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Overview

This talk is about individualized inference in quantile DAG models.

The DAG structure and edge strengths are modeled as a function of
individual-specific covariates.

We will also discuss an application in precision medicine by modeling
individual-specific protein–protein interaction network in lung cancer.

Joint work with Ksheera Sagar (Purdue), Yang Ni (Texas A&M) and
Veera Baladandayuthapani (Michigan). Supported by NSF Grant
DMS-2014371.
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Preliminaries: the Gaussian DAG model

DAGs provide a natural way to model multivariate interactions in
gene or protein interaction networks.

The most popular approach is a Gaussian DAG.

Denote n to be the sample size and p to be the number of nodes.
The Gaussian DAG model is:

Yih =
∑

j∈pa(h)

βhjYij + εih, i ∈ {1, . . . , n}; j , h ∈ {1, . . . , p},

where εih ∼ N (0, σ2h) and pa(h) denotes the parent set of Yh, i.e.,
the set of nodes Yjs for which there exists an edge Yh ← Yj .
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Features of a Gaussian DAG (that can be limitations)

An assumption of Gaussian likelihood: susceptible to model
mis-specification.

The parent set pa(h) is assumed known for each h, which can be
unrealistic. Or it is extracted by something like the PC algorithm
(Spirtes et al., 2000), which does not give a unique DAG.

Not possible to infer βhj without modeling the entire distribution. For
certain diseases, we may want to selectively focus on certain
quantiles.

The parameter βhj is does not depend on individual-specific covariates
(no i in it). Unappealing in precision medicine.
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Summary of our contributions

A quantile based approach: free from any specific likelihood
assumption (Gaussian or otherwise).

The DAG structure is inferred (not assumed known)

Model coefficients (β
(τ)
hj (Xi ·)) are:

• Specific to a given quantile τ .

• Depend on individual-specific covariates (Xi·), using the varying
coefficients framework of Hastie and Tibshirani (1993, JRSSB).

An application in precision medicine of lung cancer.
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The individualized model

We model the τ th quantile of Yih as:

QYih
(τ | Yij , Xi ·) = β

(τ)
h0 (Xi ·)+

∑
j∈pai (h)

Yijβ
(τ)
hj (Xi ·),

β
(τ)
hj (Xi ·) = θ

(τ)
hj (Xi ·) · 1l

(
|θ(τ)hj (Xi ·)| > thj

)
, θ

(τ)
hj (Xi ·) =

q∑
k=1

f
(τ)
hjk (Xik).

Key features:

• β(τ)
hj (Xi·) is specific to given τ and covariates Xi· for individual i .

• β is a thresholded version of θ, which is a smooth function of Xi· ∈ Rq.

• The DAG is learned, along with model parameters.
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Overall modeling strategy

A schematic for n = 2 samples, p = 4 variables, q = 1 covariates, at
τ = 0.1, 0.5, 0.9.

If β is zero (recall: β = thresholded θ) then the edge is missing.

For a certain β
(τ)
24 (Xi•) ̸= 0, the magnitude depends on Xi•.
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Modeling and estimation details

We impose the union-DAG condition. Let

QG(τ)u =
n⋃

i=1

QG(τ)i .

We restrict QG(τ)u to be a DAG.
• Reason 1: Same directionality acros all i is biologically justified.

• Reason 2: Only need to check if union graph is a DAG, not for each i .

Loss function:

L(τ) =
n∑

i=1

p∑
h=1

ψτ

Yih − β
(τ)
h0 (Xi ·)−

∑
j∈pai (h)

Yijβ
(τ)
hj (Xi ·)

 ,

where ψτ (x) = τx1l(x ≥ 0)− (1− τ)x1l(x < 0).

Likelihood (asymmetric Laplace):

π(Y | X , τ, β(τ)) ∝ exp(−L(τ))× 1l
(
QG(τ)u is a DAG

)
.
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Model for the smooth function θ

Recall:

β
(τ)
hj (Xi ·) = θ

(τ)
hj (Xi ·) · 1l

(
|θ(τ)hj (Xi ·)| > thj

)
, θ

(τ)
hj (Xi ·) =

q∑
k=1

f
(τ)
hjk (Xik).

We model:

θ
(τ)
hj (Xi ·) =

q∑
k=1

f
(τ)
hjk (Xik) = µhj1n +

q∑
k=1

X̃k
∗
α∗

hjk +

q∑
k=1

Xkα
0
hjk .

• X̃k

∗
is a nonlinear basis expansion for Xk .

• A parameter expanded version of the horseshoe prior on α∗
hjk and α0

hjk

for sparse estimation.

• Normal prior on µhj (no need to shrink the intercept).

