Bayesian Variable Selection in High-Dimensional Regressions with Correlated Noise

Anindya Bhadra
bhadra@purdue.edu
www.stat.purdue.edu/~bhadra

Purdue University
July 13, 2014

Overview

- We consider a "multiple predictors, multiple responses" regression problem where the error terms may be correlated.
- Zellner (1962) discusses at length the consequences of ignoring the error covariance while performing regression.
- Many high-dimensional applications in genomics fall in this framework. For example: predictors could be copy number variations (CNV) and responses could be gene (mRNA) expressions.
- We formulate a Bayesian "joint" estimation technique of CNV-mRNA association and mRNA-mRNA interaction network.

Problem Formulation

- $\mathrm{n}=$ Number of humans.
- $X=$ An $n \times p$ matrix of predictors
- $Y=A n n \times q$ matrix of responses
- We would like to regress Y on X.
- Example (CNV-mRNA interaction in Breast Cancer): For n individuals with breast cancer, we analyze how CNVs (X) affect their mRNA expressions (Y).

Problem Formulation

- Consider the linear Gaussian regression model:

$$
\begin{aligned}
\mathbf{Y}_{n \times q} & =\mathbf{X}_{n \times p} \mathbf{B}_{p \times q}+\boldsymbol{\epsilon}_{n \times q}, \\
\boldsymbol{\epsilon}_{n \times q} & \sim \mathrm{MN}_{n \times q}\left(\mathbf{0}, \mathbf{I}_{n}, \boldsymbol{\Sigma}_{q \times q}\right), \\
\text { i.e. } \operatorname{Vec}\left(\boldsymbol{\epsilon}_{n \times q}\right) & \sim \mathrm{N}_{n q}\left(\mathbf{0}, \mathbf{I}_{n} \otimes \boldsymbol{\Sigma}_{q \times q}\right) .
\end{aligned}
$$

- The unknowns are $\mathrm{B}_{p \times q}$ and $\Sigma_{q \times q}$.
- The dimensions are $p q$ and $q(q+1) / 2$. Often much larger than n.
- Typical values: $n=100, p=500$ to $3000, q=100$.

Joint modeling of mean and covariance for Seemingly Unrelated Regression

- In a Seemingly Unrelated Regression setting, one might be interested in modeling "both" the mean and the covariance structure.
- Rothman et al. (2010, JCGS) and Yin and Li (2011, Ann. Appl. Stat.) make a frequentist attempt at joint modeling with the MRCE approach. (essentially an iterative approach with alternating lasso() and glasso() steps).
- Other approaches include the CAPME (Biometrika, 2013) and CLIME (arXiv:1102.2233) methods of Cai et al.
- Bhadra and Mallick (Biometrics, 2013) take a Bayesian approach.

Model conditional on indicators: Toy example

- Consider the model conditional upon indicators γ and \mathbf{G}.

$$
\mathbf{Y}=\mathbf{X}_{\gamma} \mathbf{B}_{\gamma, \mathbf{G}}+\boldsymbol{\epsilon} ; \quad \boldsymbol{\epsilon} \sim \operatorname{MN}\left(\mathbf{0}, \mathbf{I}_{n}, \boldsymbol{\Sigma}_{\mathbf{G}}\right)
$$

- For example, say $p=q=4$. Then $\gamma=(1,0,1,0)$ means only the first and the third predictors are important.
- Let's say G is:

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This means $\boldsymbol{\Sigma}_{1,2}^{-1} \neq 0$, the other off-diagonal terms are 0 .

Decomposable (or triangulated) graphs

- No chordless cycle of length ≥ 3.
- Cliques (i.e., the connected components) and separators (i.e., the parts in common between two cliques) can be found in polynomial time (NP-complete for general graphs).
- The overall density splits as:

$$
f(y)=\prod_{j=1}^{k} f\left(y_{c_{j}}\right) / \prod_{j=2}^{k} f\left(y_{s_{j}}\right) .
$$

Bayesian hierarchical model

$$
\begin{aligned}
\left(\mathbf{Y}-\mathbf{X}_{\gamma} \mathbf{B}_{\gamma, \mathbf{G}}\right) \mid \mathbf{B}_{\gamma, \mathbf{G}}, \boldsymbol{\Sigma}_{\mathbf{G}} & \sim \operatorname{MN}_{n_{\times q}}\left(\mathbf{0}, \mathbf{I}_{n}, \boldsymbol{\Sigma}_{\mathbf{G}}\right), \\
\mathbf{B}_{\gamma, \mathbf{G}} \mid \boldsymbol{\gamma}, \boldsymbol{\Sigma}_{\mathbf{G}} & \sim \operatorname{MN}_{p_{\gamma} \times \boldsymbol{q}}\left(\mathbf{0}, \mathbf{c}_{p_{\gamma}}, \boldsymbol{\Sigma}_{\mathbf{G}}\right), \\
\boldsymbol{\Sigma}_{\mathbf{G}} \mid \mathbf{G} & \sim \operatorname{HiW}_{\mathbf{G}}\left(b, d \mathbf{I}_{q}\right), \\
\gamma_{i} & \stackrel{\text { i.i.d }}{\sim} \operatorname{Ber}\left(w_{\gamma}\right) \text { for } i=1, \ldots, p, \\
\mathrm{G}_{k} & \stackrel{\text { i.i.d }}{\sim} \operatorname{Ber}\left(w_{G}\right) \text { for } k=1, \ldots, q(q-1) / 2, \\
w_{\gamma}, w_{G} & \sim \operatorname{Uniform}(0,1) .
\end{aligned}
$$

