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Overview

@ Global-local regularization is now well established for high-dimensional
Bayesian statistics.

@ Most existing results are in linear, Gaussian models.

@ This talk: Advances in complex and deep models.

o Nonlinear models
o Non-Gaussian models
o Deep models

e Joint work with Jyotishka Datta (Arkansas); Yunfan Li (Purdue);
Nick Polson and Brandon Willard (Chicago Booth). Supported by
NSF Grant DMS-1613063.
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Global-local (g-1) priors

o Consider the sparse “normal means” model (y; | 6;) ~ N (0;,1) for
i=1,...,n; such that #(6; # 0) < p, with p, = o(n).

e Carvalho, Polson and Scott (2010) introduced “global-local” normal
scale mixture priors for sparsity

(0; | AiyT) ~ N(O, >\,27'2); Ai ~p(Ai); T~ p(T).

e The “global” term 7 should provide substantial shrinkage towards zero.

o The “local” \; terms should have heavy tails so that “signals” are not
shrunk too much. One option is p();) o< (1 + A?)~1, which induces the
“horseshoe prior" on 6.
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Some examples of global-local priors

@ The horseshoe prior (Carvalho, Polson and Scott, 2010, Biometrika).

@ The horseshoe+ prior (Bhadra et al., 2017, Bayesian Anal.).

The generalized double Pareto prior (Armagan, Dunson and Lee,
2013, Stat. Sinica).

@ The Dirichlet-Laplace prior (Bhattacharya et al., 2015, JASA).

The Inverse Gamma—Gamma Prior (Bai and Ghosh, 2017,
arXiv:1710.04369).
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Some examples of global-local priors

@ The order of peakedness near @ The order of tail heaviness:
zero: HS+ ~ DL > HS > GDP > Cauchy >
GDP = Laplace > Cauchy HS+ > HS > DL > Laplace
:7 g’ —— GDP
S 8, -+ Cauchy
o | o + Laplace
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Some properties of g-I priors in linear models

e Datta and Ghosh (2013, Bayesian Anal.): proved that the decision
rule induced by the horseshoe estimator is asymptotically Bayes
optimal for multiple testing under 0-1 loss.

@ van der Pas et al. (2014, 2017, EJS): showed the horseshoe,
horsehsoe+ and several other g- estimators are minimax in ¢> up to a
constant.

@ Bhadra et al. (2019, JMLR): Improved finite sample predictive risk
results in linear regression.

e Summary of available results for linear models in Bhadra et al. (2019,
Stats. Sci.):
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Default Bayes analysis for nonlinear estimation problems
using g-| priors

e Bhadra et al. (2016, Biometrika):
o 1 = > 602 (sum of squares)
o 1, = max§; (max)
o 13 = 616, (product)
e 14 = 61/0, (ratio or Fieller-Creasy).

@ The local heavy-tailed A; terms leave large signals un-shrunk, even for
nonlinear functions!

@ The global term helps shrink the noise components, even for nonlinear
functions!
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A key property: regular variation

Key property: half-Cauchy (Gelman) has regularly-varying tails.

@ Regular variation is closed under many nonlinear transformations
(including four on the previous slide).

@ The regularly varying tails of ;s translate to regularly varying tails for
the prior of 1.

@ Since the likelihood is light-tailed (normal), the heavy tailed priors on
¥ help in non-informative analysis (Dawid, 1973).
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Key findings

@ Resolves a long-standing difficulty noted by Efron (1973) on designing
a non-informative prior that works for all four problems.

@ Performance is competitive with the reference priors, when they exist.

o Global-local priors are proper, no difficulties with model selection
using usual techniques.
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Nonparametric function estimation using g-| priors

@ Shin et al. (2019, JASA) consider the standard nonparametric model
Yi = F(x;) + €, fori=1,...,n, where F(x) = E(Y | x).

@ A natural representation is to use a basis function representation of
K
the form f(X,') = Zk:l (bk(xi)ﬁk-

@ Possible to shrink the basis coefficients, but not clear what that
means.

o If the a-priori belief is F(-) is close to certain parametric families (e.g.,
linear or quadratic), more reasonable to shrink toward that shape.
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The functional horseshoe prior Shin et al. (2019, JASA)

@ Define ¢g to be the column space of parametric function one desires
to shrink to.

