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Overview

We consider a “multiple predictors, multiple responses”
regression problem where the error terms may be correlated.

Zellner (1962) discusses at length the consequences of
ignoring the error covariance while performing regression.

Many high-dimensional applications in genomics fall in this
framework. For example: predictors could be copy number
variations (CNV) and responses could be gene (mRNA)
expressions.

We formulate a Bayesian “joint” estimation technique of
CNV-mRNA association and mRNA-mRNA interaction
network.
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Problem Formulation

n = Number of humans.

X = An n × p matrix of predictors

Y = An n × q matrix of responses

We would like to regress Y on X .

Example (CNV-mRNA interaction in Breast Cancer): For n
individuals with breast cancer, we analyze how CNVs (X)
affect their mRNA expressions (Y).
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Problem Formulation

Consider the linear Gaussian regression model:

Yn×q = Xn×pBp×q + εn×q,

εn×q ∼ MNn×q(0, In,Σq×q),

i.e.,Vec(εn×q) ∼ Nnq(0, In ⊗Σq×q).

The unknowns are Bp×q and Σq×q.

The dimensions are pq and q(q + 1)/2. Often much larger
than n.

Typical values: n = 100, p = 500 to 3000, q = 100.
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Joint modeling of mean and covariance for Seemingly
Unrelated Regression

In a Seemingly Unrelated Regression setting, one might be
interested in modeling “both” the mean and the covariance
structure.

Rothman et al. (2010, JCGS) and Yin and Li (2011, Ann.
Appl. Stat.) make a frequentist attempt at joint modeling
with the MRCE approach. (essentially an iterative approach
with alternating lasso() and glasso() steps).

Other approaches include the CAPME (Biometrika, 2013) and
CLIME (arXiv:1102.2233) methods of Cai et al.

Bhadra and Mallick (Biometrics, 2013) take a Bayesian
approach.
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Model conditional on indicators: Toy example

Consider the model conditional upon indicators γ and G.

Y = XγBγ,G + ε; ε ∼ MN(0, In,ΣG).

For example, say p = q = 4. Then γ = (1, 0, 1, 0) means only
the first and the third predictors are important.

Let’s say G is: 
1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1


This means Σ−11,2 6= 0, the other off-diagonal terms are 0.
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Decomposable (or triangulated) graphs

No chordless cycle of length ≥ 3.

Cliques (i.e., the connected components) and separators (i.e.,
the parts in common between two cliques) can be found in
polynomial time (NP-complete for general graphs).

The overall density splits as:
f (y) =

∏k
j=1 f (yCj

)/
∏k

j=2 f (ySj ).
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Bayesian hierarchical model

(Y − XγBγ,G)|Bγ,G,ΣG ∼ MNn×q(0, In,ΣG),

Bγ,G|γ,ΣG ∼ MNpγ×q(0, cIpγ ,ΣG),

ΣG|G ∼ HIWG(b, dIq),

γi
i.i.d∼ Ber(wγ) for i = 1, . . . , p,

Gk
i.i.d∼ Ber(wG ) for k = 1, . . . , q(q − 1)/2,

wγ ,wG ∼ Uniform(0, 1).
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The marginalized model (Bhadra and Mallick, 2013)

After the marginalization of Bγ,G and ΣG, the resultant
distribution is a “hyper matrix t”.

Define T = AY where AA′ = (In + c(XγX′γ))−1. Then

T|γ,G ∼ HMTG(b, In, dIq).

This is a special type of “t-distribution” whose density splits
over cliques and separators, given the graph.

The marginalization has now resulted in a collapsed Gibbs
sampler: need to sample only two quantities (γ and G)
instead of four (Bγ,G, ΣG, γ and G).
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MCMC for γ given G and T (Bhadra and Mallick, 2013)

1 Given the current γ, propose γ∗ by either (a) changing a
non-zero entry in γ to zero with probability (1− αγ) or (b)
changing a zero entry in γ to one, with probability αγ .

2 Calculate f (t|γ∗,G) and f (t|γ,G) where f denotes the HMT
density.

3 Jump from γ to γ∗ with probability

r(γ,γ∗) = min

{
1,

f (t|γ∗,G)p(γ∗)q(γ|γ∗)
f (t|γ,G)p(γ)q(γ∗|γ)

}
.
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MCMC for G given γ and T (Bhadra and Mallick, 2013)

1 Given the current G, propose G∗ by either (a) changing a
non-zero edge in G to zero with probability (1− αG ) or (b)
changing a zero entry in G to one, with probability αG .

