Function Space and Montel’s Theorem

Chee Chen
University of Hawaii at Manoa
Department of Mathematics
January 19, 2008

Contents
1 Notations 1
2 Arzelà-Ascoli Theorem and Montel’s Theorem 1
4 Metrization of $\mathcal{H}(U)$ 5

Abstract
This theorem touches the final topic required by the comprehensive exam in complex.

1 Notations

\mathbb{C} the complex plane. Ω a domain in \mathbb{C}. \mathcal{F} a family of functions f. (S,d) a metric space where f assumes value. $C(U)$ the set of all continuous function defined on the open set U. For sequence of functions \Rightarrow means uniform convergence on the specified set. Δ always denotes closed disk

2 Arzelà-Ascoli Theorem and Montel’s Theorem

Definition 2.1 The functions in a family \mathcal{F} are said to be equicontinuous on a set $E \subseteq \Omega$ iff for each $\varepsilon > 0$, there exists a $\delta > 0$ such that $d(f(z), f(z_0)) < \varepsilon$ whenever $|z - z_0| < \delta$ and $z, z_0 \in E$, simultaneously for all functions $f \in \mathcal{F}$.

Definition 2.2 A family \mathcal{F} is said to be normal in Ω if every sequence $\{f_n\}$ of functions $f_n \in \mathcal{F}$ has a subsequence $\{f_{n_k}\}$ which either converges uniformly or tends uniformly to ∞ on every compact subset of Ω.

For the purpose of this note, the most significant feature of equicontinuity is that it bridges the gap between pointwise convergence and normal convergence.
Lemma 2.3 Let \((S,d)\) be a complete metric space, \(U\) be an open subset of \(S\), \(K\) a compact subset of \(S\) contained in \(U\). Then there is some \(\rho > 0\) such that for all \(z \in K\), \(B(z, \rho) \subseteq U\).

Proof. The hypothesis implies that
\[
d(K, \partial U) = r > 0
\]

else, \(K \cap \partial U \neq \emptyset\) and \(K \cap (S \sim U) \neq \emptyset\). To be more precise, suppose the contrary. Then for each \(\rho_n = 1/n\) with \(n \in \mathbb{N}\), there exists \(z_n \in K\) such that \(B(z_n, \rho_n) \cap (S \sim U) = \emptyset\). Since \(K\) is compact, \((z_n)\) must have a subsequence \((z_{n_j})\) such that
\[
\lim_{j \to \infty} z_{n_j} = z_0 \in K \subseteq U
\]
which further means there is some \(\delta > 0\) such that \(B(z_0, \delta) \subseteq U\). But for this \(\delta > 0\), there exists \(n_0 \in \mathbb{N}\) such that for all \(n_j > n_0\),
\[
z_{n_j} \in B(z_0, \delta)
\]
and hence for each \(n_j > n_0\), there is some \(\delta_{n_j} > 0\) such that
\[
B(z_{n_j}, \delta_{n_j}) \subseteq B(z_0, \delta)
\]
Since \(\lim_{n_j \to \infty} \rho_{n_j} = 0\), then for sufficiently large \(n_j\), it’s clear that \(\rho_{n_j} < \delta_{n_j}\) and
\[
B(z_{n_j}, \rho_{n_j}) \subseteq B(z_{n_j}, \delta_{n_j}) \subseteq B(z_0, \delta)
\]
which is a contradiction.

\[\square\]

Lemma 2.4 Let \((f_n)\) be a sequence from an equicontinuous subfamily \(\mathcal{F}\) of \(C(U)\). Suppose that this sequence converges pointwise in \(U\). Then it converges normally in \(U\).

Proof. (Contrapositive) Let \(f\) be the pointwise limit function of \((f_n)\) and \(K\) be any arbitrary compact subset of \(U\). It suffices to show that,

(i) for any \(\varepsilon > 0\), there exists \(n_0 = n(\varepsilon) \in \mathbb{N}\), such that for any \(n, m > n_0\) and for all \(z \in K\),
\[
|f_n(z) - f_m(z)| < \varepsilon
\]
Suppose (i) does not hold, then there is some \(\varepsilon' > 0\) such that for each \(n \in \mathbb{N}\), there are \(n_k > m_k > k\) with \(\lim_{k \to \infty} m_k = \infty\) and some \(z_k \in K\) such that
\[
|f_{n_k}(z_k) - f_{m_k}(z_k)| > \varepsilon'
\]
Since \(K\) is compact, \(\{z_k\}\) has a convergent subsequence \(\{z_{k_l}\}\) such that
\[
\lim_{k \to \infty} z_{k_l} = z_0 \in K
\]
For $\varepsilon/3$, the equicontinuity of \mathcal{F} ensures that there is some $\delta > 0$ such that whenever $|z_k - z_0| < \delta$