@ For example, if the parametric form is assumed to be close to linear
then ¢p = {1,x} € R"™*2,

@ The prior on [ is defined as

p(B | 7) o (r2) (k=) exp {—201726T¢T(/ - Qo)¢>6} ,
2\b—1/2
p(7) (") ; T,a,b>0,

(1 + 72)(a+b)

where dy = rank(¢o) and Qo = do(dd ¢o) 1¢g , is the projection
matrix of ¢g.
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The functional horseshoe prior Shin et al. (2019, JASA)

@ The marginal prior on 7 is half-cauchy if a=b=1/2.

@ The term (/ — Qp) in the prior inverse covariance enables shrinkage of
¢ towards ¢g.

@ Model selection consistency is demonstrated, along with good
empirical results.
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Global-local priors for dependent data

o Define h; = log(72)\?).

o Kowal et al. (2019, JRSSB) show the horseshoe hierarchy up to
(0; | T) is achieved by the model

hi = p+ni i~ Z(1/27 1/2707 1)7

where 11 = log(72),n; = log(A?) and Z denotes the Fisher-Z
distribution.

@ Dependence in h; is introduced using an autoregressive structure as

hi = M+¢(hi—l _H) +77ia ni~ Z(1/271/2505 1)7
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Global-local priors for dependent data

e For sampling Kowal et al. (2019) use the Pdlya-gamma augmentation
scheme.

@ Application in Bayesian trend filtering.

@ Very similar formulation by Bitto and Friihwirth-Schnatter (2019, J of
Econometrics), who use a double gamma prior.

14 /29



Global-local priors for multivariate models

e Li, Craig and Bhadra (2019, JCGS) consider the multivariate
Gaussian model y; | Q ~ Normal(0, Q1) for i =1,...,n.

@ Prior on Q is termed the graphical horseshoe (GHS), defined as
Wi X 1, Wiji<j ™~ Normal(O,)\,?sz), )\,’j7,'<j ~ C+(0, 1), T~ C+(0, 1),

with prior mass truncated to the space of positive definite matrices.

@ Non-informative prior on the diagonal terms, independent horseshoe
priors on the off-diagonal terms.
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Posterior sampling under the graphical horseshoe (Li, Craig

and Bhadra, 2019, JCGS)

o Additional challenge: need to maintain symmetry and positive
definiteness.

@ Partition the matrix Q as:

O- ( Q-p)(-p) @(-p)p ) ’

/
w w
(=p)p pp

where (—p) denotes the set of all indices except for p.

e Following Wang (2012, BA) reparameterize:

B=w(pp and v=uwpy - wz—p)PQ(—lp)(—p)w(_P)P'
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Posterior sampling under the graphical horseshoe (Li, Craig
and Bhadra, 2019, JCGS)

e Wang (2012, BA) showed for Bayesian graphical lasso (BGL):
(7, B Q=p)(=p)s Y> A, T) ~ Gamma(n/2 + 1, 5,,/2) x Normal(—Cs(_p),, C),

1 *_2\—11—-1
“p)-p) AT

where C = {spr(

@ Conditional posteriors of off-diagonal terms are normal, those of
diagonal terms are gamma.

o If the initial € is positive definite, ensures all subsequent iterations are
also positive definite.
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Posterior sampling under the graphical horseshoe (Li, Craig
and Bhadra, 2019, JCGS)

e The difference is, for BGL, Ajj ~ Exp(1) but for GHS \;; ~ C*(0,1),
a priori.

@ Here, we follow the key data augmentation technique proposed by
Makalic and Schmidt (2016, IEEE Sig. Proc. Letters):

if x? | a ~ InvGamma(1/2,1/a) and a~ InvGamma(1/2,1),
then marginally, x ~ C*™(0,1)

@ That is, a half-Cauchy is a mixture of two inverse gammas.

@ BUT! Inverse gamma is conjugate to itself and to the variance
parameter in a normal linear regression model.
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Posterior sampling under the graphical horseshoe (Li, Craig
and Bhadra, 2019, JCGS)

All conditional posteriors are available in closed form, leading to a full
Gibbs sampler.

They are either multivariate normal, gamma or inverse gamma.

Computational complexity is O(p3).

o MATLAB code on github at http://github.com/1iyf1988/GHS.

Li, Datta, Craig and Bhadra (2019, arXiv:1903.06768) proposed a
similar algorithm for seemingly unrelated regression models.
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http://github.com/liyf1988/GHS

Global-local priors for non-Gaussian models

@ So far: the likelihood is Gaussian (either univariate, or multivariate).
@ How do these priors do when the likelihood is changed?

e Datta and Dunson (2016, Biometrika) use global-local priors in a
quasi-sparse gamma-Poisson glm. The model is:

yi | i ~ Poisson(6;), 6; | \i, 7 ~ Gamma(a, \272),

with heavy-tailed prior densities on \; and 7.

