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Overview

Goal 1: Argument for global-local priors in default Bayes analysis for
low-dimensional functions of high-dimensional normal means.

Efron Problems: sum of squares, maximum, product and ratio of
normal means.

Goal 2: To quantify the prediction risk for global and global-local
shrinkage regressions.

Stein’s unbiased risk estimate (SURE) for global-local shrinkage
regression.

Joint work with Jyotishka Datta (Arkansas); Yunfan Li (Purdue);
Nick Polson and Brandon Willard (Chicago Booth). Supported by
NSF Grant DMS-1613063.
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Global-local (g-l) priors

Consider the sparse “normal means” model (yi | θi ) ∼ N (θi , 1) for
i = 1, . . . , n; such that #(θi 6= 0) ≤ pn with pn = o(n).

Carvalho, Polson and Scott (2010) introduced “global-local” normal
scale mixture priors for sparsity

(θi | λi , τ) ∼ N (0, λ2i τ
2); λi ∼ p(λi ); τ ∼ p(τ).

The “global” term τ should provide substantial shrinkage towards zero.

The “local” λi terms should have heavy tails so that “signals” are not
shrunk too much. One option is p(λi ) ∝ (1 + λ2i )−1, which induces the
“horseshoe prior” on θ.
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Some examples of global-local priors

The horseshoe prior (Carvalho, Polson and Scott, 2010, Biometrika).

The horseshoe+ prior (Bhadra et al., 2016, Bayesian Anal.).

The hypergeometric inverted-beta prior (Polson and Scott, 2010,
Bayesian Anal.).

The generalized double Pareto prior (Armagan, Dunson and Lee,
2013, Stat. Sinica).

The three parameter beta prior (Armagan, Dunson and Clyde, 2011,
NIPS).

The Dirichlet-Laplace prior (Bhattacharya et al., 2015, JASA).

4 / 34



Some examples of global-local priors

The order of peakedness near
zero: HS+ ≈ DL > HS >
GDP = Laplace > Cauchy
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Some properties of g-l priors

Carvalho et al. (2010, Biometrika): showed the the K-L distance
between the estimated and the true predictive densities decreases at a
super-efficient rate for the horseshoe.

Datta and Ghosh (2013, Bayesian Anal.): proved that the decision
rule induced by the horseshoe estimator is asymptotically Bayes
optimal for multiple testing under 0-1 loss.

van der Pas, Kleijn and van der Vaart (2014, EJS): showed the
horseshoe estimator is minimax in `2 up to a constant.
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Beyond the normal means: Efron problems with
non-informative priors (Efron, 1973, JRSSB)

1973] Discussion on the Paper by Dr Dawid, Professor Stone and Dr Zidek 219 

and he cannot do this from the likelihood function. He has to go back to the scientist and 
discover the other values of y that might have been observed but were not. He may then 
integrate over them and find the z-distribution. With two different scientists these might 
well not agree. Consequently it might appear that B2 is violating the likelihood principle. 
When all distributions are proper, the argument that leads to (1.23) shows that, whatever 
the other y-values were, the result for B2 would have been the same. Hence B2 does not 
really need to enquire of the scientist, he can take any set. Of course, this is not true 
when improper distributions are used, and the paradoxes remain. 

This is an important paper because it clears away so much rubbish from the statistical 
scene. Let us hope that the cleared highway will encourage more people to think con- 
structively about the parameters and use an honest, proper Bayesian argument. In 
particular I would like to express the hope that specialists in multivariate analysis will 
take heed of the results and try to put their own house in order. 

Professor BRADLEY EFRON (Stanford University): The question of just what constitutes 
an uninformative prior in a multiparameter situation becomes ever more vexing, helped 
along now by the authors' very provocative counterexamples. I only hope that readers 
will not misread this paper as saying that all is well as long as improper priors are avoided. 
Suppose we have 100 unknown parameters 61, 62, ..., 6100 and data xl, x2, ..., x1OO, where 
xiN(6i, 1), independently given the {6i}. We may try to represent our lack of prior 
information on the Oi by giving them independent N(O, A) priors where A is enormous, 
say 101000. This looks uninformative enough, being virtually equivalent to a uniform 
prior over E'L0 for most purposes, but like the uniform prior it is actually much too 
informative in some ways. 

