Horseshoe Regularization for Machine Learning in Complex and Deep Models

Anindya Bhadra www.stat.purdue.edu/~bhadra

Purdue University

イロト イポト イヨト イヨト

1/29

Overview

- Global-local regularization is now well established for high-dimensional Bayesian statistics.
- Most existing results are in linear, Gaussian models.
- This talk: Advances in complex and deep models.
 - Nonlinear models
 - Non-Gaussian models
 - Deep models
- Joint work with Jyotishka Datta (Arkansas); Yunfan Li (Purdue); Nick Polson and Brandon Willard (Chicago Booth). Supported by NSF Grant DMS-1613063.

Global-local (g-l) priors

- Consider the sparse "normal means" model $(y_i | \theta_i) \sim \mathcal{N}(\theta_i, 1)$ for i = 1, ..., n; such that $\#(\theta_i \neq 0) \leq p_n$ with $p_n = o(n)$.
- Carvalho, Polson and Scott (2010) introduced "global-local" normal scale mixture priors for sparsity

$$(heta_i \mid \lambda_i, au) \sim \mathcal{N}(0, \lambda_i^2 au^2); \quad \lambda_i \sim p(\lambda_i); \quad au \sim p(au).$$

- The "global" term au should provide substantial shrinkage towards zero.
- The "local" λ_i terms should have heavy tails so that "signals" are not shrunk too much. One option is $p(\lambda_i) \propto (1 + \lambda_i^2)^{-1}$, which induces the "horseshoe prior" on θ .

Some examples of global-local priors

- The horseshoe prior (Carvalho, Polson and Scott, 2010, Biometrika).
- The horseshoe+ prior (Bhadra et al., 2017, Bayesian Anal.).
- The generalized double Pareto prior (Armagan, Dunson and Lee, 2013, Stat. Sinica).
- The Dirichlet-Laplace prior (Bhattacharya et al., 2015, JASA).
- The Inverse Gamma–Gamma Prior (Bai and Ghosh, 2017, arXiv:1710.04369).

Some examples of global-local priors

 The order of peakedness near zero: HS+ ≈ DL > HS > GDP = Laplace > Cauchy

• The order of tail heaviness: GDP > Cauchy > HS+ > HS > DL > Laplace

イロト イポト イヨト イヨト

Some properties of g-l priors in linear models

- Datta and Ghosh (2013, Bayesian Anal.): proved that the decision rule induced by the horseshoe estimator is asymptotically Bayes optimal for multiple testing under 0-1 loss.
- van der Pas et al. (2014, 2017, EJS): showed the horseshoe, horsehsoe+ and several other g-l estimators are minimax in ℓ_2 up to a constant.
- Bhadra et al. (2019, JMLR): Improved finite sample predictive risk results in linear regression.
- Summary of available results for linear models in Bhadra et al. (2019, Stats. Sci.):

Default Bayes analysis for nonlinear estimation problems using g-l priors

- Bhadra et al. (2016, Biometrika):
 - $\psi_1 = \sum \theta_i^2$ (sum of squares)
 - $\psi_2 = \max \theta_i \pmod{\max}$
 - $\psi_3 = \theta_1 \theta_2$ (product)
 - $\psi_4 = \theta_1/\theta_2$ (ratio or Fieller-Creasy).
- The local heavy-tailed λ_i terms leave large signals un-shrunk, even for nonlinear functions!
- The global term helps shrink the noise components, even for nonlinear functions!

Key property: half-Cauchy (Gelman) has regularly-varying tails.

- Regular variation is closed under many nonlinear transformations (including four on the previous slide).
- The regularly varying tails of θ_is translate to regularly varying tails for the prior of ψ.
- Since the likelihood is light-tailed (normal), the heavy tailed priors on ψ help in non-informative analysis (Dawid, 1973).

- Resolves a long-standing difficulty noted by Efron (1973) on designing a non-informative prior that works for all four problems.
- Performance is competitive with the reference priors, when they exist.
- Global-local priors are proper, no difficulties with model selection using usual techniques.