The marginalized model (Bhadra and Mallick, 2013)

- After the marginalization of $\mathbf{B}_{\gamma, \mathbf{G}}$ and $\boldsymbol{\Sigma}_{\mathbf{G}}$, the resultant distribution is a "hyper matrix t ".
- Define $\mathbf{T}=\mathbf{A Y}$ where $\mathbf{A A}^{\prime}=\left(\mathbf{I}_{n}+c\left(\mathbf{X}_{\gamma} \mathbf{X}_{\gamma}^{\prime}\right)\right)^{-1}$. Then

$$
\mathbf{T} \mid \gamma, \mathbf{G} \sim \operatorname{HMT}_{\mathbf{G}}\left(b, \mathbf{I}_{n}, d \mathbf{I}_{q}\right) .
$$

- This is a special type of "t-distribution" whose density splits over cliques and separators, given the graph.
- The marginalization has now resulted in a collapsed Gibbs sampler: need to sample only two quantities (γ and \mathbf{G}) instead of four $\left(\mathbf{B}_{\gamma, \mathbf{G}}, \boldsymbol{\Sigma}_{\mathbf{G}}, \gamma\right.$ and $\left.\mathbf{G}\right)$.

MCMC for γ given G and T (Bhadra and Mallick, 2013)

(1) Given the current γ, propose γ^{*} by either (a) changing a non-zero entry in γ to zero with probability $\left(1-\alpha_{\gamma}\right)$ or (b) changing a zero entry in γ to one, with probability α_{γ}.
(2) Calculate $f\left(\mathbf{t} \mid \gamma^{*}, \mathbf{G}\right)$ and $f(\mathbf{t} \mid \gamma, \mathbf{G})$ where f denotes the HMT density.
(3) Jump from γ to γ^{*} with probability

$$
r\left(\gamma, \gamma^{*}\right)=\min \left\{1, \frac{f\left(\mathbf{t} \mid \gamma^{*}, \mathbf{G}\right) p\left(\gamma^{*}\right) q\left(\gamma \mid \gamma^{*}\right)}{f(\mathbf{t} \mid \gamma, \mathbf{G}) p(\gamma) q\left(\gamma^{*} \mid \gamma\right)}\right\}
$$

MCMC for G given γ and \mathbf{T} (Bhadra and Mallick, 2013)

(1) Given the current G, propose \mathbf{G}^{*} by either (a) changing a non-zero edge in \mathbf{G} to zero with probability $\left(1-\alpha_{G}\right)$ or (b) changing a zero entry in \mathbf{G} to one, with probability α_{G}.
(2) Calculate $f\left(\mathbf{t} \mid \gamma, \mathbf{G}^{*}\right)$ and $f(\mathbf{t} \mid \boldsymbol{\gamma}, \mathbf{G})$ where f denotes the HMT density.
(3) Jump from \mathbf{G} to \mathbf{G}^{*} with probability

$$
r\left(\mathbf{G}, \mathbf{G}^{*}\right)=\min \left\{1, \frac{f\left(\mathbf{t} \mid \mathbf{G}^{*}, \gamma\right) p\left(\mathbf{G}^{*}\right) q\left(\mathbf{G} \mid \mathbf{G}^{*}\right)}{f(\mathbf{t} \mid \mathbf{G}, \gamma) p(\mathbf{G}) q\left(\mathbf{G}^{*} \mid \mathbf{G}\right)}\right\}
$$

The special case of tree-structured graphs

- The hyper-matrix t-density has this form:

$$
f\left(\mathbf{t}_{c_{j}}^{n}\right)=\text { Const. } \times\left[\operatorname{det}\left\{\mathbf{I}_{n}+\left(\mathbf{t}_{c_{j}}^{n}\right)\left(\mathbf{t}_{c_{j}}^{n}\right)^{\prime} / d\right\}\right]^{-\left(b+n+\left|c_{j}\right|-1\right) / 2},
$$

and the overall density

$$
f\left(\mathbf{t}^{n}\right)=\frac{\prod_{j=1}^{k} f\left(\mathbf{t}_{c_{j}}^{n}\right)}{\prod_{j=2}^{k} f\left(\mathbf{t}_{S_{j}}^{n}\right)} .
$$

- "Trees" are a special case of decomposable graphs, where no cycles are allowed.
- The "cliques" are the edges and the "separators" are single nodes.

