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Overview

Simulation-based inference in partially observed Markov
process (POMP) models.

An inference tool using sequential Monte Carlo (SMC):
Iterated filtering and its properties.

An application: Modeling malaria transmission in India.

A recurring problem with SMC and a proposed improvement.
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Partially Observed Markov Processes (POMP)

Z0 Z1 Z2 · · · ZN

Y1 Y2 YN

Parameter vector θ.

Markovian unobserved state process Zn:
fZn|Z1:n−1

(zn|z1:n−1; θ) = fZn|Zn−1
(zn|zn−1; θ).

Conditionally independent observations Yn|Zn = zn:
fYn|Z1:n,Y1:n−1

(yn|z1:n, y1:n−1; θ) = fYn|Zn
(yn|zn; θ).
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Simulation-based inference

Statistical methods for POMPs are simulation-based if they
require draws from the state transition model but not its
explicit evaluation.

We just need to be able to simulate from fZn|Zn−1
(zn|zn−1; θ).

Not being able to evaluate it is OK.

We still need to evaluate fYn|Zn
(yn|zn; θ).
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Benefits: Problems with the state transition density

May be high-dimensional.

May not be available in closed form for non-linear continuous
time models.

If an underlying continuous time process is observed at
discrete points, algorithms depending on the evaluation of the
transition density - e.g. EM or MCMC can fail, depending on
how much information is lost through discretization. (Roberts
& Stramer, Biometrika, 2001)

5 / 41



Examples of simulation-based techniques

Bayesian examples:
1. Artificial parameter evolution (Liu and West, 2001).
2. Approximate Bayesian computation (Marjoram et al,
PNAS, 2003).
3. Particle MCMC (Andrieu et al., JRSSB, 2010).

Non-Bayesian examples:
4. Spectral analysis via moment matching (Reumann et al,
PNAS, 2006).
5. Maximum likelihood via iterated filtering (Ionides, Bhadra
et al, Ann. Stat., 2011).

Simulation-based techniques are VERY USEFUL for investigating
scientific models.
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Iterated filtering

Filtering: the conditional distribution of the unobserved state
vector zn given the observations up to that time,
y1, y2, . . . , yn.

Iterated filtering: an algorithm which uses a sequence of
solutions to the filtering problem to maximize the likelihood
function over unknown model parameters.

If the filter is simulation-based (e.g. using standard SMC
methods) this property is inherited by iterated filtering.
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A pictorial representation of the SMC filter

{ZP
n−1, J}

{ZP
n−1,wj}

{ZF
n ,wj}

{ZP
n , J}

{ZP
n ,wj}
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Methematical formulation of a POMP

Assume all joint and conditional densities of Z0:N and Y1:N

exist, denoted by appropriate subscripts to the letter f .

Unknown parameter θ takes value in Rp.

Introduce time varying process {θn, 0 ≤ n ≤ N}. Then g
defines a model for Markov process {(Zn, θn), 0 ≤ n ≤ N} and
observations Y1:N
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Key ideas of iterated filtering

Bayesian inference for time-varying parameters becomes a
solveable filtering problem. Set θn to be a random walk with

Eg [Θn|Θn−1] = Θn−1, Varg (Θn|Θn−1) = σ2Σ,

Eg [Θ0] = θ, Varg (Θ0) = τ2Σ.

κ is a pdf on Rp that defines this random walk.

The limit σ → 0 and τ → 0 can be used to maximize the
likelihood for fixed parameters (θ).
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Iterated filtering with a perfect filter

Theorem 1. (Ionides, Bhadra, Atchadé & King (Ann. Stat., 2011))

Suppose θ0 and y1:N are fixed and define

µF
n = µF

n (θ, σ, τ) = Eg [Θn |Y1:n= y1:n],

V P
n = V P

n (θ, σ, τ) = Varg (Θn |Y1:n−1= y1:n−1),

Let σ be a function of τ with στ−1 → 0 as τ → 0.

Then

lim
τ→0

N∑
n=1

(
V P

n

)−1(
µF

n − µF
n−1

)
= ∇`(θ).
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Iterated filtering via an SMC filter

Theorem 2. (Ionides, Bhadra, Atchadé & King (Ann. Stat., 2011))

Let µ̃F
n,m and Ṽ P

n,m be the SMC estimates of µF
n and V P

n

respectively with number of particles Jm.