Nonparametric function estimation using g-I priors

- Shin et al. (2019, JASA) consider the standard nonparametric model $Y_i = F(x_i) + \epsilon_i$, for i = 1, ..., n, where F(x) = E(Y | x).
- A natural representation is to use a basis function representation of the form f(x_i) = Σ^K_{k=1} φ_k(x_i)β_k.
- Possible to shrink the basis coefficients, but not clear what that means.
- If the a-priori belief is F(·) is close to certain parametric families (e.g., linear or quadratic), more reasonable to shrink toward that shape.

The functional horseshoe prior Shin et al. (2019, JASA)

- Define φ₀ to be the column space of parametric function one desires to shrink to.
- For example, if the parametric form is assumed to be close to linear then φ₀ = {1, x} ∈ ℝ^{n×2}.
- The prior on β is defined as

$$p(\beta \mid \tau) \propto (\tau^2)^{-(k-d_0)/2} \exp\left\{-\frac{1}{2\sigma^2\tau^2}\beta^T\phi^T(I-Q_0)\phi\beta\right\},\\p(\tau) \propto \frac{(\tau^2)^{b-1/2}}{(1+\tau^2)^{(a+b)}}; \ \tau, a, b > 0,$$

where $d_0 = \operatorname{rank}(\phi_0)$ and $Q_0 = \phi_0(\phi_0^T \phi_0)^{-1} \phi_0^T$, is the projection matrix of ϕ_0 .

The functional horseshoe prior Shin et al. (2019, JASA)

- The marginal prior on τ is half-cauchy if a = b = 1/2.
- The term $(I Q_0)$ in the prior inverse covariance enables shrinkage of ϕ towards ϕ_0 .
- Model selection consistency is demonstrated, along with good empirical results.

Global-local priors for dependent data

• Define
$$h_i = \log(\tau^2 \lambda_i^2)$$
.

• Kowal et al. (2019, JRSSB) show the horseshoe hierarchy up to $(\theta_i \mid \tau)$ is achieved by the model

$$h_i = \mu + \eta_i, \ \eta_i \sim Z(1/2, 1/2, 0, 1),$$

where $\mu = \log(\tau^2)$, $\eta_i = \log(\lambda_i^2)$ and Z denotes the Fisher-Z distribution.

• Dependence in h_i is introduced using an autoregressive structure as

$$h_i = \mu + \phi(h_{i-1} - \mu) + \eta_i, \ \eta_i \sim Z(1/2, 1/2, 0, 1),$$

- For sampling Kowal et al. (2019) use the Pólya-gamma augmentation scheme.
- Application in Bayesian trend filtering.
- Very similar formulation by Bitto and Frühwirth-Schnatter (2019, J of Econometrics), who use a double gamma prior.

Global-local priors for multivariate models

- Li, Craig and Bhadra (2019, JCGS) consider the multivariate Gaussian model y_i | Ω ~ Normal(0, Ω⁻¹) for i = 1,..., n.
- Prior on Ω is termed the graphical horseshoe (GHS), defined as

$$\omega_{ii} \propto 1, \ \omega_{ij,i < j} \sim \operatorname{Normal}(0, \lambda_{ij}^2 \tau^2), \ \lambda_{ij,i < j} \sim C^+(0,1), \ \tau \sim C^+(0,1),$$

with prior mass truncated to the space of positive definite matrices.

• Non-informative prior on the diagonal terms, independent horseshoe priors on the off-diagonal terms.

- Additional challenge: need to maintain symmetry and positive definiteness.
- Partition the matrix Ω as:

$$\Omega = \begin{pmatrix} \Omega_{(-p)(-p)} & \omega_{(-p)p} \\ \omega_{(-p)p}' & \omega_{pp} \end{pmatrix},$$

where (-p) denotes the set of all indices except for p.