@ Useful alternative to zero-inflated models for count data.
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Global-local priors for non-Gaussian models

@ Related work in classification problems by Magnusson et al. (2016,
arXiv:1602.00260) and Piironen and Vehtari (2017, AISTATS), who
use g-l priors in probit and logistic regression model.

@ Terenin et al. (2019, Statistics and Computing) classify a million data
points in several thousand dimensions in several minutes of running
time.

@ Their work uses GPU to parallelize sampling the local scale
parameters in horseshoe probit regression.
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Global-local priors for deep models

o Far fewer works compared to shallow models (nonlinear,
non-Gaussian).

@ Surprising since deep neural networks are heavily overparameterized
with respect to the observed data.

e Full Bayesian inference (Radford Neal style) is non-existent.
Computation is too costly. Usual workaround: variational Bayes.
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Global-local priors for deep neural networks

@ Ghosh and Doshi-Velez (2017, NeurlPS Workshop on DL) and Ghosh
et al. (2018, ICML) use horseshoe priors for model selection in deep
neural networks.

@ Inference is using a variational approximation, first identified by
Neville et al. (2014, EJS).

@ The trick of writing a half-Cauchy random variable as mixture of two
inverse gammas plays an important role.

@ Louizos et al. (2017, NeurlPS) establish a connection between
horseshoe shrinkage and dropout.
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Data augmentation strategies for deep neural networks

e Gan et al. (2015, AISTATS) use Polya-gamma augmentation strategy
for deep sigmoidal network.

e Wang, Polson and Sokolov (2019, arXiv:1903.09668) expand the data
augmentation strategy for several types of nonlinearities using
Gaussian scale mixture techniques.

Nonlinearity Latent variable
RelLU Generalized inverse Gaussian

Logistic Polya-gamma
Check loss Generalized inverse Gaussian
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Horseshoe shrinkage for deep glms

A conventional glm has g *{E(y | X)} = X3, where g(-) is the link
function.

@ Thus, the conditional mean of the responses is still a /inear function
of X.

@ Tran et al. (2018, arXiv:1805.10157) introduce nonlinearity by
replacing X with the output of a deep neural network.

@ The model is called DeepGLM and horseshoe priors are used on (3 to
achieve sparsity.
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Computational Strategies

@ Full Bayes horseshoe shrinkage in linear, Gaussian models is now
feasible due to recent breakthrough by Bhattacharya et al. (2016,
Biometrika). Complexity reduced from O(p3) to O(n?p).

@ Full Bayes is still very hard in deep models, and it is likely to remain
that way into the foreseeable future.

@ Almost all papers attempting global-local shrinkage in deep models
that are known to us use variational approximations or point
estimation strategies.
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Available software implementations: shallow models

Software with hyperlinked github URL

Relevant Papers

Brief Description of Functionality

MATLAB code: GHS
MATLAB code: HS-GHS
Scala code using CUDA: GPUHorseshoe
R package: GGMprojpred
R package: dsp

Ii et al. (2017)

Li et al. (2019)
Terenin et al. (2019)
Williams et al. (2018)

Kowal et al. (2019)

Precision matrix estimation in GGMs
Joint mean-covariance estimation in SUR models
GPU accelerated Gibbs sampling in probit models
Projection predictive estimation of GGMs
Dynamic shrinkage processes
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https://github.com/liyf1988/GHS
https://github.com/liyf1988/HS_GHS
https://github.com/aterenin/GPUHorseshoe
https://github.com/donaldRwilliams/GGMprojpred
https://github.com/drkowal/dsp

Available software implementations: deep models

Software with hyperlinked github URL Relevant Papers Brief Description of Functionality
MATLAB & R code: DeepGLM Tran et al. (2018) Fitting DeepGLMs with horseshoe regularization
Python code: HS-BNN Ghosh and Doshi-Velez (2017) Horseshoe regularization for Bayesian neural nets
MATLAB code: dsbn Gan et al. (2015) Global-local shrinkage in deep sigmoid belief nets
Python code: Bayesian Compression Louizos et al. (2017) Bayesian compression for deep learning
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https://github.com/VBayesLab/deepGLM
https://github.com/dtak/hs-bnn-public/
https://github.com/zhegan27/dsbn_aistats2015
https://github.com/KarenUllrich/Tutorial_BayesianCompressionForDL
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