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Overview

Neal’s (1996) foundational PhD thesis established the infinitely wide
limit of a shallow Bayesian neural network is a Gaussian process (GP)
under finite variance prior weights.

Proof is an application of the classical central limit theorem (CLT).

This talk considers infinite variance priors (examples: Cauchy,
horseshoe, . . . ). Classical CLT breaks. Limit is not a GP.

Questions/Goals: (1) Is this unbounded variance regime interesting?
(2) If yes, provide an approach for posterior inference and UQ.

Joint work with Jorge Loŕıa (Aalto University).
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Wide limit of a shallow (one hidden layer) BNN

Define an L layer feedforward deep neural network (DNN) with L− 1
hidden layers by the recursion:
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where g(·) is a nonlinear activation and M` is width of the `-th layer.

Consider a shallow net (L = 2) and let w
(2)
j

ind∼ N (0, 1/M2),

By “self-similarity” of normal (or more generally, by classical CLT),
Neal (1996) established: the limit is a GP as M2 →∞.
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Covariance of Neal’s GP: kernel methods and deep BNNs

The kernel of Neal’s shallow GP depends on the activation g(·).

Neal worked out two of these explicitly in his PhD thesis:

g(x) = 1(x > 0) leads to exponential (Matérn with ν = 1/2) kernel
(very rough GP).

g(x) = tanh(x) leads to squared exponential (Matérn with ν →∞)
kernel (infinitely smooth GP).

Cho and Saul (2009, NeurIPS) derived using the kernel trick a
recursive kernel formula for deep GPs under ReLU and other
activations, of the form: gδ(x) = xδ1(x > 0).
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Implications and extensions of Neal’s (1996) result

Neal’s (1996) result is attractive, because posterior inference and
uncertainty quantification are straightforward for a GP, unlike a
finite-width BNN.

Using Cho and Saul (2009), extensions to deep feedforward BNNs are
by Lee et al. (2018, ICLR), de G. Matthews et al. (2018, ICLR).

Also using Cho and Saul (2009), extensions to deep convolutional
BNNs are by Garriga-Alonso et al. (2018, ICLR).

In fact, the “Tensor Program” framework of Yang (2019, NeurIPS)
establishes a GP limit under nearly arbitrary architectures.

All of the above assume finite variance priors.
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Infinite variance priors

The main idea in all of the above is this: if w
(L)
j

ind∼ N (0, 1/ML), then:

ψ(x) =

ML∑
j=1

w
(L)
j f

(L)
j (x)

D→ N (0,E[f (x)f ′(x)]).

If w
(2)
j has unbounded variance, the generalized CLT (Gnedenko and

Kolmogorov, 1953) establishes an α-stable scaling limit under
relatively mild conditions.

Der and Lee (2005, NeurIPS) used the GCLT to work out an α-stable
wide limit for shallow BNNs.
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Difficulties with α-stable limits

Unfortunately, it is much harder to work with α-stable
variables/processes for inferential purposes.

Mean and covariance functions are in general not available.

Define Z ∼ Sα(Σ) an symmetric α-stable with scale matrix Σ; all we
have is the characteristic function:

φZ(t) = E[exp(itTZ)] = exp{−(tTΣt)α/2},

not a closed form density.

Some recent attempts: Favaro et al. (2023, Bernoulli), Peluchetti et
al. (2020, AISTATS), Lee et al. (2023, JMLR) etc.

Mostly concerned with the properties of the limiting process, rather
than posterior inference, analogous to kriging in GP.
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A conditional GP representation

Our essential idea is to write the (marginal) stable process as a
(conditional) GP.

We can exploit West (1987):

Z ∼ Sα(Σ)⇐⇒ Z
D
= S

1/2
+ X, S+ ∼ S+

α/2, X ∼ N (0,Σ), S+ ⊥ X,

where S+
α/2 is positive α/2-stable.

Instead doing inference based on Z, do inference on the augmented
space (X, S+), where (X | S+) is a GP with random covariance S+Σ.
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A conditional GP representation

Define: z
(`)
j (xk) = 1

M
1/2
`

∑M`
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where s
(`)
+ ∼ S+

α/2 and w̃
(`)
ij are (wlog.) zero mean, unit variance.

Then, marginally w
(`)
ij have infinite variance and z

(`)
j is α-stable as

M` →∞.

The marginally stable z
(`)
j admits the representation:

z
(`)
j | s

(`)
+ ,Σ(`) ∼ N (0, s

(`)
+ Σ(`)),

where s
(`)
+ ∼ S+

α/2.
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Covariance kernel of the conditional GP

Leads to a Cho and Saul (2009) type recursive expression for the
conditional covariance kernels (Prop. 1, Loŕıa and Bhadra, 2024+):
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where all the s
(`)
+ are independent S+

α/2 random variables.

Sanity check: The α→ 2 limit is Gaussian. In this case, S+
α/2 → 1

w.p. 1, and one recovers the Cho and Saul result, with deterministic
kernels Σ(`).

But for α < 2, the covariance kernel s
(`)
+ Σ(`) is random, although it is

positive definite w.p. 1.
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Implications of a random kernel on feature learning

The deterministic kernel under a GP limit can be thought of a
degenerate random kernel, that puts all its prior mass on one point.