For example, suppose we wish to estimate 1 - z1O 02, and observe that the 100 xi 
values have sum of squares 200. The a posteriori mean of 6 given the data are almost 
exactly 300 in this case, as opposed to the much more reasonable unbiased estimate 

= 100, which has estimated standard deviation 25. Our "uninformative" prior has 
completely overwhelmed the considerable amount of information in the data! This is 
because it gives 6 a marginal prior density proportional to 649 (to a close approximation, 
for e < 10919), which is heavily weighted against small values of e. 

We can correct this by giving A itself a diffuse prior, say with density proportional to 
(A + 1)-2, instead of a large fixed value, in which case e will have marginal prior density 
approximately proportional to (e + 100)-2, and the a posteriori mean of 6 will always be 
close to the m.l.e. or to the unbiased estimate. Unfortunately this new uninformative 
prior is quite informative in its own right. For example, if we wish to estimate ,. = max {Oi} 
and observe xl, x2, ..., x99 to have nearly a N(O, 1) histogram while x100 = 10, then the 
a posteriori expectation of ,L will be close to 5. It is obvious that 10 is a much more 
sensible estimate in this case. 

Why are statisticians interested in uninformative priors? Because they connect 
Bayesian and frequentist methods, because they offer an "objective" form of Bayesian 
theory and because they are so convenient for dealing with complicated situations, 
particularly those involving nuisance parameters. In the 100 parameter problem for 
instance, a truly uninformative prior, if it existed, would in principle provide a sensible 
answer to every question one could ask about the parameters, both before and after the 
data were observed. It is worth looking for such a powerful weapon, but sobering to have 
pointed out that even in much simpler situations the proposed candidates have undesirable 
properties. 

Professor J. DICKEY (State University of New York at Buffalo): Since coherent personal 
inference implies the use of Bayes's theorem with personal probabilities, and since scientific 
reporting from statistical data requires objectivity, then a scientific-report-writer should 
give the posterior probabilities with a variety of prior distributions, typical or bounding 
of the report-readers' personal uncertainties. Hence, magic unique prior distributions are 
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Efron’s problems

Suppose ψ =
∑100

i=1 θ
2
i is the parameter of interest

We observe
∑100

i=1 y
2
i = 200.

Intuitively ψ̂ ought to be 100 with a standard deviation of 25.

Posterior mean under θi
ind∼ N (0,A) with huge A is 300.

Is θi
ind∼ N (0,A) with A→∞ “non-informative”?

What is non-informative for estimating θi s is actually very informative
for estimating ψ =

∑100
i=1 θ

2
i .
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ψ =
∑100

i=1 θ
2
i : normal and horseshoe priors
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Figure : Posterior under half-Cauchy and N (0, 300) priors.

True ψ = 100. Horseshoe posterior concentrates in the correct region.
Normal prior wrong!
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Efron’s solution and a resultant problem

Efron: Don’t fix A at a large value. Instead, diffuse half-Cauchy prior
p(A) ∝ (A + 1)−1.

The posterior mean of ψ =
∑
θ2i is now essentially the James-Stein

estimate - good for dense θ.

BUT! suppose parameter of interest is φ = max θi and ymax = 10.

Efron points out that posterior estimate of φ with half-Cauchy prior
on A will be 5 while 10 is much more reasonable.

Cause: JS global shrinkage shrinks everything, small and large!
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Our proposal (Bhadra et al., 2016, Biometrika)

Use Global-local priors (e.g., horseshoe and horseshoe+).

ψ =
∑
θ2i (sum of squares)

ψ = max θi (max)
ψ = θ1θ2 (product)
ψ = θ1/θ2 (ratio or Fieller-Creasy).

The local heavy-tailed λi terms leave large signals un-shrunk, even for
nonlinear functions!

The global term helps shrink the noise components, even for nonlinear
functions!
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A key property: regular variation

Key property: half-Cauchy (Gelman) has regularly-varying tails.

Regular variation is closed under many nonlinear transformations
(including four on the previous slide).

The regularly varying tails of θi s translate to regularly varying tails for
the prior of ψ.