• Gamma prior on the threshold thj .
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Theoretical properties

Identifiability: There do not exist β(τ)′ ̸= β(τ) such that
π(Y | X , τ, β(τ)) ≡ π(Y | X , τ, β(τ)′).

Properties of the marginal prior: The marginal prior on β is a two
component mixture of a delta function at zero, and a non-local prior
(Johnson and Rossell, 2010).

Posterior concentration: The posterior of the node-conditional fitted
densities concentrate around the truth (rate of convergence in paper).
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Simulation results: data generation

We consider n ∈ {100, 250}, p = {25, 50, 100}, q ∈ {2, 5}.

Data generation:

• Covariates X1, . . . ,Xq are i.i.d. standard normal.

• WLOG, select an order Y1, . . . ,Yp and a true DAG that is 80% sparse.

• Set true θ as a combination of a variety of linear and nonlinear
functions.

• Set β = 1(θ > 0.5).

• Calculate the quantile function of Yh | pa(h).

• Simulate Yh by inverse cdf method.
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Simulation results: competing methods and performance
metrics

Methods under consideration:

• qDAGx (qDAGx with unknown ordering that is inferred)

• qDAGx0 (qDAGx with oracle true ordering supplied)

• qDAGxm (qDAGx with a known but false ordering fed to it).

• Additional comparisons with lasso-QR (Wu et al., 2009) in paper, but
it does not support individualized coefficients.

Performance metrics:

• TPR and FPR in variable (Y ) and covariate (X ) selection.

• Area under curve (AUC).

• Frobenius norm in estimating β and θ.

• MSE in estimating the true quantile function.
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Results
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Method: qDAGx0 qDAGx qDAGxm

Figure: p = 25, q = 5, n = 250. Kendall’s’ T for the misspecified sequence is 0.5
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An application in precision medicine of lung cancer

Protein expressions of p = 67 proteins, denoted as: Y1, . . . ,Y67.

q = 2 covariates: (X1,X2) = (mRNA expression, DNA methylation).

n = 306 patients: Lung adenocarcinoma (LUAD).

n = 278 patients: Lung squamous cell carcinoma (LUSC).

Estimate quantile-DAGs at τ ∈ {0.1, . . . , 0.9}.

Aggregate DAGs at each quantile level for visualization proposes and
show edges present in ≥ n/2 patients and node size ∝ in-degree.
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Individual level inference
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Figure: Quantile graphs at τ = 0.1, 0.5 and 0.9 for a random patient with LUAD.

Table: Map between pathways and colors.

Apoptosis Breast reactive Cell cycle Core reactive
DNA

damage response
EMT

PI3K/AKT RAS/MAPK RTK TSC/mTOR Hormone receptor
Hormone signaling

(Breast)
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Individual level inference

Table: Directed edges present in at least 50% of patients and across 5 out of 9
quantile levels, τ ∈ {0.1, . . . , 0.9}. Common edges in LUAD and LUSC in blue.

Lung adenocarcinoma (LUAD) Lung squamous cell carcinoma (LUSC)

BAK1←BID BAD←ATK1S1 BID←ERBB3 BAK1←BID AKT1, AKT2, AKT3←AKT1S1 CAV1←PGR

CAV1←COL6A1 EGFR←ERBB2 GAPDH←CDH2 CAV1←COL6A1 EGFR←ERBB2 CCNB1←COL6A1

JUN←ERBB3 MAPK1, MAPK3←MAP2K1 MYH11←COL6A1 MTOR←PGR MAPK1, MAPK3←MAP2K1 MYH11←COL6A1

PCNA←CHEK1 RPS6KB1←PGR MYH11←FOXM1 RPS6KB1←PGR RAD51←PGR

Table: Mean (sd) for the percentage of edges influenced by covariates (only
mRNA, only methylation, both mRNA and methylation)

only mRNA only methylation both

LUAD 13.7 (0.78) 28 (0.86) 58.3 (1.55)
LUSC 13.6 (0.66) 28.1 (0.61) 58.3 (0.85)
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Population level inference
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Figure: First 3 panels: aggregated qDAGs, E (τ)
LUAD, for τ = 0.1, 0.5, 0.9. Last

panel: E (0.5)
LUAD , with node size proportional to out-degree.
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Concluding remarks

We proposed a quantile-based approach for individualized inference in
DAG models.

We do not impose a likelihood, a known ordering of nodes, or global
coefficients.

Presence/absence of edges and their strengths are modeled as
functions of individual-specific covariates.

Currently quite computation-intensive. Increasing scalability,
especially in terms of the dimension of covariates (q) should be
useful.

Currently, quantile crossing is not addressed.
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