$$|f_n(z_k) - f_n(z_0)| < \varepsilon/3$$

for all n. Thus

$$\lim_{k \to \infty} |f_{n_k}(z_0) - f_{m_k}(z_0)| = 0$$

and for all $k > k_0$

$$|f_{n_k}(z_0) - f_{m_k}(z_0)| < \varepsilon/3$$

Moreover, for this δ, it’s true $|z_k - z_0| < \delta$ for all $k > k_0$. Hence

$$\varepsilon' < |f_{n_k}(z_k) - f_{m_k}(z_k)| \leq |f_{n_k}(z_k) - f_{m_k}(z_0)| +$$

$$+ |f_{n_k}(z_0) - f_{m_k}(z_0)| + |f_{n_k}(z_k) - f_{n_k}(z_0)|$$

$$< \varepsilon'$$

which is a contradiction. □

Proof. (Direct proof) Target: To show

$$f_n \Rightarrow g$$

Let K be any compact subset of U, then there is some $r > 0$ such that for any $z \in K$,

$$B(z, r) \subseteq U$$

Obviously, $\mathcal{O} = \{B(z, r) : z \in K, r > 0\}$ forms an open cover of K and the compactness of K implies there exist some $m \in \mathbb{N}$ such that

$$K \subseteq \bigcup_{i=1}^{m} \{B(z_i, r) : B(z_i, r) \in \mathcal{O}\}$$

By the equicontinuity of \mathcal{F}, for any given $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $|z - z'| < \delta$

$$|f_{n}(z) - f_{m}(z')| < \varepsilon$$

for all $m, n \in \mathbb{N}$. (Correction by Dr. Bleecker: it should be $|f_{n}(z) - f_{m}(z')| < \varepsilon$ for all $n \in \mathbb{N}$) Let $\rho = \min\{r, \delta\}$. Then it’s clear that $B(z, \rho) \subseteq U$ for all $z \in K$ and $\mathcal{O}_1 = \{B(z, \rho) : z \in K\}$ also forms an open cover of K and hence $K \subseteq \bigcup_{i=1}^{m_1} \{B(z_i, \rho) : B(z_i, \rho) \in \mathcal{O}_1\}$ for some $m_1 \in \mathbb{N}$. Since (f_n) converges pointwise to g, there exist $n_0 \in \mathbb{N}$ such that for all $z_i, i = 1, \ldots, m$,

$$|f_{n}(z_i) - g(z_i)| < \varepsilon$$

whenever $n > n_0$. Finally, for any $z \in K$, it’s obvious that $z \in B(z_{i_0}, \rho)$ for some i_0 with $1 \leq i_0 \leq m_1$ and whenever $n > n_0$,

$$|f_{n}(z) - g(z)| = |f_{n}(z) - f_{n}(z_{i_0}) - f_{n}(z) + f_{n}(z_{i_0}) + f_{n}(z) - g(z)|$$

$$\leq |f_{n}(z) - f_{n}(z_{i_0})| + |f_{n}(z_{i_0}) - f_{n}(z)| + |f_{n}(z) - g(z)| < 3\varepsilon$$

which means (f_n) converges uniformly to g on K. □
Lemma 2.5 A normal family \mathcal{F} of $C(U)$ is locally bounded in U.

Proof. Let K be any compact subset of U. Then by (2.3), there exists $z_i \in K, i = 1, \ldots, m$ and $r > 0$ such that

$$K \subseteq \cup_{i=1}^{m} \{ \Delta(z_i, r) : z_i \in K, r > 0 \} \subseteq U$$

Since every $f \in C(U)$ and K is compact, then $E_f = f(K) \subseteq \mathbb{C}$ is compact, $|f|$ is continuous on U and $G_f = |f|(K) \subseteq \mathbb{R}$. The inequality

$$||a| - |b|| < |a - b|$$

for all $a, b \in \mathbb{C}$ implies that $\{|f| : f \in \mathcal{F}\}$ is also a normal family on U. Let

$$\Lambda = \left\{ \alpha_f = \max_{z \in K} |f(z)| : f \in \mathcal{F} \right\}$$

Suppose Λ is not compact. Then there exist $O = \{ B(z, r) : z \in \mathbb{C}, r > 0 \}$ but for any $m \in \mathbb{N},$

$$K \not\subseteq \cup_{i=1}^{m} \{ B(z_i, r) : B(z_i, r) \in O \}$$

Specifically, since \mathcal{F} is normal, ■

Theorem 2.1 (Arzela-Ascoli) A subfamily $\mathcal{F} \subseteq C(U)$ is normal iff it is both equicontinuous and pointwise bounded.

