, 2014, Arxiv), or nonparametric minimaxity (Zhang et al, 2014, Arxiv);

- Semi/nonparametric inferences for massive data still remain untouched (although they are crucially important in evaluating reproducibility in modern scientific studies).
A Few Comments

- As far as we are aware, the *statistical studies* of the D&C method focus on either parametric inferences, e.g., Bootstrap (Kleiner et al, 2014, JRSS-B) and Bayesian (Wang and Dunson, 2014, Arxiv), or nonparametric minimaxity (Zhang et al, 2014, Arxiv);
- Semi/nonparametric inferences for massive data still remain untouched (although they are crucially important in evaluating reproducibility in modern scientific studies).
Splitotics Theory \((s \to \infty \text{ as } N \to \infty) \)

- In theory, we want to derive the largest possible diverging rate of \(s \) under which the following oracle rule holds:

 \[\text{the nonparametric inferences constructed based on } \bar{f}_N \text{ are (asymp.) the same as those on the oracle estimator } \hat{f}_N. \]

- Meanwhile, we want to know

 - how to choose the smoothing parameter in each sub-sample;
 - how the smoothness of \(f_0 \) affects the rate of \(s \).

- Allowing \(s \to \infty \) significantly complicates the traditional theoretical analysis.
In theory, we want to derive the largest possible diverging rate of s under which the following oracle rule holds:

"the nonparametric inferences constructed based on \bar{f}_N are (asymp.) the same as those on the oracle estimator \hat{f}_N.”

Meanwhile, we want to know

- how to choose the smoothing parameter in each sub-sample;
- how the smoothness of f_0 affects the rate of s.

Allowing $s \to \infty$ significantly complicates the traditional theoretical analysis.
Splitotics Theory ($s \to \infty$ as $N \to \infty$)

- In theory, we want to derive the largest possible diverging rate of s under which the following oracle rule holds:

 “the nonparametric inferences constructed based on \bar{f}_N are (asymp.) the same as those on the oracle estimator \hat{f}_N.”

- Meanwhile, we want to know

 - how to choose the smoothing parameter in each sub-sample;
 - how the smoothness of f_0 affects the rate of s.

- Allowing $s \to \infty$ significantly complicates the traditional theoretical analysis.
Splitotics Theory \((s \to \infty \text{ as } N \to \infty)\)

- In theory, we want to derive the largest possible diverging rate of \(s\) under which the following oracle rule holds:
 “the nonparametric inferences constructed based on \(\bar{f}_N\) are (asymp.) the same as those on the oracle estimator \(\hat{f}_N\).”

- Meanwhile, we want to know
 - how to choose the smoothing parameter in each sub-sample;
 - how the smoothness of \(f_0\) affects the rate of \(s\).

- Allowing \(s \to \infty\) significantly complicates the traditional theoretical analysis.
Splitotics Theory \((s \rightarrow \infty \text{ as } N \rightarrow \infty)\)

- In theory, we want to derive the largest possible diverging rate of \(s\) under which the following oracle rule holds:

 “the nonparametric inferences constructed based on \(\bar{f}_N\) are (asymp.) the same as those on the oracle estimator \(\hat{f}_N\).”

- Meanwhile, we want to know
 - how to choose the smoothing parameter in each sub-sample;
 - how the smoothness of \(f_0\) affects the rate of \(s\).

- Allowing \(s \rightarrow \infty\) significantly complicates the traditional theoretical analysis.
Kernel Ridge Regression (KRR)

- Define the KRR estimate \(\hat{f} : \mathbb{R}^1 \to \mathbb{R}^1 \) as

\[
\hat{f}_n = \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(Z_i))^2 + \lambda \|f\|_{\mathcal{H}}^2 \right\},
\]

where \(\mathcal{H} \) is a reproducing kernel Hilbert space (RKHS) with a kernel \(K(z, z') = \sum_{i=1}^{\infty} \mu_i \phi_i(z) \phi_i(z') \). Here, \(\mu_i \)'s are eigenvalues and \(\phi_i(\cdot) \)'s are eigenfunctions.

- Explicitly, \(\hat{f}_n(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x) \) with \(\alpha = (K + \lambda I)^{-1} y \).

- Smoothing spline is a special case of KRR estimation.

- The early study on KRR estimation in large dataset focuses on either low rank approximation or early-stopping.
Kernel Ridge Regression (KRR)

- Define the KRR estimate $\hat{f}: \mathbb{R}^1 \mapsto \mathbb{R}^1$ as

$$\hat{f}_n = \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(Z_i))^2 + \lambda \|f\|^2_{\mathcal{H}} \right\},$$

where \mathcal{H} is a reproducing kernel Hilbert space (RKHS) with a kernel $K(z, z') = \sum_{i=1}^{\infty} \mu_i \phi_i(z) \phi_i(z')$. Here, μ_i’s are eigenvalues and $\phi_i(\cdot)$’s are eigenfunctions.

- Explicitly, $\hat{f}_n(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$ with $\alpha = (K + \lambda I)^{-1} y$.

- Smoothing spline is a special case of KRR estimation.

- The early study on KRR estimation in large dataset focuses on either low rank approximation or early-stopping.
Kernel Ridge Regression (KRR)

- Define the KRR estimate \(\hat{f} : \mathbb{R}^1 \mapsto \mathbb{R}^1 \) as

\[
\hat{f}_n = \arg \min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(Z_i))^2 + \lambda \| f \|_{\mathcal{H}}^2 \right\},
\]

where \(\mathcal{H} \) is a reproducing kernel Hilbert space (RKHS) with a kernel \(K(z, z') = \sum_{i=1}^{\infty} \mu_i \phi_i(z) \phi_i(z') \). Here, \(\mu_i \)'s are eigenvalues and \(\phi_i(\cdot) \)'s are eigenfunctions.

- Explicitly, \(\hat{f}_n(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x) \) with \(\alpha = (K + \lambda I)^{-1} y \).
- Smoothing spline is a special case of KRR estimation.
- The early study on KRR estimation in large dataset focuses on either low rank approximation or early-stopping.
Kernel Ridge Regression (KRR)

- Define the KRR estimate $\hat{f} : \mathbb{R}^1 \mapsto \mathbb{R}^1$ as

$$
\hat{f}_n = \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(Z_i))^2 + \lambda \| f \|_{\mathcal{H}}^2 \right\},
$$

where \mathcal{H} is a reproducing kernel Hilbert space (RKHS) with a kernel $K(z, z') = \sum_{i=1}^{\infty} \mu_i \phi_i(z)\phi_i(z')$. Here, μ_i’s are eigenvalues and $\phi_i(\cdot)$’s are eigenfunctions.