• Following Wang (2012, BA) reparameterize:

$$eta = \omega_{(-p)p}$$
 and $\gamma = \omega_{pp} - \omega'_{(-p)p} \Omega^{-1}_{(-p)(-p)} \omega_{(-p)p}.$

• Wang (2012, BA) showed for Bayesian graphical lasso (BGL):

 $\begin{aligned} \pi(\gamma,\beta \mid \Omega_{(-p)(-p)},Y,\Lambda,\tau) &\sim \mathsf{Gamma}(n/2+1,s_{pp}/2) \times \mathsf{Normal}(-C\mathbf{s}_{(-p)p},C), \end{aligned}$ where $C = \{s_{pp}\Omega_{(-p)(-p)}^{-1} + (\Lambda^*\tau^2)^{-1}\}^{-1}. \end{aligned}$

- Conditional posteriors of off-diagonal terms are normal, those of diagonal terms are gamma.
- If the initial Ω is positive definite, ensures all subsequent iterations are also positive definite.

- The difference is, for BGL, $\lambda_{ij} \sim Exp(1)$ but for GHS $\lambda_{ij} \sim C^+(0,1)$, a priori.
- Here, we follow the key data augmentation technique proposed by Makalic and Schmidt (2016, IEEE Sig. Proc. Letters):

$$\begin{array}{rll} \text{if } x^2 \mid a \sim \operatorname{InvGamma}(1/2, 1/a) & \text{and} & a \sim \operatorname{InvGamma}(1/2, 1), \\ & \text{then marginally,} & x & \sim & C^+(0, 1) \end{array}$$

- That is, a half-Cauchy is a mixture of two inverse gammas.
- BUT! Inverse gamma is conjugate to itself and to the variance parameter in a normal linear regression model.

- All conditional posteriors are available in closed form, leading to a full Gibbs sampler.
- They are either multivariate normal, gamma or inverse gamma.
- Computational complexity is $O(p^3)$.
- MATLAB code on github at http://github.com/liyf1988/GHS.
- Li, Datta, Craig and Bhadra (2019, arXiv:1903.06768) proposed a similar algorithm for seemingly unrelated regression models.

Global-local priors for non-Gaussian models

- So far: the likelihood is Gaussian (either univariate, or multivariate).
- How do these priors do when the likelihood is changed?
- Datta and Dunson (2016, Biometrika) use global-local priors in a quasi-sparse gamma-Poisson glm. The model is:

 $y_i \mid \theta_i \sim \text{Poisson}(\theta_i), \quad \theta_i \mid \lambda_i, \tau \sim \text{Gamma}(\alpha, \lambda_i^2 \tau^2),$

with heavy-tailed prior densities on λ_i and τ .

• Useful alternative to zero-inflated models for count data.

Global-local priors for non-Gaussian models

- Related work in classification problems by Magnusson et al. (2016, arXiv:1602.00260) and Piironen and Vehtari (2017, AISTATS), who use g-l priors in probit and logistic regression model.
- Terenin et al. (2019, Statistics and Computing) classify a million data points in several thousand dimensions in several minutes of running time.
- Their work uses GPU to parallelize sampling the local scale parameters in horseshoe probit regression.

- Far fewer works compared to shallow models (nonlinear, non-Gaussian).
- Surprising since deep neural networks are heavily overparameterized with respect to the observed data.
- Full Bayesian inference (Radford Neal style) is non-existent. Computation is too costly. Usual workaround: variational Bayes.

Global-local priors for deep neural networks

- Ghosh and Doshi-Velez (2017, NeurIPS Workshop on DL) and Ghosh et al. (2018, ICML) use horseshoe priors for model selection in deep neural networks.
- Inference is using a variational approximation, first identified by Neville et al. (2014, EJS).
- The trick of writing a half-Cauchy random variable as mixture of two inverse gammas plays an important role.
- Louizos et al. (2017, NeurIPS) establish a connection between horseshoe shrinkage and dropout.