Theorem 2.2 (Montel) A subfamily $\mathcal{F} \subseteq C(U)$ is normal iff it is locally bounded on U.

Proof. Use Arzela-Ascoli theorem and Cauchy integral formula. ■

Lemma 2.6 If G is open in \mathbb{C} then there is a sequence (K_n) of compact subsets of G such that

1. $G = \cup_{n=1}^{\infty} K_n$
2. $K \subseteq G$ and K compact implies $K \subseteq K_n$ for some n
3. Every component of $T_n = \mathbb{C} \sim K_n$ contains a component of $T = \mathbb{C} \sim G$ (Here $\mathbb{C}_\infty = \hat{\mathbb{C}}$ is the Riemann Sphere), that is,

let $\mathcal{C}_1, \mathcal{C}_2$ be the set of components of T_n and T, then $\mathcal{C}_2 \preceq \mathcal{C}_1$, i.e., \mathcal{C}_2 is finer than \mathcal{C}_1

4
Proof. Apply the basic trick by for each \(n \in \mathbb{N} \) define

\[
K_n = \{ z \in \mathbb{C} : |z| \leq n \} \cap \left\{ z \in \mathbb{C} : d(z, \mathbb{C} \sim G) \geq \frac{1}{n} \right\}
\]

Then \(K_n \) is compact. For

\[
H_n = \{ z \in \mathbb{C} : |z| < n + 1 \} \cap \left\{ z \in \mathbb{C} : d(z, \mathbb{C} \sim G) > \frac{1}{n + 1} \right\}
\]

it’s clear that \(H_n \) is open and

\[
K_n \subseteq H_n \subseteq K_{n+1}
\]

Then

\[
G = \bigcup_{n=1}^{\infty} K_n = \bigcup_{n=1}^{\infty} \text{Int} \ K_n
\]

since

\[
z \in \mathbb{C} : d(z, \mathbb{C} \sim G) \geq \frac{1}{n} \iff \exists \rho > 0 \text{ s.t. } B(z, \rho) \subseteq G
\]

Further, for any compact \(K \) with \(K \subseteq G \), it’s clear that \(K \subseteq \bigcup_{n\in\mathbb{N}} \text{Int} \ K_n \) and \(K \subseteq K_{n_0} \) for some \(n_0 \in \mathbb{N} \).

To see (3), Let \(E \) be the unbounded component of \(\mathbb{C} \sim K_n \subseteq \mathbb{C} \sim G \) and let \(F \) be the unbounded component of \(\mathbb{C} \sim G \). Then \(E \supseteq \{ z \in \mathbb{C} : |z| > n \} \), \(\infty \in E \) and \(E \supseteq F \) since \(\mathbb{C} \sim K_n \subseteq \mathbb{C} \sim G \). So if \(D \) is a bounded component of \(\mathbb{C} \sim K_n \) it contains some \(z \) with \(d(z, \mathbb{C} \sim G) < \frac{1}{n} \). But, then there is some \(w \in \mathbb{C} \sim G \) with \(|z - w| < \frac{1}{n} \) and \(z \in B(w; \frac{1}{n}) \subseteq \mathbb{C} \sim K_n \). Since disks are connected and \(z \in D \) with \(D \subseteq \mathbb{C} \sim K_n \) being a component, then \(B(w; \frac{1}{n}) \subseteq D \). If \(D_1 \) is the component of \(\mathbb{C} \sim G \) that contains \(w \) it follows that \(D_1 \subseteq D \). \(\blacksquare \)

Remark 3 This works for any complete metric space.

4 Metrization of \(\mathcal{H}(U) \)

Let \(G \) and \(K_n \) be as given (2.6) and \(f, g \in C(G, \Omega) \). Define

\[
\rho_n(f, g) = \sup \{ d(f(z_0, g(z)) : z \in K_n \}
\]

and

\[
\rho(f, g) = \sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^n \frac{\rho_n(f, g)}{1 + \rho_n(f, g)}
\]

Theorem 4.1 \((C(G, \Omega), \rho)\) is a complete, locally convex metric space

Remark 5 Consult Kosako Yoshida for Locally convex metric space