- Explicitly, $\hat{f}_n(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$ with $\alpha = (K + \lambda I)^{-1} y$.

- Smoothing spline is a special case of KRR estimation.

- The early study on KRR estimation in large dataset focuses on either low rank approximation or early-stopping.
The decay rate of μ_k characterizes the smoothness of f.

- **Finite Rank** ($\mu_k = 0$ for $k > r$):
 - polynomial kernel $K(x, x') = (1 + xx')^d$ with rank $r = d + 1$;
- **Exponential Decay** ($\mu_k \asymp \exp(-\alpha k^p)$ for some $\alpha, p > 0$):
 - Gaussian kernel $K(x, x') = \exp(-\|x - x'\|^2/\sigma^2)$ for $p = 2$;
- **Polynomial Decay** ($\mu_k \asymp k^{-2m}$ for some $m > 1/2$):
 - Kernels for the Sobolev spaces, e.g.,
 $K(x, x') = 1 + \min \{x, x'\}$ for the first order Sobolev space;
Commonly Used Kernels

The decay rate of μ_k characterizes the smoothness of f.

- **Finite Rank ($\mu_k = 0$ for $k > r$):**
 - polynomial kernel $K(x, x') = (1 + xx')^d$ with rank $r = d + 1$;

- **Exponential Decay ($\mu_k \asymp \exp(-\alpha k^p)$ for some $\alpha, p > 0$):**
 - Gaussian kernel $K(x, x') = \exp(-\|x - x'\|^2/\sigma^2)$ for $p = 2$;

- **Polynomial Decay ($\mu_k \asymp k^{-2m}$ for some $m > 1/2$):**
 - Kernels for the Sobolev spaces, e.g., $K(x, x') = 1 + \min\{x, x'\}$ for the first order Sobolev space;
Commonly Used Kernels

The decay rate of μ_k characterizes the smoothness of f.

- **Finite Rank ($\mu_k = 0$ for $k > r$):**
 - polynomial kernel $K(x, x') = (1 + xx')^d$ with rank $r = d + 1$;
- **Exponential Decay ($\mu_k \approx \exp(-\alpha k^p)$ for some $\alpha, p > 0$):**
 - Gaussian kernel $K(x, x') = \exp(-\|x - x'\|^2/\sigma^2)$ for $p = 2$;
- **Polynomial Decay ($\mu_k \approx k^{-2m}$ for some $m > 1/2$):**
 - Kernels for the Sobolev spaces, e.g., $K(x, x') = 1 + \min\{x, x'\}$ for the first order Sobolev space;
Commonly Used Kernels

The decay rate of μ_k characterizes the smoothness of f.

- **Finite Rank** ($\mu_k = 0$ for $k > r$):
 - polynomial kernel $K(x, x') = (1 + xx')^d$ with rank $r = d + 1$;
- **Exponential Decay** ($\mu_k \approx \exp(-\alpha k^p)$ for some $\alpha, p > 0$):
 - Gaussian kernel $K(x, x') = \exp(-\|x - x'\|^2/\sigma^2)$ for $p = 2$;
- **Polynomial Decay** ($\mu_k \approx k^{-2m}$ for some $m > 1/2$):
 - Kernels for the Sobolev spaces, e.g., $K(x, x') = 1 + \min\{x, x'\}$ for the first order Sobolev space;
The decay rate of μ_k characterizes the smoothness of f.

- **Finite Rank** ($\mu_k = 0$ for $k > r$):
 - polynomial kernel $K(x, x') = (1 + xx')^d$ with rank $r = d + 1$;
- **Exponential Decay** ($\mu_k \propto \exp(-\alpha k^p)$ for some $\alpha, p > 0$):
 - Gaussian kernel $K(x, x') = \exp(-\|x - x'|^2/\sigma^2)$ for $p = 2$;
- **Polynomial Decay** ($\mu_k \propto k^{-2m}$ for some $m > 1/2$):
 - Kernels for the Sobolev spaces, e.g.,
 $K(x, x') = 1 + \min\{x, x'\}$ for the first order Sobolev space;
Commonly Used Kernels

The decay rate of μ_k characterizes the smoothness of f.

- **Finite Rank** ($\mu_k = 0$ for $k > r$):
 - polynomial kernel $K(x, x') = (1 + xx')^d$ with rank $r = d + 1$;
- **Exponential Decay** ($\mu_k \approx \exp(-\alpha k^p)$ for some $\alpha, p > 0$):
 - Gaussian kernel $K(x, x') = \exp(-\|x - x'\|^2/\sigma^2)$ for $p = 2$;
- **Polynomial Decay** ($\mu_k \approx k^{-2m}$ for some $m > 1/2$):
 - Kernels for the Sobolev spaces, e.g.,
 $K(x, x') = 1 + \min\{x, x'\}$ for the first order Sobolev space;
Commonly Used Kernels

The decay rate of μ_k characterizes the smoothness of f.

- **Finite Rank** ($\mu_k = 0$ for $k > r$):
 - polynomial kernel $K(x, x') = (1 + xx')^d$ with rank $r = d + 1$;
- **Exponential Decay** ($\mu_k \approx \exp(-\alpha k^p)$ for some $\alpha, p > 0$):
 - Gaussian kernel $K(x, x') = \exp(-\|x - x'\|^2/\sigma^2)$ for $p = 2$;
- **Polynomial Decay** ($\mu_k \approx k^{-2m}$ for some $m > 1/2$):
 - Kernels for the Sobolev spaces, e.g., $K(x, x') = 1 + \min\{x, x'\}$ for the first order Sobolev space;
The decay rate of μ_k characterizes the smoothness of f.

- **Finite Rank** ($\mu_k = 0$ for $k > r$):
 - polynomial kernel $K(x, x') = (1 + xx')^d$ with rank $r = d + 1$;
- **Exponential Decay** ($\mu_k \asymp \exp(-\alpha k^p)$ for some $\alpha, p > 0$):
 - Gaussian kernel $K(x, x') = \exp(-\|x - x'\|^2/\sigma^2)$ for $p = 2$;
- **Polynomial Decay** ($\mu_k \asymp k^{-2m}$ for some $m > 1/2$):
 - Kernels for the Sobolev spaces, e.g., $K(x, x') = 1 + \min\{x, x'\}$ for the first order Sobolev space;
Theorem 1. Suppose regularity conditions on ϵ, $K(\cdot, \cdot)$ and $\phi_j(\cdot)$ hold, e.g., tail condition on ϵ and $\sup_j \|\phi_j\|_\infty \leq C_\phi$. Given that \mathcal{H} is not too large (in terms of its packing entropy), we have for any fixed $x_0 \in \mathcal{X}$,

$$\sqrt{Nh}(\bar{f}_N(x_0) - f_0(x_0)) \xrightarrow{d} N(0, \sigma_{x_0}^2),$$

where $h = h(\lambda) = r(\lambda)^{-1}$ and $r(\lambda) \equiv \sum_{i=1}^{\infty}\{1 + \lambda/\mu_i\}^{-1}$.