Data augmentation strategies for deep neural networks

- Gan et al. (2015, AISTATS) use Polya-gamma augmentation strategy for deep sigmoidal network.
- Wang, Polson and Sokolov (2019, arXiv:1903.09668) expand the data augmentation strategy for several types of nonlinearities using Gaussian scale mixture techniques.

Nonlinearity	Latent variable	
ReLU	Generalized inverse Gaussian	
Logistic	Polya-gamma	
Check loss	Generalized inverse Gaussian	

Horseshoe shrinkage for deep glms

- A conventional glm has $g^{-1}{E(y \mid X)} = X\beta$, where $g(\cdot)$ is the link function.
- Thus, the conditional mean of the responses is still a *linear* function of *X*.
- Tran et al. (2018, arXiv:1805.10157) introduce nonlinearity by replacing X with the output of a deep neural network.
- The model is called DeepGLM and horseshoe priors are used on β to achieve sparsity.

- Full Bayes horseshoe shrinkage in linear, Gaussian models is now feasible due to recent breakthrough by Bhattacharya et al. (2016, Biometrika). Complexity reduced from $O(p^3)$ to $O(n^2p)$.
- Full Bayes is still very hard in deep models, and it is likely to remain that way into the foreseeable future.
- Almost all papers attempting global-local shrinkage in deep models that are known to us use variational approximations or point estimation strategies.

Available software implementations: shallow models

Software with hyperlinked github URL	Relevant Papers	Brief Description of Functionality
MATLAB code: GHS	Li et al. (2017)	Precision matrix estimation in GGMs
MATLAB code: HS-GHS	Li et al. (2019)	Joint mean-covariance estimation in SUR models
Scala code using CUDA: GPUHorseshoe	Terenin et al. (2019)	GPU accelerated Gibbs sampling in probit models
R package: GGMprojpred	Williams et al. (2018)	Projection predictive estimation of GGMs
m R package: dsp	Kowal et al. (2019)	Dynamic shrinkage processes

Available software implementations: deep models

Software with hyperlinked github URL	Relevant Papers	Brief Description of Functionality
MATLAB & R code: DeepGLM	Tran et al. (2018)	Fitting DeepGLMs with horseshoe regularization
Python code: HS-BNN	Ghosh and Doshi-Velez (2017)	Horseshoe regularization for Bayesian neural nets
MATLAB code: dsbn	Gan et al. (2015)	Global-local shrinkage in deep sigmoid belief nets
Python code: Bayesian Compression	Louizos et al. (2017)	Bayesian compression for deep learning

References

- Bhadra, A., Datta, J., Li, Y. and Polson, N. G. (2019+). Horseshoe regularization for machine learning in complex and deep models. *(under revision, International Statistical Review)*. [arXiv:1904.10939]
- Bhadra, A., Datta, J., Li, Y., Polson, N. G., and Willard, B. (2019). Prediction risk for the horseshoe regression. *Journal of Machine Learning Research* 20 (78), 1–39.
- Bhadra, A., Datta, J., Polson, N. G., and Willard, B. (2016). Default Bayesian analysis with global-local shrinkage priors. *Biometrika* **103**, 955–969.
- Bhadra, A., Datta, J., Polson, N. G., and Willard, B. (2017). The Horseshoe+ Estimator of Ultra-Sparse Signals. *Bayesian Analysis* 12, 1105–1131.
- Bhadra, A., Datta, J., Polson, N. G., and Willard, B. (2019). Lasso meets horseshoe: a survey. *Statistical Science* to appear,.
- Li, Y., Craig, B. A., and **Bhadra, A.** (2019). The graphical horseshoe estimator for inverse covariance matrices. *Journal of Computational and Graphical Statistics* to appear,.
- Li, Y., Datta, J., Craig, B. A., and Bhadra, A. (2019). Joint mean-covariance estimation via the horseshoe with an application in genomic data analysis. arXiv preprint arXiv:1903.06768.