The special case of tree-structured graphs

- Let t be a symmetric matrix of non-negative weights for all pairs of distinct variables and zeros on the diagonal.
- Let \mathscr{C} be the set of all possible spanning trees over vertex set \mathcal{V}. Then

$$
\begin{aligned}
& P(\mathcal{G} \in \mathscr{C})=\frac{1}{Z(t)} \prod_{\{i . j\} \in \mathcal{G}} t_{i j} \\
& \text { where } Z(t)=\sum_{\mathcal{G} \in \mathscr{C}} \prod_{\{i, j\} \in \mathcal{G}} t_{i j}
\end{aligned}
$$

The Matrix tree theorem (Meila and Jaakkola, 2006)

$Z(t)$ is equal to the determinant $\left|L^{*}(t)\right|$, with matrix $L^{*}(t)$ representing the first ($\mathrm{q}-1$) rows and columns of the matrix $L(t)$ given by:

$$
L_{i j}(t)=L_{j i}(t)= \begin{cases}-t_{i j} & i, j \in \mathcal{V}, i \neq j \tag{1}\\ \sum_{j \in \mathcal{V}} t_{i j} & i, j \in \mathcal{V}, i=j\end{cases}
$$

Evaluating a determinant with $(q-1)$ rows has complexity $O\left(q^{3}\right)$.

The special case of tree-structured graphs

- Evaluating the normalizing constant of the density is difficult for most graphs, including decomposable graphs (non-polynomial time: $O\left(q^{q-2}\right)$).
- However, the graph theoretic result known as Kirchoff's theorem, or Matrix-tree theorem (Meila and Jaakkola, 2006) provides a $O\left(q^{3}\right)$ algorithm for trees.
- Allows us to mix over the tree structure and this can capture a rich class of graphs.
- Instead of drawing $\gamma \mid \mathbf{G}, T$ and $\mathbf{G} \mid \gamma, T$ one can simply draw $\gamma \mid \tilde{T}$, where \tilde{T} is the new marginal data distribution after integrating out the graph.

Simulation study

- We choose $p=498, q=50$ and $n=100$.
- We chose the dimension of true predictors, $p_{\gamma}=20$.
- The true adjacency matrix \mathbf{G} was chosen to be decomposable.
- The $n \times p$ predictor matrix \mathbf{X} was simulated from multivariate Normal. We tried both uncorrelated columns and correlated columns in X (a banded correlation structure of width 10 and maximum correlation of 0.8).

Results: Correlated predictors case

MCMC diagnostics

- The likelihood values are not directly comparable.
- However, mixing over trees helps MCMC convergence.

Analysis of a breast cancer data set

- We chose the breast cancer data analyzed by Peng et al. (2009).
- We have $n=172$ breast tumor samples. For each sample, we have available $p=384$ CNAs and $q=654$ gene expression levels.
- Since all genes are known to be breast cancer related, we chose a subset of $\tilde{q}=50$ genes that showed most variability.

Analysis of a breast cancer data set

Chromosomal location of selected feature (a)	Start base pair (b)	End base pair (c)	Posterior (d) (Tree)	Posterior (e) (Decomp.)
11q13.3-11q13.4	68415321	70200416	1.00	1.00
15q11.2-15q11.2	18786757	19949603	1.00	1.00
16p13.3-16p11.2	37048	32796294	1.00	0.94
17q12-17q12	31424350	31562438	1.00	1.00
17q12-17q12	34082227	34670370	1.00	1.00
17q12-17q12	34811630	34811630	1.00	1.00
17q12-17q12	34944071	35154416	1.00	1.00
17q12-17q21.1	35167500	35428880	1.00	1.00
17q21.1-17q21.2	35493689	35699243	1.00	1.00
17q21.2-17q21.2	36037494	36923525	1.00	0.66
3q29-3q29	199171511	199171511	1.00	1.00
23p22.33-23p11.3	2725527	46830187	0.99	0.89
10p15.3-10p12.1	288292	27260145	0.98	0.61
17q21.2-17q21.2	35724970	35724970	0.96	1.00
10q22.2-10q22.2	76790556	77072436	0.96	0.93
10q21.3-10q22.2	69353349	75083656	0.95	0.17
17q25.3-17q25.3	76816671	78649094	0.89	0.60

Major findings

- Several CNAs in 17q12 (location of BRCA1) and 17q21.1-17q21.2 (location of ERBB2) are selected.
- CNAs identified as having significant trans-effects by Peng et al. are in blue. The Bayesian methods select them with posterior probability 1 .
- Differences bigger than 0.25 between the two Bayesian methods are highlighted in red.