An important consequence is that the rate \sqrt{Nh} and variance $\sigma_{x_0}^2$ are the same as those of \hat{f}_N (based on the entire dataset). Hence, the oracle property of the local confidence interval holds under the above conditions that determine s and λ.

3Simultaneous confidence band result delivers similar theoretical insights
In Theorem 1, some under-smoothing condition is implicitly assumed (so, there is no estimation bias).

Technical Challenges:

- the first set of statistical inferences for KRR by generalizing the functional Bahadur representation developed for smoothing spline estimation (Shang and C., 2013, AoS);
- employ empirical process theory to study an average of s asymptotic linear expansions as $s \to \infty$.
In Theorem 1, some under-smoothing condition is implicitly assumed (so, there is no estimation bias).

Technical Challenges:

- the first set of statistical inferences for KRR by generalizing the functional Bahadur representation developed for smoothing spline estimation (Shang and C., 2013, AoS);
- employ empirical process theory to study an average of s asymptotic linear expansions as $s \to \infty$.
In Theorem 1, some under-smoothing condition is implicitly assumed (so, there is no estimation bias).

Technical Challenges:
- the first set of statistical inferences for KRR by generalizing the functional Bahadur representation developed for smoothing spline estimation (Shang and C., 2013, AoS);
- employ empirical process theory to study an average of s asymptotic linear expansions as $s \to \infty$.
In Theorem 1, some under-smoothing condition is implicitly assumed (so, there is no estimation bias).

Technical Challenges:

- the first set of statistical inferences for KRR by generalizing the functional Bahadur representation developed for smoothing spline estimation (Shang and C., 2013, AoS);
- employ empirical process theory to study an average of s asymptotic linear expansions as $s \to \infty$.
Examples

The oracle property of local confidence interval holds under the following conditions on λ and s:

- **Finite Rank (with a rank r):**

 $\lambda = o(N^{-1/2})$, $\log(\lambda^{-1}) = o(\log^2 N)$ and

 $s = o(N^{1/2}/\{\log^{1/2}(\lambda^{-1})\log^3(N)\})$;

- **Exponential Decay (with a power p):**

 $\lambda = o((\log N)^{1/(2p)}/\sqrt{N})$, $\log(\lambda^{-1}) = o(\log^2(N))$ and

 $s = o(N^{1/2}h^{3/2}/(\{\log(h/\lambda)^{(p+1)/2p}\log^3(N)\})$ with $h = [\log(1/\lambda)]^{-1/p}$;

- **Polynomial Decay (with a power $m > 1/2$):**

 $\lambda \asymp N^{-d}$ for some $2m/(4m + 1) < d < 4m^2/(8m - 1)$ and

 $s = N^\gamma$ with $\gamma < 1/2 - (8m - 1)/(8m^2)$.
Examples

The oracle property of local confidence interval holds under the following conditions on \(\lambda \) and \(s \):

- **Finite Rank (with a rank \(r \)):**
 \[
 \lambda = o(N^{-1/2}), \quad \log(\lambda^{-1}) = o(\log^2 N) \quad \text{and} \quad s = o(N^{1/2}/\{\log^{1/2}(\lambda^{-1}) \log^3(N)\});
 \]

- **Exponential Decay (with a power \(p \)):**
 \[
 \lambda = o((\log N)^{1/(2p)}/\sqrt{N}), \quad \log(\lambda^{-1}) = o(\log^2 (N)) \quad \text{and} \quad s = o(N^{1/2} h^{3/2} /\{[\log(h/\lambda)]^{(p+1)/2p} \log^3(N)\}) \quad \text{with} \quad h = \lfloor \log(1/\lambda) \rfloor^{-1/p};
 \]

- **Polynomial Decay (with a power \(m > 1/2 \)):**
 \[
 \lambda \asymp N^{-d} \quad \text{for some} \quad 2m/(4m + 1) < d < 4m^2/(8m - 1) \quad \text{and} \quad s = N^{\gamma} \quad \text{with} \quad \gamma < 1/2 - (8m - 1)/(8m^2)d.
 \]
Examples

The oracle property of local confidence interval holds under the following conditions on λ and s:

- **Finite Rank (with a rank r):**
 - $\lambda = o(N^{-1/2})$, $\log(\lambda^{-1}) = o(\log^2 N)$ and $s = o(N^{1/2}/\{\log^{1/2}(\lambda^{-1}) \log^3(N)\})$;

- **Exponential Decay (with a power p):**
 - $\lambda = o((\log N)^{1/(2p)}/\sqrt{N})$, $\log(\lambda^{-1}) = o(\log^2(N))$ and $s = o(N^{1/2}h^{3/2}/\{[\log(h/\lambda)]^{(p+1)/2p} \log^3(N)\})$ with $h = [\log(1/\lambda)]^{-1/p}$;

- **Polynomial Decay (with a power $m > 1/2$):**
 - $\lambda \approx N^{-d}$ for some $2m/(4m + 1) < d < 4m^2/(8m - 1)$ and $s = N^\gamma$ with $\gamma < 1/2 - (8m - 1)/(8m^2)d$.
Examples

The oracle property of local confidence interval holds under the following conditions on λ and s:

- **Finite Rank (with a rank r):**
 - $\lambda = o(N^{-1/2})$, $\log(\lambda^{-1}) = o(\log^2 N)$ and $s = o(N^{1/2}/\{\log^{1/2}(\lambda^{-1}) \log^3(N)\})$;

- **Exponential Decay (with a power p):**
 - $\lambda = o((\log N)^{1/(2p)} /\sqrt{N})$, $\log(\lambda^{-1}) = o(\log^2(N))$ and $s = o(N^{1/2}h^{3/2}/\{[\log(h/\lambda)]^{(p+1)/2p} \log^3(N)\})$ with $h = \lfloor \log(1/\lambda) \rfloor^{-1/p}$;

- **Polynomial Decay (with a power $m > 1/2$):**
 - $\lambda \asymp N^{-d}$ for some $2m/(4m + 1) < d < 4m^2/(8m - 1)$ and $s = N^\gamma$ with $\gamma < 1/2 - (8m - 1)/(8m^2)d$.
The oracle property of local confidence interval holds under the following conditions on λ and s:

- **Finite Rank (with a rank r):**
 - $\lambda = o(N^{-1/2})$, $\log(\lambda^{-1}) = o(\log^2 N)$ and $s = o(N^{1/2}/\{\log^{1/2}(\lambda^{-1}) \log^3(N)\})$;

- **Exponential Decay (with a power p):**
 - $\lambda = o((\log N)^{1/(2p)}/\sqrt{N})$, $\log(\lambda^{-1}) = o(\log^2(N))$ and $s = o(N^{1/2}h^{3/2}/\{[\log(h/\lambda)]^{(p+1)/2p} \log^3(N)\})$ with $h = [\log(1/\lambda)]^{-1/p}$;

- **Polynomial Decay (with a power $m > 1/2$):**
 - $\lambda \asymp N^{-d}$ for some $2m/(4m + 1) < d < 4m^2/(8m - 1)$ and $s = N^\gamma$ with $\gamma < 1/2 - (8m - 1)/(8m^2)d$.
The oracle property of local confidence interval holds under the following conditions on λ and s:

- **Finite Rank (with a rank r):**

 \[\lambda = o(N^{-1/2}), \quad \log(\lambda^{-1}) = o(\log^2 N) \quad \text{and} \quad s = o(N^{1/2}/\{\log^{1/2}(\lambda^{-1}) \log^3(N)\}); \]

- **Exponential Decay (with a power p):**

 \[\lambda = o((\log N)^{1/(2p)}/\sqrt{N}), \quad \log(\lambda^{-1}) = o(\log^2(N)) \quad \text{and} \quad s = o(N^{1/2}h^{3/2}/\{[\log(h/\lambda)]^{(p+1)/2p}) \log^3(N)\}) \quad \text{with} \quad h = [\log(1/\lambda)]^{-1/p}; \]

- **Polynomial Decay (with a power $m > 1/2$):**

 \[\lambda \asymp N^{-d} \quad \text{for some} \quad 2m/(4m + 1) < d < 4m^2/(8m - 1) \quad \text{and} \quad s = N^\gamma \quad \text{with} \quad \gamma < 1/2 - (8m - 1)/(8m^2)d. \]
Specifically, we have the following upper bounds for s:

- For finite rank kernel (with any finite rank r),
 $$s = O(N^\gamma) \text{ for any } \gamma < 1/2;$$

- For exponential decay kernel (with any finite power p),
 $$s = O(N^{\gamma'}) \text{ for any } \gamma' < \gamma < 1/2;$$

- For polynomial decay kernel (with $m = 2$),
 $$s = o(N^{4/27}) \approx o(N^{0.29}).$$
Specifically, we have the following upper bounds for s:

- For finite rank kernel (with any finite rank r),
 \[s = O(N^{\gamma}) \text{ for any } \gamma < 1/2; \]

- For exponential decay kernel (with any finite power p),
 \[s = O(N^{\gamma'}) \text{ for any } \gamma' < \gamma < 1/2; \]

- For polynomial decay kernel (with $m = 2$),
 \[s = o(N^{4/27}) \approx o(N^{0.29}). \]
Specifically, we have the following upper bounds for s:

- For finite rank kernel (with any finite rank r),
 \[s = O(N^{\gamma}) \text{ for any } \gamma < 1/2; \]

- For exponential decay kernel (with any finite power p),
 \[s = O(N^{\gamma'}) \text{ for any } \gamma' < \gamma < 1/2; \]

- For polynomial decay kernel (with $m = 2$),
 \[s = o(N^{4/27}) \approx o(N^{0.29}). \]
The number of subsets s:
Divide-and-conquer approach prefers more smooth function in the sense that we can save more computational efforts (larger s) for achieving the oracle property in this case.

The smoothing parameter λ:
Choose λ as if working on the entire dataset with sample size N although it is sub-optimal for each sub-estimation\(^4\).

This theoretical finding leads to a modified GCV formula used in practice.

\(^4\)Similar result holds for minimaxity study (Zhang et al, 2014, Arxiv)
The number of subsets s:
Divide-and-conquer approach prefers more smooth function in the sense that we can save more computational efforts (larger s) for achieving the oracle property in this case.

The smoothing parameter λ:
Choose λ as if working on the entire dataset with sample size N although it is sub-optimal for each sub-estimation\(^4\).

This theoretical finding leads to a modified GCV formula used in practice.

\(^4\)Similar result holds for minimaxity study (Zhang et al, 2014, Arxiv)
The number of subsets s:
Divide-and-conquer approach prefers more smooth function in the sense that we can save more computational efforts (larger s) for achieving the oracle property in this case.

The smoothing parameter λ:
Choose λ as if working on the entire dataset with sample size N although it is sub-optimal for each sub-estimation4.

This theoretical finding leads to a modified GCV formula used in practice.

4Similar result holds for minimaxity study (Zhang et al, 2014, Arxiv)
Penalized Likelihood Ratio Test

- Consider the following test:

\[H_0 : f = f_0 \quad \text{v.s.} \quad H_1 : f \neq f_0, \]

where \(f_0 \in \mathcal{H}; \)

- Let \(\mathcal{L}_{N,\lambda} \) be the (penalized) likelihood function based on the entire dataset.

- Let \(PLRT_{n,\lambda}^{(j)} \) be the (penalized) likelihood ratio based on the \(j \)-th subsample.

- Given the Divide-and-Conquer strategy, we have two natural choices of test statistic:
 - \(\widehat{PLRT}_{N,\lambda} = (1/s) \sum_{j=1}^{s} PLRT_{n,\lambda}^{(j)}; \)
 - \(PLRT_{N,\lambda} = \mathcal{L}_{N,\lambda}(\bar{f}_N) - \mathcal{L}_{N,\lambda}(f_0); \)
Penalized Likelihood Ratio Test

Consider the following test:

\[H_0 : f = f_0 \text{ v.s. } H_1 : f \neq f_0, \]

where \(f_0 \in \mathcal{H}; \)

Let \(\mathcal{L}_{N,\lambda} \) be the (penalized) likelihood function based on the entire dataset.

Let \(PLRT_{n,\lambda}^{(j)} \) be the (penalized) likelihood ratio based on the \(j \)-th subsample.

Given the Divide-and-Conquer strategy, we have two natural choices of test statistic:

- \(\hat{PLRT}_{N,\lambda} = (1/s) \sum_{j=1}^{s} PLRT_{n,\lambda}^{(j)}; \)
- \(PLRT_{N,\lambda} = \mathcal{L}_{N,\lambda}(\bar{f}_N) - \mathcal{L}_{N,\lambda}(f_0); \)
Consider the following test:

\[H_0 : f = f_0 \text{ v.s. } H_1 : f \neq f_0, \]

where \(f_0 \in \mathcal{H}; \)

Let \(\mathcal{L}_{N,\lambda} \) be the (penalized) likelihood function based on the entire dataset.

