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Overview

@ We consider a “multiple predictors, multiple responses”
regression problem where the error terms may be correlated.

@ Zellner (1962) discusses at length the consequences of
ignoring the error covariance while performing regression.

@ Many high-dimensional applications in genomics fall in this
framework. For example: predictors could be copy number
variations (CNV) and responses could be gene (mRNA)
expressions.

@ We formulate a Bayesian “joint” estimation technique of
CNV-mRNA association and mRNA-mRNA interaction

network.



Problem Formulation

@ n = Number of humans.

@ X = An n x p matrix of predictors
@ Y = An n X g matrix of responses
o We would like to regress Y on X.

e Example (CNV-mRNA interaction in Breast Cancer): For n
individuals with breast cancer, we analyze how CNVs (X)
affect their mRNA expressions (Y).



Problem Formulation

o Consider the linear Gaussian regression model:

Yn><q = anpoxq + €nxq;
€Enxg MNnxq(O’ I, quq)»
i.e.,Vec(€nxg) ~ Npg(0,1, ® Xgxq).

@ The unknowns are B, 4 and > ¢ q.

@ The dimensions are pg and g(q + 1)/2. Often much larger
than n.

@ Typical values: n= 100, p = 500 to 3000, g = 100.



Joint modeling of mean and covariance for Seemingly

Unrelated Regression

@ In a Seemingly Unrelated Regression setting, one might be
interested in modeling “both” the mean and the covariance
structure.

@ Rothman et al. (2010, JCGS) and Yin and Li (2011, Ann.
Appl. Stat.) make a frequentist attempt at joint modeling
with the MRCE approach. (essentially an iterative approach
with alternating lasso() and glasso() steps).

o Other approaches include the CAPME (Biometrika, 2013) and
CLIME (arXiv:1102.2233) methods of Cai et al.

e Bhadra and Mallick (Biometrics, 2013) take a Bayesian
approach.



Model conditional on indicators: Toy example

o Consider the model conditional upon indicators v and G.
Y =X,Byc+e €~ MN(O,I, Xg).

@ For example, say p =g =4. Then v = (1,0,1,0) means only
the first and the third predictors are important.

@ Let'ssay G is:

1100
1100
0010
0 0 01

This means Zl_é = 0, the other off-diagonal terms are 0.



Decomposable (or triangulated) graphs

@ No chordless cycle of length > 3.

e Cliques (i.e., the connected components) and separators (i.e.,
the parts in common between two cliques) can be found in
polynomial time (NP-complete for general graphs).

@ The overall density splits as:
F(y) =TT Fve)/ TTjs F(vs))-



Bayesian hierarchical model

(Y*X—yB—y,G)|B~y,GaZG ~ MNan(OalnazG)v
B’y,Gh’: ZG ~ Mvaxq(O,Clp,Y,zG),
3g|G ~ HIWg(b,dly),
i S Ber(wy) for i =1,...,p,
G RS Ber(wg) for k =1,...,q(qg — 1)/2,

wy,wg ~  Uniform(0, 1).



The marginalized model (Bhadra and Mallick, 2013)

o After the marginalization of B g and Xg, the resultant
distribution is a “hyper matrix t”.

o Define T = AY where AA" = (I, + ¢(X,X.))~!. Then
Tly,G ~ HMTg(b, I, dly).

@ This is a special type of “t-distribution” whose density splits
over cliques and separators, given the graph.

@ The marginalization has now resulted in a collapsed Gibbs
sampler: need to sample only two quantities (v and G)
instead of four (B, g, Xg, v and G).



MCMC for ~ given G and T (Bhadra and Mallick, 2013)

@ Given the current =, propose v* by either (a) changing a
non-zero entry in -y to zero with probability (1 — c,) or (b)
changing a zero entry in « to one, with probability c.,.

@ Calculate f(t|vy*, G) and f(t|7y,G) where f denotes the HMT
density.
© Jump from ~ to v* with probability

f(tlv*, G)p(v*)q(v|v*) }
C (Y, G)p()a(vly)

r(y,y") = min{l
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MCMC for G given v and T (Bhadra and Mallick, 2013)

@ Given the current G, propose G* by either (a) changing a
non-zero edge in G to zero with probability (1 — ag) or (b)
changing a zero entry in G to one, with probability ag.

@ Calculate f(t]y,G*) and f(t|7y,G) where f denotes the HMT
density.