Let τm → 0, σmτm
−1 → 0 and τmJm →∞.

Then

lim
m→∞

Ẽ
[ N∑

n=1

(
Ṽ P

n,m

)−1(
µ̃F

n,m − µ̃F
n−1,m

)]
= ∇`(θ),

lim
m→∞

τ2
mJm Ṽar

( N∑
n=1

(
Ṽ P

n,m

)−1(
µ̃F

n,m − µ̃F
n−1,m

))
< ∞.

with convergence being uniform for θ in compact sets.
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Iterated filtering as a stochastic approximation

Theorem 3. (Ionides, Bhadra, Atchadé & King (Ann. Stat., 2011))

Let
∑

m am =∞, am → 0 and
∑

m a2
mJ−1

m τ2
m <∞.

Define a recursion by

θ̂m+1 = θ̂m + am

N∑
n=1

(Ṽ P
n,m)−1(µ̃F

n,m − µ̃F
n−1,m).

Then under suitable regularity assumptions for stochastic
approximation (Kushner and Clark, 1978), limm→∞ θ̂m = θ̂,
the MLE, with probability 1.
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Putting the pieces together: The iterated filtering
algorithm

1. Select initial value θ̂1 and algorithmic parameters σ1, c , α and
M

2. For m in 1:M
(i) Let σm = σ1α

m−1; initialize E [θ0,m] = θ̂m, Var [θ0,m] = cσ2
m.

(ii) Evaluate using particle filter Ṽ P
n,m, µ̃F

n,m.
(iii) Update the estimate of θ by

θ̂m+1 = θ̂m + am

N∑
n=1

(Ṽ P
n,m)−1(µ̃F

n,m − µ̃F
n−1,m).︸ ︷︷ ︸

≈ ∇̃`(θm)

3. Output θ̂M+1 as the MLE.
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Why is iterated filtering simulation-based?

A property of the SIRS sequential Monte Carlo filters (aka
particle filters) in use.

Recall from Theorem 2

lim
m→∞

Ẽ

[ N∑
n=1

(Ṽ P
n,m)−1(µ̃F

n,m − µ̃F
n−1,m)

]
= ∇`(θ).

Ṽ P
n,m, µ̃F

n,m and µ̃F
n−1,m are SMC estimates of the

corresponding true quantities.
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An application: Modeling malaria dynamics

Malaria: 300 - 500 million cases each year, resulting in nearly
1 million deaths.

Common in Sub-Saharan Africa, parts of Asia, central and
south America.

Caused by the Plasmodium parasite, carried by female
Anopheles mosquitoes.

2008 WHO estimate of economic impact: $12 billion/year.

16 / 41



Challenges with malaria modeling

A complex disease with incomplete immunity,
mosquito-human interaction and an initial symptom of
non-specific fever.

Mechanistic inclusion of climate covariates (e.g. rainfall) have
not been successful. Lags? Integrals? Threshold effects?

State transition densities are unavailable, so MCMC and
Stochastic EM are not applicable.
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Previous work

First mathematical models by Ross (1911) and Macdonald
(1957).

Various proposed extensions since then

strain diversity (Gupta et al. (1994), Science).
drug resistance (Koella and Antia (2003), Malaria Journal).
partial immunity (Filipe et al. (2007), PLoS Comp. Biol.).

But few papers on trying to fit a mechanistic model on a
“real” time series data.

Bayesian analysis of malaria in Senegal (Cancre et al. (2000),
Amer. J. Epid.).
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The Data
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Monthly clinical case data and rainfall from Kutch, a district
in the state of Gujarat, western India, 1987-2006.

19 / 41



The Data: Another look
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Rain peaks around July while the epidemic peaks around
December.
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Debate over the role of climate factors

Hay et al. (Nature, 2002) propose interannual variability
depends on intrinsic dynamics (in E. African highlands).

Zhou et al. (PNAS, 2004); Pascual et al. (Proc. Roy. Soc. B,
2007) think external drivers such as temperature and rainfall
play a role.

We formally test the effect of intrinsic vs. extrinsic factors on
interannual variability.