Let \(PLRT^{(j)}_{n,\lambda} \) be the (penalized) likelihood ratio based on the \(j \)-th subsample.

Given the Divide-and-Conquer strategy, we have two natural choices of test statistic:

- \(\hat{PLRT}_{N,\lambda} = (1/s) \sum_{j=1}^{s} PLRT^{(j)}_{n,\lambda}; \)
- \(PLRT_{N,\lambda} = \mathcal{L}_{N,\lambda}(\bar{f}_N) - \mathcal{L}_{N,\lambda}(f_0); \)
Consider the following test:

\[H_0 : f = f_0 \text{ v.s. } H_1 : f \neq f_0, \]

where \(f_0 \in \mathcal{H} \);

Let \(\mathcal{L}_{N,\lambda} \) be the (penalized) likelihood function based on the entire dataset.

Let \(PLRT_{n,\lambda}^{(j)} \) be the (penalized) likelihood ratio based on the \(j \)-th subsample.

Given the Divide-and-Conquer strategy, we have two natural choices of test statistic:

- \(\hat{PLRT}_{N,\lambda} = (1/s) \sum_{j=1}^{s} PLRT_{n,\lambda}^{(j)} \);
- \(PLRT_{N,\lambda} = \mathcal{L}_{N,\lambda}(\bar{f}_N) - \mathcal{L}_{N,\lambda}(f_0) ; \)
Consider the following test:

\[H_0 : f = f_0 \text{ v.s. } H_1 : f \neq f_0, \]

where \(f_0 \in \mathcal{H}; \)

- Let \(\mathcal{L}_{N,\lambda} \) be the (penalized) likelihood function based on the entire dataset.
- Let \(PLRT_{n,\lambda}^{(j)} \) be the (penalized) likelihood ratio based on the \(j \)-th subsample.
- Given the Divide-and-Conquer strategy, we have two natural choices of test statistic:
 - \(\hat{PLRT}_{N,\lambda} = (1/s) \sum_{j=1}^{s} PLRT_{n,\lambda}^{(j)}; \)
 - \(\widetilde{PLRT}_{N,\lambda} = \mathcal{L}_{N,\lambda}(\tilde{f}_N) - \mathcal{L}_{N,\lambda}(f_0); \)
Consider the following test:

\[H_0 : f = f_0 \text{ v.s. } H_1 : f \neq f_0, \]

where \(f_0 \in \mathcal{H}; \)

- Let \(L_{N,\lambda} \) be the (penalized) likelihood function based on the entire dataset.
- Let \(PLRT_{n,\lambda}^{(j)} \) be the (penalized) likelihood ratio based on the \(j \)-th subsample.
- Given the Divide-and-Conquer strategy, we have two natural choices of test statistic:
 - \(\overline{PLRT}_{N,\lambda} = (1/s) \sum_{j=1}^{s} PLRT_{n,\lambda}^{(j)}; \)
 - \(PLRT_{N,\lambda} = L_{N,\lambda}(\bar{f}_N) - L_{N,\lambda}(f_0); \)
Penalized Likelihood Ratio Test

Theorem 2. We prove that $\widehat{PLRT}_{N,\lambda}$ and $\widetilde{PLRT}_{N,\lambda}$ are both consistent under some upper bound of s, but the latter is minimax optimal (Ingster, 1993) when choosing some s strictly smaller than the above upper bound required for consistency.

- An additional big data insight: we have to sacrifice certain amount of computational efficiency (avoid choosing the largest possible s) for obtaining the optimality.
Theorem 2. We prove that $\widehat{PLRT}_{N,\lambda}$ and $\widehat{\tilde{PLRT}}_{N,\lambda}$ are both consistent under some upper bound of s, but the latter is minimax optimal (Ingster, 1993) when choosing some s strictly smaller than the above upper bound required for consistency.

- An additional big data insight: we have to sacrifice certain amount of computational efficiency (avoid choosing the largest possible s) for obtaining the optimality.
Big Data Insights:

- Oracle rule holds when s does not grow too fast;
- D&C approach prefers more smooth regression functions;
- choose the smoothing parameter as if not splitting the data;
- sacrifice computational efficiency for obtaining optimality.

Summary

- Big Data Insights:
 - Oracle rule holds when s does not grow too fast;
 - D&C approach prefers more smooth regression functions;
 - choose the smoothing parameter as if not splitting the data;
 - sacrifice computational efficiency for obtaining optimality.

Summary

- Big Data Insights:
 - Oracle rule holds when s does not grow too fast;
 - D&C approach prefers more smooth regression functions;
 - choose the smoothing parameter as if not splitting the data;
 - sacrifice computational efficiency for obtaining optimality.

Summary

- **Big Data Insights:**
 - Oracle rule holds when s does not grow too fast;
 - D&C approach prefers more smooth regression functions;
 - choose the smoothing parameter as if not splitting the data;
 - sacrifice computational efficiency for obtaining optimality.

Summary

- **Big Data Insights:**
 - Oracle rule holds when s does not grow too fast;
 - D&C approach prefers more smooth regression functions;
 - choose the smoothing parameter as if not splitting the data;
 - sacrifice computational efficiency for obtaining optimality.

Summary

- **Big Data Insights:**
 - Oracle rule holds when s does not grow too fast;
 - D&C approach prefers more smooth regression functions;
 - choose the smoothing parameter as if not splitting the data;
 - sacrifice computational efficiency for obtaining optimality.

Phase Transition of Coverage Probability

(a) True function

(b) CPs at $x_0 = 0.5$

(c) CPs on $[0, 1]$ for $N = 512$

(d) CPs on $[0, 1]$ for $N = 1024$
Part II: Heterogeneous Data
Outline

1. A Partially Linear Modelling
2. Non-Asymptotic Bound
3. Efficiency Boosting
4. Heterogeneity Testing
A Motivating Example

- It is very common that different biology labs (around the world) sometimes conduct the same experiment for verifying the reproducibility of some scientific conclusions;
- For example, they want to understand the relationship between a response variable Y (e.g., heart disease) and a set of predictors Z, X_1, X_2, \ldots, X_p;
- Biology suggests that the relation between Y and Z (e.g., blood pressure) should be homogeneous for all human;
- However, for the other covariates X_1, X_2, \ldots, X_p (e.g., certain genes), we allow their relations with Y to potentially vary in different labs. For example, the genetic functionality of different races might be heterogenous.
A Motivating Example

