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Overview

Variable and (inverse) covariance selections have been
well-studied separately in high-dimensional problems.

However, “joint” selection (or estimation) have not been
studied until recently.

We formulate a Bayesian technique and apply it to the
analysis of expression quantitative trait loci (eQTL) analysis.

Joint work with Bani K. Mallick, Texas A&M University.
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Problem Formulation

n = Sample size.

X = An n × p matrix of predictors.

Y = An n × q matrix of responses.

We would like to regress Y on X .

Example A: For the same n individuals, we might try to see
how their SNP genotype (X) affect their gene expressions (Y).

Example B: For the same n individuals with cancer, we might
try to see how their microRNA (X) affect their mRNA (Y)
expressions.

I have worked on A; I plan to begin work on B.
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Problem Formulation

Consider the linear Gaussian regression model:

Yn×q = Xn×pBp×q + εn×q,

εn×q ∼ MNn×q(0, In,Σq×q),

i.e.,Vec(εn×q) ∼ Nnq(0, In ⊗Σq×q).

The unknowns are Bp×q and Σq×q.

The dimensions are pq and q(q + 1)/2. Often much larger
than n.

Typical values: n = 100, p = 500 to 3000, q = 100.
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Basics of variable and covariance selection

When p and q are larger than n, it becomes necessary to
determine a sparse set of predictors and inverse covariance
matrix elements.

Variable selection: Find out the important predictors.

Typical assumption: Errors are i.i.d (i.e., Σq×q = σ2Iq).

Covariance selection: Find out the important inverse
covariance matrix elements.

For Gaussian models: Σ−1
i,j = 0 ⇐⇒ Yi ⊥ Yj |rest.

Typical assumption: No covariates (i.e., Bp×q = 0).

We do a joint selection. This is being done only recently.
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Previous Work in variable selection

Variable selection with i.i.d errors.

Frequentist: Lasso (Tibshirani, 1996, JRSSB) and its various
extensions using `1 penalty.

Bayesian: Stochastic Search Variable Selection (George and
McCulloch, 1997, JASA) and its extensions using sparsity
prior.
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Previous Work in covariance selection and estimation

(Inverse) Covariance selection in Gaussian graphical model
with zero mean.

Frequentist: Meinshausen and Bühlmann (2006, Ann. Stat.),
Graphical Lasso (Friedman et al, 2008, Biostatistics), Bickel
and Levina (2008, Ann. Stat.) etc.

Bayesian: Carvalho and West (2007, Biometrika) etc.
primarily using hyper-inverse Wishart type of priors.
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Joint modeling of mean and covariance for Seemingly
Unrelated Regression

In a Seemingly Unrelated Regression setting, one might be
interested in modeling “both” the mean and the covariance
structure.

Rothman et al. (2010, JCGS) make a frequentist attempt at
joint modeling with the MRCE approach. (essentially an
iterative approach with alternating lasso() and glasso() steps).

Yin and Li (2011, Ann. Appl. Stat.) apply a similar approach
to gene expression and SNP data.

Bhadra and Mallick (Biometrics, under revision) take a
Bayesian approach.
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Model conditional on indicators

Consider the model conditional upon indicators γ and G.

Y = XγBγ,G + ε, ε ∼ MN(0, In,ΣG)

Dimension of Xγ = n × pγ ; dimension of Bγ,G = pγ × q;
dimension of ΣG = q × q.

γi = 1⇒ Bi ,· 6= 0; pγ =
∑p

i=1 γi .

G is a decomposable graph where Gi ,j = 1⇒ Σ−1i ,j 6= 0 with
i 6= j ; i , j = 1, . . . , q.
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Model conditional on indicators: Toy example

Consider the model conditional upon indicators γ and G.

Y = XγBγ,G + ε; ε ∼ MN(0, In,ΣG).

For example, say p = q = 4. Then γ = (1, 0, 1, 0) means only
the first and the third predictors are important.

Let’s say G is: 
1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1


This means Σ−11,2 6= 0, the other off-diagonal terms are 0.
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Decomposable (or triangulated) graphs

No chordless cycle of length ≥ 3.

Cliques (i.e., the connected components) and separators (i.e.,
the parts in common between two cliques) can be found in
polynomial time (NP-complete for general graphs).

The overall density splits as:
f (y) =

∏k
j=1 f (yCj

)/
∏k

j=2 f (ySj ).
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Bayesian hierarchical model

(Y − XγBγ,G)|Bγ,G,ΣG ∼ MNn×q(0, In,ΣG),

Bγ,G|γ,ΣG ∼ MNpγ×q(0, cIpγ ,ΣG),

ΣG|G ∼ HIWG(b, dIq),

γi
i.i.d∼ Ber(wγ) for i = 1, . . . , p,

Gk
i.i.d∼ Ber(wG ) for k = 1, . . . , q(q − 1)/2,

wγ ,wG ∼ Uniform(0, 1).
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Mariginalization of Bγ,G and ΣG

Remember from the last slide

ε ∼ MNn×q(0, In,ΣG),

Bγ,G|γ,ΣG ∼ MNpγ×q(0, cIpγ ,ΣG).

⇒ XγBγ,G|γ,ΣG ∼ MNn×q(0, c(XγX′γ),ΣG).

⇒ Y|γ,ΣG ∼ MNn×q(0, In + c(XγX′γ),ΣG).

Define T = AY where AA′ = (In + c(XγX′γ))−1.

⇒ T|γ,ΣG ∼ MNn×q(0, In,ΣG).

ΣG|G ∼ HIWG(b, dIq).