In E. Africa temperature may be the driving factor (highlands)
whereas the driving factor is likely to be rainfall in NW India
(desert).
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Disease Transmission Model (Bhadra et al. (2011), JASA)

S1 E I1

I2S2

λ κ
�
�

�τ
−1

?

-
µS1E -

µEI1

?

µI1I2

�
µI2S2

6µS2S1

-
µS2I2 = cµS1E

I

µI1S1

Force of infection
taking mosquito
dynamics into ac-
count

Disease status of
human population

Call this the VS2EI2 model.

If µI2S2 =∞ and µS2I2 = µI1S1 = 0, call the reduced model
the VSEIR model.
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Model equations

State Model

dS1/dt = µBS1P − µS1ES1 + µI1S1 I1 + µS2S1S2 − µS1DS1

dS2/dt = µI2S2 I2 − µS2S1S2 − µS2I2S2 − µS2DS2

dE/dt = µS1ES1 − µEI1E − µEDE

dI1/dt = µEI1E − µI1S1 I1 − µI1I2 I1 − µI1D I1

dI2/dt = µI1I2 I1 + µS2I2S2 − µI2S2 I2 − µI2D I2

dκ/dt = dλ0/dt = (f (t)− κ) nλ τ
−1

dλi/dt = (λi−1 − λi ) nλ τ
−1 for i = 1, . . . , nλ − 1

dλ/dt = dλnλ
/dt = (λ[nλ−1] − λ) nλ τ

−1

Observation Model

Mn = ρ

∫ tn

tn−1

µEI1E (s)ds

Yn|Mn ∼ Negbin(mean = Mn, var = Mn + σ2
obsM

2
n)
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Modeling the force of infection µS1E (t) with rain covariate

µS1E (t) =

∫ ∞
0

f (s)p(t − s) ds.

f (t) is the effective human-human transmission rate

p(t) is a delay distribution describing the vector survival

f (t) =
I1(t) + qI2(t)

N(t)
β̄ exp

{ ns∑
i=1

βi si (t) + βcC (t)
}dΓ

dt
.

For us, C (t) = max(R(t)− 200, 0), where R(t) is the
accumulated rainfall at time t over past 5 months.

This introduces a threshold effect of rainfall, i.e. rainfall over
a certain threshold is conducive to malaria transmission.
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Application of iterated filtering to the malaria model :
Model comparison (Bhadra et al. (2011), JASA)

model log-likelihood p AIC
VSEIR without rainfall -1275.0 19 2588.0

VSEIR with rainfall -1265.0 20 2570.2
VS2EI2 without rainfall -1261.1 24 2570.2

VS2EI2 with rainfall -1251.0 25 2552.0
Log-SARIMA (1, 0, 1)× (1, 0, 1)12 -1329.0 6 2670.0

Log-SARIMA (1, 0, 1)× (1, 0, 1)12 with rainfall -1322.6 7 2659.2

Table: Table of log-likelihoods and AIC of the fitted models

Including rainfall properly in the model improves the
likelihood.

All the mechanistic models are significantly better than the
benchmark SARIMA models.
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Forward simulation using estimated parameters (Laneri,
Bhadra et al. (2010), PLoS Comp. Biol.)
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Reporting rate
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Profile confidence intervals for reporting rate for the VS2EI2

model with rainfall and the VSEIRS model with rainfall.

The profile plot suggests a reporting rate less than 3%.

Indian public health officials claim this rate to be as high as
10% in Ahmedabad (Yadav et al., 2003).
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Important findings for malaria in NW India

Strong predictive relationship between rainfall and malaria
incidence - this will help in developing early epidemic warnings
and contribute to a scientific debate.

Malaria shows a threshold effect to accumulated rainfall.

Effect of rainfall robust to uncertainties in parameter
estimates.

Reporting rate may be (a) lower than what is claimed, (b)
imply differences between malaria control measures in rural
and urban areas.
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Improvement strategy for SMC filters

SMC filters suffer in presence of irregular data points (e.g.,
seen in the malaria data).

Gives rise to more variance at the corresponding time points.

The aim is to find an adaptive particle allocation scheme for
SMC filters in an off-line, iterative setting.