- It is very common that different biology labs (around the world) sometimes conduct the same experiment for verifying the reproducibility of some scientific conclusions;
- For example, they want to understand the relationship between a response variable Y (e.g., heart disease) and a set of predictors Z, X_1, X_2, \ldots, X_p;
- Biology suggests that the relation between Y and Z (e.g., blood pressure) should be homogeneous for all human;
- However, for the other covariates X_1, X_2, \ldots, X_p (e.g., certain genes), we allow their relations with Y to potentially vary in different labs. For example, the genetic functionality of different races might be heterogenous.
A Motivating Example

- It is very common that different biology labs (around the world) sometimes conduct the same experiment for verifying the reproducibility of some scientific conclusions;
- For example, they want to understand the relationship between a response variable Y (e.g., heart disease) and a set of predictors Z, X_1, X_2, \ldots, X_p;
- Biology suggests that the relation between Y and Z (e.g., blood pressure) should be homogeneous for all human;
- However, for the other covariates X_1, X_2, \ldots, X_p (e.g., certain genes), we allow their relations with Y to potentially vary in different labs. For example, the genetic functionality of different races might be heterogenous.
A Motivating Example

- It is very common that different biology labs (around the world) sometimes conduct the same experiment for verifying the reproducibility of some scientific conclusions;
- For example, they want to understand the relationship between a response variable Y (e.g., heart disease) and a set of predictors Z, X_1, X_2, \ldots, X_p;
- Biology suggests that the relation between Y and Z (e.g., blood pressure) should be homogeneous for all human;
- However, for the other covariates X_1, X_2, \ldots, X_p (e.g., certain genes), we allow their relations with Y to potentially vary in different labs. For example, the genetic functionality of different races might be heterogenous.
Assume that there exist s heterogeneous subpopulations: P_1, \ldots, P_s (with equal sample size $n = N/s$);

In the j-th subpopulation, we assume

$$Y = X^T \beta_0^{(j)} + f_0(Z) + \epsilon,$$ \hspace{2cm} (1)

where ϵ has a sub-Gaussian tail and $Var(\epsilon) = \sigma^2$;

We call $\beta^{(j)}$ as the heterogeneity and f as the commonality of the massive data in consideration;

(1) is a typical semi-nonparametric model (see C. and Shang, 2015, AoS) since $\beta^{(j)}$ and f are both of interest.
A Partially Linear Modelling

- Assume that there exist s heterogeneous subpopulations: P_1, \ldots, P_s (with equal sample size $n = N/s$);
- In the j-th subpopulation, we assume

$$Y = X^T \beta_{0}^{(j)} + f_0(Z) + \epsilon,$$

where ϵ has a sub-Gaussian tail and $Var(\epsilon) = \sigma^2$;
- We call $\beta^{(j)}$ as the heterogeneity and f as the commonality of the massive data in consideration;
- (1) is a typical semi-nonparametric model (see C. and Shang, 2015, AoS) since $\beta^{(j)}$ and f are both of interest.
A Partially Linear Modelling

Assume that there exist s heterogeneous subpopulations: P_1, \ldots, P_s (with equal sample size $n = N/s$);

In the j-th subpopulation, we assume

$$Y = X^T \beta_0^{(j)} + f_0(Z) + \epsilon,$$

where ϵ has a sub-Gaussian tail and $Var(\epsilon) = \sigma^2$;

We call $\beta^{(j)}$ as the heterogeneity and f as the commonality of the massive data in consideration;

(1) is a typical semi-nonparametric model (see C. and Shang, 2015, AoS) since $\beta^{(j)}$ and f are both of interest.
Assume that there exist s heterogeneous subpopulations: P_1, \ldots, P_s (with equal sample size $n = N/s$);

In the j-th subpopulation, we assume

$$Y = X^T \beta_0^{(j)} + f_0(Z) + \epsilon,$$

where ϵ has a sub-Gaussian tail and $\text{Var}(\epsilon) = \sigma^2$;

We call $\beta^{(j)}$ as the heterogeneity and f as the commonality of the massive data in consideration;

(1) is a typical semi-nonparametric model (see C. and Shang, 2015, AoS) since $\beta^{(j)}$ and f are both of interest.
Estimation Procedure

- Individual estimation in the j-th subpopulation:

\[
(\hat{\beta}_n^{(j)}, \hat{f}_n^{(j)}) = \arg\min_{(\beta, f) \in \mathbb{R}^p \times \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^n (Y_i^{(j)} - \beta^T X_i^{(j)} - f(Z_i^{(j)}))^2 + \lambda \| f \|_{\mathcal{H}}^2 \right\};
\]

- Aggregation: \(\bar{f}_N = (1/s) \sum_{j=1}^s \hat{f}_n^{(j)} \);

- A plug-in estimate for the j-th heterogeneity parameter:

\[
\tilde{\beta}_n^{(j)} = \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (Y_i^{(j)} - \beta^T X_i^{(j)} - \bar{f}_N(Z_i^{(j)}))^2;
\]

- Our final estimate is \((\tilde{\beta}_n^{(j)}, \bar{f}_N)\).
Estimation Procedure

- Individual estimation in the j-th subpopulation:
 \[
 (\hat{\beta}_n^{(j)}, \hat{f}_n^{(j)}) = \arg\min_{(\beta,f) \in \mathbb{R}^p \times \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(Y_i^{(j)} - \beta^T X_i^{(j)} - f(Z_i^{(j)}) \right)^2 + \lambda \| f \|_{\mathcal{H}}^2 \right\};
 \]

- Aggregation: \(\bar{f}_N = \frac{1}{s} \sum_{j=1}^{s} \hat{f}_n^{(j)} \);

- A plug-in estimate for the j-th heterogeneity parameter:
 \[
 \tilde{\beta}_n^{(j)} = \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \left(Y_i^{(j)} - \beta^T X_i^{(j)} - \bar{f}_N(Z_i^{(j)}) \right)^2;
 \]

- Our final estimate is \((\tilde{\beta}_n^{(j)}, \bar{f}_N) \).
Estimation Procedure

- Individual estimation in the j-th subpopulation:

\[
(\hat{\beta}_n^{(j)}, \hat{f}_n^{(j)}) = \arg\min_{(\beta, f) \in \mathbb{R}^p \times \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(Y_i^{(j)} - \beta^T X_i^{(j)} - f(Z_i^{(j)}) \right)^2 + \lambda \| f \|_H^2 \right\};
\]

- Aggregation: $\bar{f}_N = (1/s) \sum_{j=1}^{s} \hat{f}_n^{(j)}$;

- A plug-in estimate for the j-th heterogeneity parameter:

\[
\tilde{\beta}_n^{(j)} = \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \left(Y_i^{(j)} - \beta^T X_i^{(j)} - \bar{f}_N(Z_i^{(j)}) \right)^2;
\]