⇒ T|γ,G ∼ HMTG(b, In, dIq).
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The marginalized model

After the marginalization of Bγ,G and ΣG, the resultant
distribution is a “hyper matrix t”.

This is a special type of “t-distribution” whose density splits
over cliques and separators, given the graph.

The marginalization has now resulted in a collapsed Gibbs
sampler: need to sample only two quantities (γ and G)
instead of four (Bγ,G, ΣG, γ and G).

Terms that were integrated out can always be sampled at the
posterior, since we are working in a conjugate framework.
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MCMC for γ given G and T

1 Given the current γ, propose γ∗ by either (a) changing a
non-zero entry in γ to zero with probability (1− αγ) or (b)
changing a zero entry in γ to one, with probability αγ .

2 Calculate f (t|γ∗,G) and f (t|γ,G) where f denotes the HMT
density.

3 Jump from γ to γ∗ with probability

r(γ,γ∗) = min

{
1,

f (t|γ∗,G)p(γ∗)q(γ|γ∗)
f (t|γ,G)p(γ)q(γ∗|γ)

}
.
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MCMC for G given γ and T

1 Given the current G, propose G∗ by either (a) changing a
non-zero edge in G to zero with probability (1− αG ) or (b)
changing a zero entry in G to one, with probability αG .

2 Calculate f (t|γ,G∗) and f (t|γ,G) where f denotes the HMT
density.

3 Jump from G to G∗ with probability

r(G,G∗) = min

{
1,

f (t|G∗,γ)p(G∗)q(G|G∗)
f (t|G,γ)p(G)q(G∗|G)

}
.
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Regeneration of Bγ,G in the posterior

Bγ,G is the pγ × q matrix of regression coefficients.

By marginalizing it out we lose the association between the
SNPs and expression levels necessary for an eQTL analysis.

However, due to the conjugate structure, can be regenerated
in the posterior conditional on γ̂ and Ĝ.

Generate ΣG |Y,Bγ,G,γ,G from
HIWG{b + n, dIq + (Y − XγBγ,G)′(Y − XγBγ,G)} .

Generate Bγ,G|Y,ΣG ,γ,G from
MNpγ×q{(X′γXγ + c−1Ipγ )−1X′γY, (X′γXγ + c−1Ipγ )−1,ΣG}.
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Simulation study 1

We choose p = 498, q = 300 and n = 120.

The eleven true predictors are {30, 40, 57, 62, 161, 239, 269,
322, 335, 399, 457}.
True adjacency matrix for G is shown below.
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Results: Posterior probabilites

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Predictor

P
o
s
te

ri
o
r 

P
ro

b
a
b
ili

ty

Responses

R
e
s
p
o
n
s
e
s

 

 

50 100 150 200 250 300

50

100

150

200

250

300 0

0.2

0.4

0.6

0.8

1

Left: Posterior probabilities for γ, true variables circled in red.

Right: Posterior probabilities for G, compare with true graph.
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Results: Does joint selection help over individual selection
of variables and covariances?
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Left: ROC curve for γ, solid line: joint estimation, broken
line: diagonal graph.

Right: ROC curve for G, solid line: joint estimation, broken
line: zero mean model.
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Simulation study 2

We choose p = 498, q = 100 and n = 120.

Consider 3 true predictors {30, 161, 239}. Associations
between predictors and responses are generated according to
following table:

SNP (p̃) Transcript (q̃p)

30 1-20, 71-80
161 17-20
239 1-20, 71-80

Corresponding elements of B have sd 0.3.

Rest of the responses are simulated from noise with sd 0.1.
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Simulation study 2: The true graph
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Results: Posterior probabilites
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Left: Posterior probabilities for γ, true variables circled in red.

Right: Posterior probabilities for G, with a cutoff on the
posterior probabilities of edge inclusion set to 0.4
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Results: Association analysis between SNPs and transcripts
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Left: Association of SNP 161 with all the 100 transcripts,
showing enhanced association for transcripts 17-20.

Right: association of SNP 239 with all the 100 transcripts,
showing enhanced association for transcripts 1-20 and 71-80.
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eQTL Analysis

Essentially, this is a regression problem where X = An n × p
matrix of SNPs (Single Neucleotide Polymorphisms) and Y =
An n× q matrix of gene expression data, for the same set of n
individuals.

An eQTL analysis tries to infer the p × q matrix B, trying to
associate genetic variability to the gene expressions.

It’s long been known that the genes are a part of a
regulatory/interaction nework.

Statistically speaking, it is unreasonable to assume
independence among the q traits.
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Application to human eQTL analysis

n = 60 unrelated individuals of Northern and Western
European ancestry from Utah (CEU).

SNP data publicly available from International Hapmap
project (http://hapmart.hapmap.org).

A total of p = 3125 SNPs found on 5’ UTR of mRNA with
minor allele frequency ≥ 0.1

Gene expression data are also publicly available from the
Sanger Institute website
(ftp://ftp.sanger.ac.uk/pub/genevar).

We work with q = 100 most variable transcripts out of a total
of 47293.
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Results

Controlling for FDR at 5% level yields 8 globally significant
SNPs and 38 non-zero inverse covariance matrix elements.

Yields a total of 43 significant associations.

Chen et al. (2008, Bioinformatics) detected a slightly higher
number of associations by considering both 3’ and 5’ UTRs
simultaneously.

Yields a total of 55 significant edges.
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Open questions and current investigations

Could the technique be extended to more flexible models, e.g.
models that can handle a nonlinear mean function?

Is it possible to show simultaneous variable and graph
selection consistency?

What about non-Bayesian approaches?
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