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Overview

Global-local regularization is now well established for high-dimensional
Bayesian statistics.

Most existing results are in linear, Gaussian models.

This talk: Advances in complex and deep models.

Nonlinear models
Non-Gaussian models
Deep models

Joint work with Jyotishka Datta (Arkansas); Yunfan Li (Purdue);
Nick Polson and Brandon Willard (Chicago Booth). Supported by
NSF Grant DMS-1613063.
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Global-local (g-l) priors

Consider the sparse “normal means” model (yi | θi ) ∼ N (θi , 1) for
i = 1, . . . , n; such that #(θi 6= 0) ≤ pn with pn = o(n).

Carvalho, Polson and Scott (2010) introduced “global-local” normal
scale mixture priors for sparsity

(θi | λi , τ) ∼ N (0, λ2i τ
2); λi ∼ p(λi ); τ ∼ p(τ).

The “global” term τ should provide substantial shrinkage towards zero.

The “local” λi terms should have heavy tails so that “signals” are not
shrunk too much. One option is p(λi ) ∝ (1 + λ2i )−1, which induces the
“horseshoe prior” on θ.
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Some examples of global-local priors

The horseshoe prior (Carvalho, Polson and Scott, 2010, Biometrika).

The horseshoe+ prior (Bhadra et al., 2017, Bayesian Anal.).

The generalized double Pareto prior (Armagan, Dunson and Lee,
2013, Stat. Sinica).

The Dirichlet-Laplace prior (Bhattacharya et al., 2015, JASA).

The Inverse Gamma–Gamma Prior (Bai and Ghosh, 2017,
arXiv:1710.04369).
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Some examples of global-local priors

The order of peakedness near
zero: HS+ ≈ DL > HS >
GDP = Laplace > Cauchy

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

θ

π
(θ

)

GDP

Cauchy

Laplace

HS

HSPlus

DL

The order of tail heaviness:
GDP > Cauchy >
HS+ > HS > DL > Laplace
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Some properties of g-l priors in linear models

Datta and Ghosh (2013, Bayesian Anal.): proved that the decision
rule induced by the horseshoe estimator is asymptotically Bayes
optimal for multiple testing under 0-1 loss.

van der Pas et al. (2014, 2017, EJS): showed the horseshoe,
horsehsoe+ and several other g-l estimators are minimax in `2 up to a
constant.

Bhadra et al. (2019, JMLR): Improved finite sample predictive risk
results in linear regression.

Summary of available results for linear models in Bhadra et al. (2019,
Stats. Sci.):
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Default Bayes analysis for nonlinear estimation problems
using g-l priors

Bhadra et al. (2016, Biometrika):

ψ1 =
∑
θ2i (sum of squares)

ψ2 = max θi (max)
ψ3 = θ1θ2 (product)
ψ4 = θ1/θ2 (ratio or Fieller-Creasy).

The local heavy-tailed λi terms leave large signals un-shrunk, even for
nonlinear functions!

The global term helps shrink the noise components, even for nonlinear
functions!
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A key property: regular variation

Key property: half-Cauchy (Gelman) has regularly-varying tails.

Regular variation is closed under many nonlinear transformations
(including four on the previous slide).

The regularly varying tails of θi s translate to regularly varying tails for
the prior of ψ.

Since the likelihood is light-tailed (normal), the heavy tailed priors on
ψ help in non-informative analysis (Dawid, 1973).
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Key findings

Resolves a long-standing difficulty noted by Efron (1973) on designing
a non-informative prior that works for all four problems.

Performance is competitive with the reference priors, when they exist.

Global-local priors are proper, no difficulties with model selection
using usual techniques.
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Nonparametric function estimation using g-l priors

Shin et al. (2019, JASA) consider the standard nonparametric model
Yi = F (xi ) + εi , for i = 1, . . . , n, where F (x) = E (Y | x).

A natural representation is to use a basis function representation of
the form f (xi ) =

∑K
k=1 φk(xi )βk .

Possible to shrink the basis coefficients, but not clear what that
means.

If the a-priori belief is F (·) is close to certain parametric families (e.g.,
linear or quadratic), more reasonable to shrink toward that shape.
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The functional horseshoe prior Shin et al. (2019, JASA)

Define φ0 to be the column space of parametric function one desires
to shrink to.

For example, if the parametric form is assumed to be close to linear
then φ0 = {1, x} ∈ Rn×2.