Since the likelihood is light-tailed (normal), the heavy tailed priors on
ψ help in non-informative analysis (Dawid, 1973).
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Results: candidate priors for the Efron problems

We compare the following priors

Global-local shrinkage priors, namely, the horseshoe and the
horseshoe+ priors.

Laplace or double-exponential prior:

p(λ2i | τ2) = (2τ2)−1exp{−λ2i /2τ2},
τ2 ∼ IG(1/2, 1/2).

Vague normal prior, that is, θi ∼ N (0, σ2 = 300).

Pure-local shrinkage prior, and the pure-global shrinkage priors, by
taking τ = 1 or, λi = 1, for all i = 1, . . . , p.

Reference priors (when they exist).

Alternatives: spike-and-slab Lasso, ...
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Results: sum of squares problem
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Figure : A = 10 and qp = 1.
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Figure : A = 5 and qp = 4.
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Figure : A = 1 and qp = 100.

Figure : Posterior densities of ψ =
∑100

i=1 θ
2
i , qp is the number of non-zero means

and A is the magnitude. The horizontal line at true ψ = 100.
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Results: maximum problem
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Figure : Posterior densities for ψ = max θi , for (yi | θi ) ∼ N (0, 1), i = 1, . . . , 99
and y100 = 10. The horizontal line is at ymax.
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Results: product and ratio problems

Fieller-Creasy HS HSPlus Laplace

Normal Product Mean Pure-Global Pure-Local
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Figure : Two-dimensional contour plots of p(θ1, θ2 | y) for the product mean and
ratio of two means (Fieller-Creasy) problems. True θ1 = θ2 = 0.
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G-l priors in orthogonalized high-dimensional regression
(Bhadra et al., 2016, arXiv:1605.04796)

Consider the high-dimensional regression model with p > n

y = Xβ + ε,

where y ∈ Rn,X ∈ Rn×p, β ∈ Rp and ε ∼ N (0, σ2In).

Let X = UDW T , Rank(D) = n where D = diag(di ) with
d1 ≥ . . . ≥ dn > 0.

Define Z = UD and α = W Tβ.

Then the regression problem can be reformulated as:

y = Zα + ε.
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Shrinkage regression estimates as posterior means (Frank
and Friedman, 1993)

Define OLS estimate of α as α̂ = (ZTZ )−1ZT y = D−1UT y .

Consider the following hierarchical model with σ2, τ2 > 0:

(α̂i | αi , σ
2)

ind∼ N (αi , σ
2d−2i ),

(αi | σ2, τ2, λ2i )
ind∼ N (0, σ2τ2λ2i ).

Given λi and τ , the estimate for β, denoted by β̃ is given by:

α̃i =
τ2λ2i d

2
i

1 + τ2λ2i d
2
i

α̂i , β̃ =
n∑

i=1

α̃iwi ,

where α̃i = E (αi | τ, λ2i ,X , y), wi is the ith column of the p × n
matrix W and the term τ2λ2i d

2
i /(1 + τ2λ2i d

2
i ) ∈ (0, 1) is the

shrinkage factor.
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Some examples: ridge, PCR and regression with g-prior

For ridge regression, λ2i = 1 for all i and we have
α̃i = {τ2d2

i /(1 + τ2d2
i )}α̂i .

For K component PCR, λ2i is infinite for the first K components and
then 0. Thus, α̃i = α̂i for i = 1, . . . ,K and α̃i = 0 for
i = K + 1, . . . , n.

For regression with g-prior, λ2i = d−2i and we have
α̃i = {τ2/(1 + τ2)}α̂i for i = 1, . . . , n.
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Stein’s unbiased risk estimate or SURE (Stein, 1981, AoS)

If “prediction” is the main modeling goal, then the fitted risk is an
underestimation of the prediction risk.

Define the fit ỹ = X β̃ = Z α̃, where α̃ is the posterior mean of α.

Then SURE is given by

R = ||y − ỹ ||2 + 2σ2
n∑

i=1

∂ỹi
∂yi

,

where
∑n

i=1(∂ỹi/∂yi ) is the “degrees of freedom.”
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SURE for global shrinkage regressions

A simple formula need not exist for the degrees of freedom!

However, since our estimates are posterior means under certain priors,
perhaps we can get some simplifications?