2 Calculate f (t|γ,G∗) and f (t|γ,G) where f denotes the HMT
density.

3 Jump from G to G∗ with probability

r(G,G∗) = min

{
1,

f (t|G∗,γ)p(G∗)q(G|G∗)
f (t|G,γ)p(G)q(G∗|G)

}
.
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The special case of tree-structured graphs

The hyper-matrix t-density has this form:

f (tnCj
) = Const.× [det{In + (tnCj

)(tnCj
)
′
/d}]−(b+n+|Cj |−1)/2,

and the overall density

f (tn) =

∏k
j=1 f (tnCj

)∏k
j=2 f (tnSj )

.

“Trees” are a special case of decomposable graphs, where no
cycles are allowed.

The “cliques” are the edges and the “separators” are single
nodes.
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The special case of tree-structured graphs

Let t be a symmetric matrix of non-negative weights for all
pairs of distinct variables and zeros on the diagonal.

Let C be the set of all possible spanning trees over vertex set
V. Then

P (G ∈ C ) =
1

Z (t)

∏
{i .j}∈G

tij

where Z (t) =
∑
G∈C

∏
{i ,j}∈G

tij
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The Matrix tree theorem (Meila and Jaakkola, 2006)

Z (t) is equal to the determinant |L∗ (t)|, with matrix L∗ (t)
representing the first (q-1) rows and columns of the matrix L (t)
given by:

Lij (t) = Lji (t) =

{
−tij i , j ∈ V, i 6= j ;∑

j∈V tij i , j ∈ V, i = j .
(1)

Evaluating a determinant with (q − 1) rows has complexity O(q3).
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The special case of tree-structured graphs

Evaluating the normalizing constant of the density is difficult
for most graphs, including decomposable graphs
(non-polynomial time: O(qq−2)).

However, the graph theoretic result known as Kirchoff’s
theorem, or Matrix-tree theorem (Meila and Jaakkola, 2006)
provides a O(q3) algorithm for trees.

Allows us to mix over the tree structure and this can capture
a rich class of graphs.

Instead of drawing γ|G,T and G|γ,T one can simply draw
γ|T̃ , where T̃ is the new marginal data distribution after
integrating out the graph.
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Simulation study

We choose p = 498, q = 50 and n = 100.

We chose the dimension of true predictors, pγ = 20.

The true adjacency matrix G was chosen to be decomposable.

The n × p predictor matrix X was simulated from multivariate
Normal. We tried both uncorrelated columns and correlated
columns in X (a banded correlation structure of width 10 and
maximum correlation of 0.8).
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Results: Correlated predictors case
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MCMC diagnostics

The likelihood values are not directly comparable.

However, mixing over trees helps MCMC convergence.
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Analysis of a breast cancer data set

We chose the breast cancer data analyzed by Peng et al.
(2009).

We have n = 172 breast tumor samples. For each sample, we
have available p = 384 CNAs and q = 654 gene expression
levels.

Since all genes are known to be breast cancer related, we
chose a subset of q̃ = 50 genes that showed most variability.
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Analysis of a breast cancer data set

Chromosomal location Start base End base Posterior (d) Posterior (e)
of selected feature (a) pair (b) pair (c) (Tree) (Decomp.)

11q13.3-11q13.4 68415321 70200416 1.00 1.00
15q11.2-15q11.2 18786757 19949603 1.00 1.00
16p13.3-16p11.2 37048 32796294 1.00 0.94
17q12-17q12 31424350 31562438 1.00 1.00
17q12-17q12 34082227 34670370 1.00 1.00
17q12-17q12 34811630 34811630 1.00 1.00
17q12-17q12 34944071 35154416 1.00 1.00
17q12-17q21.1 35167500 35428880 1.00 1.00
17q21.1-17q21.2 35493689 35699243 1.00 1.00
17q21.2-17q21.2 36037494 36923525 1.00 0.66

3q29-3q29 199171511 199171511 1.00 1.00
23p22.33-23p11.3 2725527 46830187 0.99 0.89
10p15.3-10p12.1 288292 27260145 0.98 0.61
17q21.2-17q21.2 35724970 35724970 0.96 1.00
10q22.2-10q22.2 76790556 77072436 0.96 0.93
10q21.3-10q22.2 69353349 75083656 0.95 0.17
17q25.3-17q25.3 76816671 78649094 0.89 0.60
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Major findings

Several CNAs in 17q12 (location of BRCA1) and
17q21.1-17q21.2 (location of ERBB2) are selected.

CNAs identified as having significant trans-effects by Peng et
al. are in blue. The Bayesian methods select them with
posterior probability 1.

Differences bigger than 0.25 between the two Bayesian
methods are highlighted in red.
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