Question: Given a total number of particles (equivalently,
some given computational resource), how to allocate the
particles across time points in order to minimize the overall
variance of the SMC likelihood estimate?
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Some facts on the variance of SMC filters (Doucet and
Johansen (2011))

The asymptotic variance has an upper bound that is
exponential in the number of time points.

Under suitable mixing conditions this bound is linear in time
points but it is hard to check these conditions in practice.

The asymptotic variance has an upper bound that is
exponential in the dimension of the hidden state vector.
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A useful result

Consider positive variables M1, . . . ,MN so that
M1 + . . .+ MN = M. Let φ1, . . . , φN be known constants.

Then the values of Mi that minimize
∑N

i=1 φi/Mi are given by

Mmin
i =

M
√
φi∑N

i=1

√
φi

, i = 1, . . . ,N.
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Application to SMC likelihood estimation

The real challenge is to model SMC log likelihood.

Actual expression of variance complicated (section 3.6,
Doucet and Johansen, 2011).

Idea: Model SMC conditional log-likelihood as an AR process
and solve particle allocation for the simple model.

AR model is motivated by geometric mixing of the SMC
likelihood.

32 / 41



Particle allocation for AR(1) model

Consider the AR(1) model is given by

xn = µn + q(xn−1 − µn−1) + εn for n = 1, . . . ,N,

where µn = E[xn], εn ∼ N(0, φn/Mn).

Minimization of Var(
∑N

n=1 xn) =
∑N

n=1 Ln/Mn is achieved by

Mmin
n =

M
√

Ln∑N
i=1

√
Li

,

where

Ln := C1An + C2Bn,

C1 = (1− q2)−1,

C2 =
2q

1− q

(
1− q2(N−1)

1− q2
− qN · 1− q(N−1)

1− q

)
,

An = φn(1− q2(N−n+1)),Bn = φnq
−2n.
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Fitting an AR model to SMC conditional log-likelihood

Define the conditional log likelihood gn and its estimate ĝn by

gn = log fYn|Y1:n−1
(yn|y1:n−1, θ),

ĝn = log f̂Yn|Y1:n−1
(yn|y1:n−1, θ).

Use ĝn to fit the AR model xn = µn + q(xn−1 − µn−1) + εn.

Find and estimate of Var(xn − qxn−1) as

Ṽar(xn − qxn−1) =
1

P − 1

P∑
p=1

{(ĝn,p − qĝn−1,p)− (ĝn − qĝn−1)}2.

Use the relation Var(xn − qxn−1) = φn/Mn to estimate φ̃n

and q̃ jointly (q is constrained in (-1,1) to make the AR
model stationary).
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Simulation Study

Consider the two dimensional AR(1) model

Zn = αZn−1 + σξn, (state equation)
Yn = βZn + τεn. (observation equation)

Zn = (Z 1
n ,Z

2
n )T and Yn = (Y 1

n ,Y
2
n )T are in R2 for all

n = 1, . . . ,N.

α =

(
0.9 0.0
0.0 0.99

)
,

β =

(
1 0
0 1

)
,

σ =

(
1.00 0

0 2.00

)
,

τ =
(
1 1

)
.

35 / 41



Simulation Study
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Plot of the two dimensional AR(1) process.
Outliers are introduced only in Y 1 at time points 21, 25, 56
and 78 and X 1 at time points 26, 53, 58 and 82.
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Simulation Study
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Is AR(1) a good model for SMC conditional log-likelihood?
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An autoregressive pattern is clearly visible on the left.
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Reduction in variance with (almost) equal computing time

Table: Comparison of adaptive and non-adaptive particle filters. There is
a total of 100 time points. The reduction in variance is 54.827%.

Adaptive filter (a) Ordinary filter (o)
Number of filtering (F ) 10 10

Number of total particles (M) 15000*100 15000*100
Time taken per filtering (sec) (T ) 23.58 22.87

Average Monte Carlo variance (V̂ ) 0.766 1.692
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Conclusions

Simulation-based statistical methodology permits analysis of a
flexible class of nonlinear, non-Gaussian dynamic models.

This technique allows us to investigate the role of climate
covariates on malaria while taking into account intrinsic
disease dynamics.

For simulation-based inference in complex models, efficient
particle allocation strategies are crucial for particle filters,
keeping in mind the constraints on computing power.
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