According to Tweedie’s formula:

α̃ = α̂ + σ2D−2∇α̂ logm(α̂).

Noting that y = Z α̂ and ỹ = Z α̃ and α̂i s are independent:

R = σ4
n∑

i=1

d−2
i

{
∂

∂α̂i
logm(α̂i )

}2

+ 2σ2
n∑

i=1

{
1 + σ2d−2

i

∂2

∂α̂2
i

logm(α̂i )

}
.
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SURE for global shrinkage regressions (contd.)

Thus, calculating the first two derivatives of the log marginal of the
independent α̂i s is enough to calculate SURE!

Integrating out αi , it is easy to see that

(α̂i | σ2, τ2, λ2i )
ind∼ N (0, σ2(d−2i + τ2λ2i )).

After elementary calculations, SURE is R =
∑n

i=1 Ri where

Ri =
α̂2
i d

2
i

(1 + τ2λ2i d
2
i )2

+ 2σ2
τ2λ2i d

2
i

(1 + τ2λ2i d
2
i )
.
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Difficulties with purely global shrinkage

Recall that in purely global shrinkage λ2i are fixed and there is a single
tuning parameter τ .

If a small τ is chosen df ≈ 0 but terms with large α̂2
i d

2
i make a large

contribution to SURE.

If a large τ is chosen it solves the above problem, but at the expense
of a df ≈ 2σ2 for all terms!

Maybe component-specific shrinkage will help?

Also note the shrinkage factor τ2λ2i d
2
i /(1 + τ2λ2i d

2
i ) is monotone in

di for any given τ and fixed λi s.
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Global-local shrinkage regression

Consider the equations

(α̂i | αi , σ
2)

ind∼ N (αi , σ
2d−2i ),

(αi | σ2, τ2, λ2i )
ind∼ N (0, σ2τ2λ2i ),

λi
ind∼ p(λi ).

The first two equations are the same as before.

However, now we treat λi as random and put a half-Cauchy prior on
it, i.e.,

p(λi ) ∝
1

1 + λ2i
.
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A bit more on the choice of prior

The induced prior on αi on the previous slide is the so called
“horseshoe prior.”

A small τ should help in shrinking the small αi terms to zero.

The half-Cauchy prior on λi has heavy tails. This should help in “not
shrinking” the large αi terms too much.

This is what Polson and Scott (2012) did in simulations and noticed
good prediction results.

But can we rigorously show an improved prediction risk estimate?
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SURE for global-local shrinkage regression

Theorem 1

Let m′(α̂i ) = (∂/∂α̂i )m(α̂i ) and m′′(α̂i ) = (∂2/∂α̂2
i )m(α̂i ). Then,

A. SURE for the global-local shrinkage regression model is given by
R =

∑n
i=1 Ri , where

Ri = 2σ2 − σ4d−2i

{
m′(α̂i )

m(α̂i )

}2

+ 2σ4d−2i

m′′(α̂i )

m(α̂i )
.

B. Under independent standard half-Cauchy prior on λi s, for the second
and third terms in Part A we have:

m′(α̂i )

m(α̂i )
= −

α̂id
2
i

σ2
E(Zi ), and,

m′′(α̂i )

m(α̂i )
= −

d2
i

σ2
E(Zi ) +

α̂2
i d

4
i

σ4
E(Z 2

i ),

where (Zi | α̂i , σ, τ) follows a
CCH(p = 1, q = 1/2, r = 1, s = α̂2

i d
2
i /2σ2, v = 1, θ = 1/τ2d2

i )
distribution.
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Some remarks on Theorem 1

The previous theorem establishes that SURE for global-local
regression can be expressed by the first two moments of the
compound confluent hypergeometric (CCH) distribution.

These moments can be expressed as doubly infinite series that
converge relatively fast and numerical calculations are quick (Gordy,
1998).

An easy consequence is that now one can do a one-dimensional
optimization on τ to minimize SURE.

27 / 34



SURE when α̂2
i d

2
i is large and when it is small

Theorem 2

Define si = α̂2
i d

2
i /2σ2. When si � 1, both m′′(α̂i )/m(α̂i ) and

[m′(α̂i )/m(α̂i )]2 are O(1/α̂2
i ) and therefore, the contributions of the

second and the third terms to Ri is O(1/α̂2
i d

2
i ). Consequently, the

component-wise SURE Ri ≈ 2σ2.