- Our final estimate is $(\tilde{\beta}_n^{(j)}, \bar{f}_N)$.
Estimation Procedure

- Individual estimation in the j-th subpopulation:

$$
(\hat{\beta}_n^{(j)}, \hat{f}_n^{(j)}) = \arg\min_{(\beta,f) \in \mathbb{R}^p \times \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(Y_i^{(j)} - \beta^T X_i^{(j)} - f(Z_i^{(j)}) \right)^2 + \lambda \| f \|_{\mathcal{H}}^2 \right\};
$$

- Aggregation: $\bar{f}_N = (1/s) \sum_{j=1}^{s} \hat{f}_n^{(j)}$;

- A plug-in estimate for the j-th heterogeneity parameter:

$$
\hat{\beta}_n^{(j)} = \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \left(Y_i^{(j)} - \beta^T X_i^{(j)} - \bar{f}_N(Z_i^{(j)}) \right)^2;
$$

- Our final estimate is $(\hat{\beta}_n^{(j)}, \bar{f}_N)$.
Relation to Homogeneous Data

- The major concern of homogeneous data is the extremely high computational cost. Fortunately, this can be dealt by the divide-and-conquer approach;
- However, when analyzing heterogeneous data, our major interest\(^1\) is about how to efficiently extract common features across many subpopulations while exploring heterogeneity of each subpopulation as \(s \to \infty\);
- Therefore, some comparisons between \((\hat{\beta}_n^{(j)}, \bar{f}_N)\) and oracle estimate (in terms of risk and limit distribution) would be needed.

\(^1\)D&C can be applied to the sub-population with large sample size.
The major concern of homogeneous data is the extremely high computational cost. Fortunately, this can be dealt by the divide-and-conquer approach;

However, when analyzing heterogeneous data, our major interest\(^1\) is about how to efficiently extract common features across many subpopulations while exploring heterogeneity of each subpopulation as \(s \to \infty\);

Therefore, some comparisons between \((\tilde{\beta}_n^{(j)}, \tilde{f}_N)\) and oracle estimate (in terms of risk and limit distribution) would be needed.

\(^1\)D&C can be applied to the sub-population with large sample size.
Relation to Homogeneous Data

- The major concern of homogeneous data is the extremely high computational cost. Fortunately, this can be dealt by the divide-and-conquer approach;

- However, when analyzing heterogeneous data, our major interest\(^1\) is about how to efficiently extract common features across many subpopulations while exploring heterogeneity of each subpopulation as \(s \to \infty \);

- Therefore, some comparisons between \((\hat{\beta}_n^{(j)}, \bar{f}_N)\) and oracle estimate (in terms of risk and limit distribution) would be needed.

\(^1\)D&C can be applied to the sub-population with large sample size.
We define the oracle estimate for f as if the heterogeneity information β_j were known:

$$\hat{f}_{or} = \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{N} \sum_{i,j=1}^{n,s} (Y^{(j)}_i - (\beta_0^{(j)})^T X^{(j)}_i - f(Z^{(j)}_i))^2 + \lambda \| f \|_\mathcal{H}^2 \right\}.$$

The oracle estimate for β_j can be defined similarly:

$$\hat{\beta}_{or}^{(j)} = \arg\min_{\beta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y^{(j)}_i - (\beta^{(j)})^T X^{(j)}_i - f_0(Z^{(j)}_i))^2 + \lambda \| f \|_\mathcal{H}^2 \right\}.$$
Develop a finite sample valid upper bound for

\[\text{MSE}(\bar{f}_N) := \mathbb{E}[\|\bar{f} - f_0\|^2_2]. \]

Theorem 3. Suppose regularity conditions, e.g., under-smoothing condition, and \(E(X_k|Z) \in \mathcal{H} \) hold\(^2\). When \(s \) does not grow too fast, then

\[\text{MSE}(\bar{f}) \leq C_{N,K,\lambda}((Nh)^{-1} + \lambda). \] \hspace{1cm} (2)

Furthermore, by choosing \(\lambda \asymp (Nh)^{-1} \), \(\bar{f}_N \) possesses the same minimax optimal bound as the oracle estimate \(\hat{f}_{or} \)\(^3\).

\(^2\)This condition is needed for controlling the variance term \((Nh)^{-1}\) in (2).

\(^3\)E.g., \(s = o(N^{9/20} \log^{-4} N) \) and \(\lambda \asymp N^{-4/5} \) for cubic spline.
Figure: Mean-square errors of \bar{f}_N under different choices of N and s
Some Comments

- The above theorem presents a non-asymptotic version of "oracle rule" that \bar{f}_N shares the same (un-improvable) minimax optimal bound as the \hat{f}_{or};
- Our next result further shows that \bar{f}_N possesses the same (point-wise) asymptotic distribution as the \hat{f}_{or};
- Therefore, we can conclude that our aggregation procedure is able to "filter out" the heterogeneity in data when s does not grow too fast and λ is chosen in the order of N.
Some Comments

- The above theorem presents a non-asymptotic version of “oracle rule” that \(\bar{f}_N \) shares the same (un-improvable) minimax optimal bound as the \(\hat{f}_{or} \);
- Our next result further shows that \(\bar{f}_N \) possesses the same (point-wise) asymptotic distribution as the \(\hat{f}_{or} \);
- Therefore, we can conclude that our aggregation procedure is able to “filter out” the heterogeneity in data when \(s \) does not grow too fast and \(\lambda \) is chosen in the order of \(N \).
Some Comments

- The above theorem presents a non-asymptotic version of “oracle rule” that \bar{f}_N shares the same (un-improvable) minimax optimal bound as the \hat{f}_{or};
- Our next result further shows that \bar{f}_N possesses the same (point-wise) asymptotic distribution as the \hat{f}_{or};
- Therefore, we can conclude that our aggregation procedure is able to “filter out” the heterogeneity in data when s does not grow too fast and λ is chosen in the order of N.
A Preliminary Result: Joint Asymptotics

Theorem 4. Assume similar conditions as in Theorem 3. Given proper $s \to \infty^4$ and $\lambda \to 0$, we have5

$$
\left(\frac{\sqrt{n}(\hat{\beta}_n^{(j)} - \beta_0^{(j)})}{\sqrt{Nh(f_N(z_0) - f_0(z_0))}} \right) \rightsquigarrow N \left(0, \sigma^2 \begin{pmatrix} \Omega^{-1} & 0 \\ 0 & \Sigma_{22} \end{pmatrix} \right),
$$

where $\Omega = E(X - E(X|Z)) \otimes 2$.

4The asymptotic independence between $\hat{\beta}_n^{(j)}$ and $f_N(z_0)$ is mainly due to the fact that $n/N = s^{-1} \to 0$.