Since posterior ∝ likelihood × prior, the posterior is also a degenerate
point mass, at the same point.

A data-dependent learning of the kernel posterior is thus not possible
in a GP limit (Aitchison et al., ICML, 2020, 2021).

However, the posterior of the random kernel s
(`)
+ Σ(`) is

non-degenerate, when α < 2. Data-dependent learning is possible.
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Posterior inference and prediction

Suppose one observes (y, x) = {yk , xk}nk=1 from the model:

yk = ψ(xk) + εk , εk
i .i .d .∼ N (0, σ2),

and goal is to find the posterior predictive of (y∗ | y, x, x∗).

We have (Prop. 2, Loŕıa and Bhadra, 2024+):

y∗ | y, x, x∗, {s(`)+ }L`=2 ∼ Nm(µ∗,Λ∗),

A kriging-like result, except µ∗,Λ∗ depend on the stable s
(`)
+ .

We propose from the prior of s
(`)
+ ∼ S+

α/2 to implement an
independent samples Metropolis, so the above likelihood is what
needs to be evaluated in MCMC.
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Results: conditional mutual information

In GP, one would look at decay of correlation over distance.

But covariance does not exist for stable processes. Need an
alternative.

Cover and Thomas define conditional mutual information (CMI) as:

I (Y1;Y2 | S) =

∫
S
DKL[p(Y1,Y2 | s) || p(Y1 | s)p(Y2 | s)]p(s)ds,

Which in our case becomes:

I (Y1;Y2 | S) = −(1/2)

∫
S

log(1− ρ2Y1,Y2
(s))p(s)ds.
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Results: conditional mutual information
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Figure: Decay of the conditional mutual information for the deep α-kernel process
as a function of the distance between the inputs with L = 2, δ = 1. The limiting
Gaussian case (α = 2) is also included.

14 / 21



Results: function fit and UQ

The true function in 1-d is:

f (ξ) = 5× 1{ξ>0}

and generate observations as y(ξ) = f (ξ) + ε; ε ∼ N (0, 0.52).

The true function in 2-d is:

f (ξ1, ξ2) = 5× 1{ξ1>0} + 5× 1{ξ1>0}

and generate y(ξ1, ξ2) = f (ξ1, ξ2) + ε; ε ∼ N (0, 0.52),

The true function in 10-d is:

f (ξ) =6sign(ξ1) + 8sign(ξ2 + ξ3) + 6sign(ξ4 + ξ5) + 6sign(ξ6 + ξ7)

+ 6sign(ξ8 + ξ9) + 6sign(ξ10)

and generate y(ξ) = f (ξ) + ε, with ε ∼ N (0, 0.52).
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Results: visualizations of function fit and UQ in 1-d
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(a) Function fit for the different
methods.
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(b) 90% posterior predictive intervals
for the Bayesian methods.

Figure: Function fit and uncertainty quantification for the competing methods for
a 1-d function with a single jump.

GP tends to oversmooth the jump discontinuity. Stable captures
jumps better.

Agapiou and Castillo (2024, AoS) give theoretical support for this
behavior.
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Results: effect of α in 1-d
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Figure: Comparison of predictions (solid lines) and 25th to 75th percentile
posterior predictive intervals (shaded regions) in one dimension for different
values of α for the DαKP.
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Results: Prediction RMSE and MAE in 1,2 and 10-d

Table: Out-of-sample errors in numerical examples, in twenty different splits. Best
in bold. Stable not available for more than 2 dimensions.

One Dimension Two Dimensions Ten Dimensions
Method RMSE (SD) MAE (SD) RMSE (SD) MAE (SD) RMSE (SD) MAE (SD)

Dα-KP 0.57 (0.05) 0.45 (0.04) 0.86 (0.09) 0.67 (0.07) 8.08 (0.38) 6.48 (0.33)
DIWP 1.08 (0.04) 0.84 (0.03) 1.69 (0.05) 1.36 (0.05) 8.92 (0.38) 7.21 (0.32)
GP Bayes 0.69 (0.05) 0.52 (0.04) 0.90 (0.06) 0.70 (0.06) 10.39 (0.63) 8.32 (0.52)
GP MLE 0.77 (0.06) 0.57 (0.04) 1.19 (0.08) 0.92 (0.07) 8.32 (0.38) 6.68 (0.34)
NNGP 1.08 (0.04) 0.84 (0.03) 1.69 (0.05) 1.36 (0.04) 8.92 (0.39) 7.21 (0.34)
Stable 0.52 (0.03) 0.42 (0.03) 0.57 (0.08) 0.45 (0.04) – –
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Additional results

The paper contains additional results on predictive performance in
some benchmark UCI data sets.

Evidence of non-Gaussian feature learning, timing, MCMC mixing,
coverage of the posterior credible intervals are all available.
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Concluding remarks

The conditional GP representation makes inference and prediction
almost as easy as GPs.

However, there are important distinctions with a GP regime in terms
of representation learning, and function fit.

Another GP regime is the neural tangent kernel or NTK (Jacot et al.,
2018, NeurIPS), which arises due to Gaussian SGD noise.

Non-Gaussian SGD noise (Simsekli et al., 2019, ICML) should give
rise to analogous non-GP stable regime for the NTK.
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