Theorem 3

Define si = α̂2
i d

2
i /2σ2. Then the following statements are true.

A. The component-wise SURE Ri is an increasing function of si in the
interval [0, 1] for any fixed τ .

B. When si = 0, the component-wise SURE Ri is a monotone increasing
function of τ , and is bounded in the interval (0, 2σ2/3] when
τ2d2

i ∈ (0, 1].
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Some remarks on Theorems 2 and 3

Recall that SURE for pure global regression R =
∑n

i=1 Ri where

Ri =
α̂2
i d

2
i

(1 + τ2λ2i d
2
i )2

+ 2σ2
τ2λ2i d

2
i

(1 + τ2λ2i d
2
i )
.

For global-local regression, Theorem 2 establishes that the terms with
si = α̂2

i d
2
i /2σ2 � 1 will contribute 2σ2 to SURE.

For global-local regression, Theorem 3 establishes that terms with
si = 0 contribute less than 2σ2/3 to SURE, provided τ is chosen
sufficiently small, i.e., τ2 ≤ d−2i .

Simultaneously controlling SURE in these two situations (i.e., si � 1
and si = 0) is not possible with a single τ .
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Numerical examples

Table : The true orthgonalized regression coefficients α0i , their OLS estimates α̂i ,
and singular values di of X , for n = 100 and p = 500.

i α0i α̂i di α̂idi

1 0.10 0.10 635.10 62.13
2 -0.44 -0.32 3.16 -1.00
. . . . . . . . . . . . . . .
5 -0.13 0.30 3.05 0.91
6 10.07 10.22 3.02 30.88
. . . . . . . . . . . . . . .
29 0.46 0.60 2.53 1.53
30 10.47 11.07 2.51 27.76
. . . . . . . . . . . . . . .
56 0.35 0.57 2.07 1.18
57 10.23 10.66 2.07 22.05
. . . . . . . . . . . . . . .
66 -0.00 -0.35 1.90 -0.66
67 11.14 11.52 1.88 21.70
. . . . . . . . . . . . . . .
95 -0.82 -0.56 1.42 -0.79
96 9.60 10.21 1.40 14.26
. . . . . . . . . . . . . . .
100 0.61 0.91 1.27 1.15
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Numerical examples (contd.)
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Figure : SURE for ridge (blue), PCR (gray), lasso (cyan) and horseshoe regression
(red), versus α̂d , where α̂ is the OLS estimate of the orthogonalized regression
coefficient, and d is the singular value, for n = 100 and p = 500. Dashed
horizontal lines are at 2σ2 = 2 and 2σ2/3 = 0.67.
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Numerical examples (contd.)

Table : SURE and average out of sample prediction SSE (standard deviation of
SSE) on one training set and 200 testing sets for the competing methods for
n = 100. The lowest SURE in each row is in blue and the lowest average
prediction SSE is in red.

RR LASSO A LASSO PCR HS
p SURE SSE SURE SSE SSE SURE SSE SURE SSE

100 159.02 168.24 125.37 128.98 127.22 162.23 179.81 120.59 126.33
(23.87) (18.80) (18.10) (25.51) (18.77)

200 187.38 174.92 140.99 132.46 151.89 213.90 191.33 139.32 126.99
(21.13) (18.38) (20.47) (22.62) (17.29)

300 192.78 191.91 147.83 145.04 153.64 260.65 253.00 151.24 136.67
(22.95) (19.89) (21.19) (26.58) (18.73)

400 195.02 182.55 148.56 165.63 178.98 346.19 292.02 147.69 143.91
(22.70) (21.55) (20.12) (28.98) (18.41)

500 196.11 188.78 159.95 159.56 186.23 386.50 366.88 144.97 160.11
(22.33) (19.94) (23.50) (39.38) (20.29)
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Concluding remarks

Global-local priors: originally designed for sparse normal means model.

Seem to work well for default Bayes analysis e.g. the Efron problems.

Some theoretical insight is provided by Bhadra et al. (2016).

Much work still remains to be done for a rigorous justification.

Seem to provide improved prediction risk in regression.

Optimality results?
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