The prior on β is defined as

p(β | τ) ∝ (τ2)−(k−d0)/2 exp

{
− 1

2σ2τ2
βTφT (I − Q0)φβ

}
,

p(τ) ∝ (τ2)b−1/2

(1 + τ2)(a+b)
; τ, a, b > 0,

where d0 = rank(φ0) and Q0 = φ0(φT0 φ0)−1φT0 , is the projection
matrix of φ0.

11 / 29



The functional horseshoe prior Shin et al. (2019, JASA)

The marginal prior on τ is half-cauchy if a = b = 1/2.

The term (I −Q0) in the prior inverse covariance enables shrinkage of
φ towards φ0.

Model selection consistency is demonstrated, along with good
empirical results.
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Global-local priors for dependent data

Define hi = log(τ2λ2i ).

Kowal et al. (2019, JRSSB) show the horseshoe hierarchy up to
(θi | τ) is achieved by the model

hi = µ+ ηi , ηi ∼ Z (1/2, 1/2, 0, 1),

where µ = log(τ2), ηi = log(λ2i ) and Z denotes the Fisher-Z
distribution.

Dependence in hi is introduced using an autoregressive structure as

hi = µ+ φ(hi−1 − µ) + ηi , ηi ∼ Z (1/2, 1/2, 0, 1),
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Global-local priors for dependent data

For sampling Kowal et al. (2019) use the Pólya-gamma augmentation
scheme.

Application in Bayesian trend filtering.

Very similar formulation by Bitto and Frühwirth-Schnatter (2019, J of
Econometrics), who use a double gamma prior.
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Global-local priors for multivariate models

Li, Craig and Bhadra (2019, JCGS) consider the multivariate
Gaussian model yi | Ω ∼ Normal(0,Ω−1) for i = 1, . . . , n.

Prior on Ω is termed the graphical horseshoe (GHS), defined as

ωii ∝ 1, ωij ,i<j ∼ Normal(0, λ2ijτ
2), λij ,i<j ∼ C+(0, 1), τ ∼ C+(0, 1),

with prior mass truncated to the space of positive definite matrices.

Non-informative prior on the diagonal terms, independent horseshoe
priors on the off-diagonal terms.
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Posterior sampling under the graphical horseshoe (Li, Craig
and Bhadra, 2019, JCGS)

Additional challenge: need to maintain symmetry and positive
definiteness.

Partition the matrix Ω as:

Ω =

(
Ω(−p)(−p) ω(−p)p
ω′(−p)p ωpp

)
,

where (−p) denotes the set of all indices except for p.

Following Wang (2012, BA) reparameterize:

β = ω(−p)p and γ = ωpp − ω′(−p)pΩ−1(−p)(−p)ω(−p)p.
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Posterior sampling under the graphical horseshoe (Li, Craig
and Bhadra, 2019, JCGS)

Wang (2012, BA) showed for Bayesian graphical lasso (BGL):

π(γ,β |Ω(−p)(−p),Y ,Λ, τ) ∼ Gamma(n/2 + 1, spp/2)× Normal(−Cs(−p)p,C ),

where C = {sppΩ−1(−p)(−p) + (Λ∗τ2)−1}−1.

Conditional posteriors of off-diagonal terms are normal, those of
diagonal terms are gamma.

If the initial Ω is positive definite, ensures all subsequent iterations are
also positive definite.
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Posterior sampling under the graphical horseshoe (Li, Craig
and Bhadra, 2019, JCGS)

The difference is, for BGL, λij ∼ Exp(1) but for GHS λij ∼ C+(0, 1),
a priori.

Here, we follow the key data augmentation technique proposed by
Makalic and Schmidt (2016, IEEE Sig. Proc. Letters):

if x2 | a ∼ InvGamma(1/2, 1/a) and a ∼ InvGamma(1/2, 1),

then marginally, x ∼ C+(0, 1)

That is, a half-Cauchy is a mixture of two inverse gammas.

BUT! Inverse gamma is conjugate to itself and to the variance
parameter in a normal linear regression model.
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Posterior sampling under the graphical horseshoe (Li, Craig
and Bhadra, 2019, JCGS)

All conditional posteriors are available in closed form, leading to a full
Gibbs sampler.

They are either multivariate normal, gamma or inverse gamma.

Computational complexity is O(p3).

MATLAB code on github at http://github.com/liyf1988/GHS.

Li, Datta, Craig and Bhadra (2019, arXiv:1903.06768) proposed a
similar algorithm for seemingly unrelated regression models.
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Global-local priors for non-Gaussian models

So far: the likelihood is Gaussian (either univariate, or multivariate).