5The asymptotic variance Σ_{22} of f_N is the same as that of f_{or}.
Efficiency Boosting

- Theorem 4 implies that $\hat{\beta}_n^{(j)}$ is semiparametric efficient:

$$\sqrt{n}(\hat{\beta}_n^{(j)} - \beta_0) \rightsquigarrow N(0, \sigma^2(E(X - E(X|Z))^\otimes 2)^{-1}).$$

- We next illustrate an important feature of massive data: strength-borrowing. That is, the aggregation of commonality in turn boosts the estimation efficiency of $\hat{\beta}_n^{(j)}$ from semiparametric level to parametric level.

- By imposing some lower bound on s^6, we show that 7

$$\sqrt{n}(\tilde{\beta}_n^{(j)} - \beta_0^{(j)}) \rightsquigarrow N(0, \sigma^2(E[XX^T])^{-1})$$

as if the commonality information were available.

6This lower bound requirement slows down the convergence rate of $\tilde{\beta}_n^{(j)}$ such that \tilde{f}_N can be treated as if it were known.

7Recall that $\tilde{\beta}_n^{(j)} = \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} (Y_i^{(j)} - \beta^T X_i^{(j)} - \tilde{f}_N(Z_i^{(j)}))^2$.
Efficiency Boosting

- Theorem 4 implies that $\hat{\beta}_n^{(j)}$ is semiparametric efficient:

$$\sqrt{n}(\hat{\beta}_n^{(j)} - \beta_0) \sim N(0, \sigma^2(E(X - E(X|Z)) \otimes 2)^{-1}).$$

- We next illustrate an important feature of massive data: strength-borrowing. That is, the aggregation of commonality in turn boosts the estimation efficiency of $\hat{\beta}_n^{(j)}$ from semiparametric level to parametric level.

- By imposing some lower bound on s^6, we show that 7

$$\sqrt{n}(\tilde{\beta}_n^{(j)} - \beta_0^{(j)}) \sim N(0, \sigma^2(E[XX^T])^{-1})$$

as if the commonality information were available.

6 This lower bound requirement slows down the convergence rate of $\tilde{\beta}_n^{(j)}$ such that f_N can be treated as if it were known.

7 Recall that $\tilde{\beta}_n^{(j)} = \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} (Y_i^{(j)} - \beta^T X_i^{(j)} - \tilde{f}_N(Z_i^{(j)}))^2.$
Theorem 4 implies that $\hat{\beta}_n^{(j)}$ is semiparametric efficient:

$$\sqrt{n}(\hat{\beta}_n^{(j)} - \beta_0) \rightsquigarrow N(0, \sigma^2(E(X - E(X|Z)) \otimes^2)^{-1}).$$

We next illustrate an important feature of massive data: strength-borrowing. That is, the aggregation of commonality in turn boosts the estimation efficiency of $\hat{\beta}_n^{(j)}$ from semiparametric level to parametric level.

By imposing some lower bound on s\(^6\), we show that\(^7\)

$$\sqrt{n}(\tilde{\beta}_n^{(j)} - \beta_0^{(j)}) \rightsquigarrow N(0, \sigma^2(E[XX^T])^{-1})$$

as if the commonality information were available.

\(^6\)This lower bound requirement slows down the convergence rate of $\tilde{\beta}_n^{(j)}$ such that \tilde{f}_N can be treated as if it were known.

\(^7\)Recall that $\tilde{\beta}_n^{(j)} = \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} (Y_i^{(j)} - \beta^T X_i^{(j)} - \tilde{f}_N(Z_i^{(j)}))^2$.

Efficiency Boosting
Figure: Coverage probability of 95% confidence interval based on $\hat{\beta}_n^{(j)}$
A Partially Linear Modelling Non-Asymptotic Bound Efficiency Boosting Heterogeneity Testing

Coverage Prob/Ave Length when $N = 512$

Coverage Prob/Ave Length when $N = 1024$

Coverage Prob/Ave Length when $N = 2048$

Coverage Prob/Ave Length when $N = 4096$

Figure: Coverage probabilities and average lengths of 95% confidence intervals constructed based on $\hat{\beta}$ and $\check{\beta}$. In the above figures, dashed lines represent CI$_1$, which is constructed based on $\check{\beta}$, and solid lines represent CI$_2$, which is constructed based on $\hat{\beta}$.
Consider a \textit{high dimensional} simultaneous testing:

\[H_0 : \beta^{(j)} = \tilde{\beta}^{(j)} \text{ for all } j \in J, \]

(3)

where \(J \subset \{1, 2, \ldots, s\} \) and \(|J| \to \infty \), versus

\[H_1 : \beta^{(j)} \neq \tilde{\beta}^{(j)} \text{ for some } j \in J; \]

(4)

Test statistic:

\[T_0 = \sup_{j \in J} \sup_{k \in [p]} \sqrt{n} |\hat{\beta}_k^{(j)} - \tilde{\beta}_k|; \]

We can consistently approximate the quantile of the null distribution via bootstrap even when \(|J| \) diverges at an exponential rate of \(n^8 \).

\[\text{By a nontrivial application of a recent Gaussian approximation theory.} \]
Consider a high dimensional simultaneous testing:

\[H_0 : \beta^{(j)} = \tilde{\beta}^{(j)} \text{ for all } j \in J, \] (3)

where \(J \subset \{1, 2, \ldots, s\} \) and \(|J| \to \infty \), versus

\[H_1 : \beta^{(j)} \neq \tilde{\beta}^{(j)} \text{ for some } j \in J; \] (4)

Test statistic:

\[T_0 = \sup_{j \in J} \sup_{k \in [p]} \sqrt{n}(|\hat{\beta}_k^{(j)} - \tilde{\beta}_k|); \]

We can consistently approximate the quantile of the null distribution via bootstrap even when \(|J| \) diverges at an exponential rate of \(n^8 \).

By a nontrivial application of a recent Gaussian approximation theory.
Consider a high dimensional simultaneous testing:

\[H_0 : \beta^{(j)} = \tilde{\beta}^{(j)} \text{ for all } j \in J, \]

where \(J \subset \{1, 2, \ldots, s\} \) and \(|J| \to \infty \), versus

\[H_1 : \beta^{(j)} \neq \tilde{\beta}^{(j)} \text{ for some } j \in J; \]

Test statistic:

\[T_0 = \sup_{j \in J} \sup_{k \in [p]} \sqrt{n} |\hat{\beta}^{(j)}_k - \tilde{\beta}_k|; \]

We can consistently approximate the quantile of the null distribution via bootstrap even when \(|J| \) diverges at an exponential rate of \(n^8 \).

8By a nontrivial application of a recent Gaussian approximation theory.