© Jump from G to G* with probability

f(t|G*,v)p(G")q(G[G") }
" f(t|G,v)r(G)q(G*|G)

r(G,G*) = min {1
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The special case of tree-structured graphs

@ The hyper-matrix t-density has this form:
F(tg) = Const. x [det{l,+ (t2)(tg) /d}]~(PTrHGI=D/2,
and the overall density

k n
)
1= f(t5)

@ "Trees" are a special case of decomposable graphs, where no
cycles are allowed.

@ The “cliques” are the edges and the “separators” are single
nodes.
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The special case of tree-structured graphs

@ Let t be a symmetric matrix of non-negative weights for all
pairs of distinct variables and zeros on the diagonal.

@ Let ¥ be the set of all possible spanning trees over vertex set
V. Then

P(Qe%)—ztt) 11 &

{ijteg

where Z (t Z H tj

Geé {ij}eg
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The Matrix tree theorem (Meila and Jaakkola, 2006)

Z (t) is equal to the determinant |L* (t)|, with matrix L* (t)
representing the first (g-1) rows and columns of the matrix L (t)
given by:

Ly (t) = Lji (1) = {_t” EVIE (1)

Evaluating a determinant with (g — 1) rows has complexity O(q3).
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The special case of tree-structured graphs

@ Evaluating the normalizing constant of the density is difficult
for most graphs, including decomposable graphs
(non-polynomial time: O(q972)).

@ However, the graph theoretic result known as Kirchoff's
theorem, or Matrix-tree theorem (Meila and Jaakkola, 2006)
provides a O(q>) algorithm for trees.

@ Allows us to mix over the tree structure and this can capture
a rich class of graphs.

o Instead of drawing |G, T and G|v, T one can simply draw
4| T, where T is the new marginal data distribution after
integrating out the graph.
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Simulation study

@ We choose p =498, g = 50 and n = 100.

@ We chose the dimension of true predictors, p, = 20.

@ The true adjacency matrix G was chosen to be decomposable.

@ The n x p predictor matrix X was simulated from multivariate
Normal. We tried both uncorrelated columns and correlated

columns in X (a banded correlation structure of width 10 and
maximum correlation of 0.8).
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Correlated predictors
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MCMC diagnostics
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The likelihood values are not directly comparable.

However, mixing over trees helps MCMC convergence.
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Analysis of a breast cancer data set

@ We chose the breast cancer data analyzed by Peng et al.
(2009).

@ We have n = 172 breast tumor samples. For each sample, we
have available p = 384 CNAs and g = 654 gene expression

levels.

@ Since all genes are known to be breast cancer related, we
chose a subset of § = 50 genes that showed most variability.
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Analysis of a breast cancer data set

Chromosomal location  Start base  End base  Posterior (d)  Posterior (e)

of selected feature (a) pair (b) pair (c) (Tree) (Decomp.)

11q13.3-11q13.4 68415321 70200416 1.00 1.00
15q11.2-15q11.2 18786757 19949603 1.00 1.00
16p13.3-16p11.2 37048 32796294 1.00 0.94
17q12-17q12 31424350 31562438 1.00 1.00
17q12-17q12 34082227 34670370 1.00 1.00
17q12-17q12 34811630 34811630 1.00 1.00
17q12-17q12 34944071 35154416 1.00 1.00
17q12-17q21.1 35167500 35428880 1.00 1.00
17921.1-17921.2 35493689 35699243 1.00 1.00
17921.2-17921.2 36037494 36923525 1.00 0.66
3q29-3929 199171511 199171511 1.00 1.00
23p22.33-23p11.3 2725527 46830187 0.99 0.89
10p15.3-10p12.1 288292 27260145 0.98 0.61
17q21.2-17q21.2 35724970 35724970 0.96 1.00
10g22.2-10q22.2 76790556 77072436 0.96 0.93
10921.3-10g22.2 69353349 75083656 0.95 0.17

17925.3-17q25.3 76816671 78649094 0.89 0.60
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Major findings

@ Several CNAs in 17q12 (location of BRCAL) and
17921.1-17q21.2 (location of ERBB2) are selected.

@ CNAs identified as having significant trans-effects by Peng et
al. are in blue. The Bayesian methods select them with

posterior probability 1.

o Differences bigger than 0.25 between the two Bayesian
methods are highlighted in red.
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