How do these priors do when the likelihood is changed?

Datta and Dunson (2016, Biometrika) use global-local priors in a
quasi-sparse gamma-Poisson glm. The model is:

yi | θi ∼ Poisson(θi ), θi | λi , τ ∼ Gamma(α, λ2i τ
2),

with heavy-tailed prior densities on λi and τ .

Useful alternative to zero-inflated models for count data.
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Global-local priors for non-Gaussian models

Related work in classification problems by Magnusson et al. (2016,
arXiv:1602.00260) and Piironen and Vehtari (2017, AISTATS), who
use g-l priors in probit and logistic regression model.

Terenin et al. (2019, Statistics and Computing) classify a million data
points in several thousand dimensions in several minutes of running
time.

Their work uses GPU to parallelize sampling the local scale
parameters in horseshoe probit regression.
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Global-local priors for deep models

Far fewer works compared to shallow models (nonlinear,
non-Gaussian).

Surprising since deep neural networks are heavily overparameterized
with respect to the observed data.

Full Bayesian inference (Radford Neal style) is non-existent.
Computation is too costly. Usual workaround: variational Bayes.
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Global-local priors for deep neural networks

Ghosh and Doshi-Velez (2017, NeurIPS Workshop on DL) and Ghosh
et al. (2018, ICML) use horseshoe priors for model selection in deep
neural networks.

Inference is using a variational approximation, first identified by
Neville et al. (2014, EJS).

The trick of writing a half-Cauchy random variable as mixture of two
inverse gammas plays an important role.

Louizos et al. (2017, NeurIPS) establish a connection between
horseshoe shrinkage and dropout.
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Data augmentation strategies for deep neural networks

Gan et al. (2015, AISTATS) use Polya-gamma augmentation strategy
for deep sigmoidal network.

Wang, Polson and Sokolov (2019, arXiv:1903.09668) expand the data
augmentation strategy for several types of nonlinearities using
Gaussian scale mixture techniques.

Nonlinearity Latent variable

ReLU Generalized inverse Gaussian
Logistic Polya-gamma

Check loss Generalized inverse Gaussian
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Horseshoe shrinkage for deep glms

A conventional glm has g−1{E (y | X )} = Xβ, where g(·) is the link
function.

Thus, the conditional mean of the responses is still a linear function
of X .

Tran et al. (2018, arXiv:1805.10157) introduce nonlinearity by
replacing X with the output of a deep neural network.

The model is called DeepGLM and horseshoe priors are used on β to
achieve sparsity.
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Computational Strategies

Full Bayes horseshoe shrinkage in linear, Gaussian models is now
feasible due to recent breakthrough by Bhattacharya et al. (2016,
Biometrika). Complexity reduced from O(p3) to O(n2p).

Full Bayes is still very hard in deep models, and it is likely to remain
that way into the foreseeable future.

Almost all papers attempting global-local shrinkage in deep models
that are known to us use variational approximations or point
estimation strategies.
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Available software implementations: shallow models

Software with hyperlinked github URL Relevant Papers Brief Description of Functionality
MATLAB code: GHS Li et al. (2017) Precision matrix estimation in GGMs

MATLAB code: HS-GHS Li et al. (2019) Joint mean-covariance estimation in SUR models
Scala code using CUDA: GPUHorseshoe Terenin et al. (2019) GPU accelerated Gibbs sampling in probit models

R package: GGMprojpred Williams et al. (2018) Projection predictive estimation of GGMs
R package: dsp Kowal et al. (2019) Dynamic shrinkage processes
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https://github.com/drkowal/dsp


Available software implementations: deep models

Software with hyperlinked github URL Relevant Papers Brief Description of Functionality
MATLAB & R code: DeepGLM Tran et al. (2018) Fitting DeepGLMs with horseshoe regularization

Python code: HS-BNN Ghosh and Doshi-Velez (2017) Horseshoe regularization for Bayesian neural nets
MATLAB code: dsbn Gan et al. (2015) Global-local shrinkage in deep sigmoid belief nets

Python code: Bayesian Compression Louizos et al. (2017) Bayesian compression for deep learning
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https://github.com/VBayesLab/deepGLM
https://github.com/dtak/hs-bnn-public/
https://github.com/zhegan27/dsbn_aistats2015
https://github.com/KarenUllrich/Tutorial_BayesianCompressionForDL
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