Joint high-dimensional Bayesian variable and

covariance selection with an application to eQTL
analysis

Anindya Bhadra

Purdue University

October 10, 2012

/29



Overview

e Variable and (inverse) covariance selections have been
well-studied separately in high-dimensional problems.

e However, “joint” selection (or estimation) have not been
studied until recently.

@ We formulate a Bayesian technique and apply it to the
analysis of expression quantitative trait loci (eQTL) analysis.

@ Joint work with Bani K. Mallick, Texas A&M University.



Problem Formulation

@ n = Sample size.
@ X = An n X p matrix of predictors.
@ Y = An n x g matrix of responses.

@ We would like to regress Y on X.

Example A: For the same n individuals, we might try to see
how their SNP genotype (X) affect their gene expressions (Y).

Example B: For the same n individuals with cancer, we might
try to see how their microRNA (X) affect their mRNA (Y)
expressions.

@ | have worked on A; | plan to begin work on B.



Problem Formulation

o Consider the linear Gaussian regression model:

Yn><q = anpoxq + €nxq;
€Enxg MNnxq(O’ I, quq)»
i.e.,Vec(€nxg) ~ Npg(0,1, ® Xgxq).

@ The unknowns are B, 4 and > ¢ q.

@ The dimensions are pg and g(q + 1)/2. Often much larger
than n.

@ Typical values: n= 100, p = 500 to 3000, g = 100.



Basics of variable and covariance selection

@ When p and q are larger than n, it becomes necessary to
determine a sparse set of predictors and inverse covariance
matrix elements.

@ Variable selection: Find out the important predictors.
o Typical assumption: Errors are i.i.d (i.e., Zgxq = 0°ly).

@ Covariance selection: Find out the important inverse
covariance matrix elements.

o For Gaussian models: ):;jl =0 < Y, L Yj|rest.
o Typical assumption: No covariates (i.e., Byxqs = 0).

@ We do a joint selection. This is being done only recently.



Previous Work in variable selection

@ Variable selection with i.i.d errors.

e Frequentist: Lasso (Tibshirani, 1996, JRSSB) and its various
extensions using ¢1 penalty.

@ Bayesian: Stochastic Search Variable Selection (George and
McCulloch, 1997, JASA) and its extensions using sparsity
prior.



Previous Work in covariance selection and estimation

@ (Inverse) Covariance selection in Gaussian graphical model
with zero mean.

e Frequentist: Meinshausen and Biihlmann (2006, Ann. Stat.),
Graphical Lasso (Friedman et al, 2008, Biostatistics), Bickel
and Levina (2008, Ann. Stat.) etc.

o Bayesian: Carvalho and West (2007, Biometrika) etc.
primarily using hyper-inverse Wishart type of priors.



Joint modeling of mean and covariance for Seemingly

Unrelated Regression

@ In a Seemingly Unrelated Regression setting, one might be
interested in modeling “both” the mean and the covariance
structure.

@ Rothman et al. (2010, JCGS) make a frequentist attempt at
joint modeling with the MRCE approach. (essentially an
iterative approach with alternating lasso() and glasso() steps).

@ Yin and Li (2011, Ann. Appl. Stat.) apply a similar approach
to gene expression and SNP data.

e Bhadra and Mallick (Biometrics, under revision) take a
Bayesian approach.



Model conditional on indicators

@ Consider the model conditional upon indicators v and G.
Y = X'yB'y,G +e€ €~ MN(O, I, ZG)

@ Dimension of X, = n x py ; dimension of By g = py X g;
dimension of Xg = g X q.

@ G is a decomposable graph where G;j =1 = Zi_Jl 2 0 with
i#£jihj=1...,q.



Model conditional on indicators: Toy example

o Consider the model conditional upon indicators v and G.
Y =X,Byc+e €~ MN(O,I, Xg).

@ For example, say p =g =4. Then v = (1,0,1,0) means only
the first and the third predictors are important.

@ Let'ssay G is:

1100
1100
0010
0 0 01

This means Zl_é = 0, the other off-diagonal terms are 0.
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Decomposable (or triangulated) graphs

@ No chordless cycle of length > 3.

e Cliques (i.e., the connected components) and separators (i.e.,
the parts in common between two cliques) can be found in
polynomial time (NP-complete for general graphs).

@ The overall density splits as:
F(y) =TT Fve)/ TTjs F(vs))-
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Bayesian hierarchical model

(Y*X—yB—y,G)|B~y,GaZG ~ MNan(OalnazG)v
B’y,Gh’: ZG ~ Mvaxq(O,Clp,Y,zG),
3g|G ~ HIWg(b,dly),
i S Ber(wy) for i =1,...,p,
G RS Ber(wg) for k =1,...,q(qg — 1)/2,

wy,wg ~  Uniform(0, 1).
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Mariginalization of B, g and Z¢g

@ Remember from the last slide

€ ~ MNpyq(0,1,,Xg),
B'y,Gh’;zG ~ MNP,YXq(()?ClpW,Zg).
= XyBy g7, Zc ~ MNpyq(0, c(X4X,), Zg).
= Y7, Zg ~ MNnxg(0,1n + c(X4X,), Z¢).

o Define T = AY where AA" = (1, + c(X,X.))~".

= Tly,Z¢ ~ MNpq(0,1,, X¢).
XclG ~ HIWg(b,dl,).
= T|v,G ~ HMTg(b,1,,dl,).
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The marginalized model

o After the marginalization of B g and Xg, the resultant
distribution is a “hyper matrix t”.

@ This is a special type of “t-distribution” whose density splits
over cliques and separators, given the graph.

@ The marginalization has now resulted in a collapsed Gibbs
sampler: need to sample only two quantities (v and G)
instead of four (B, g, Xg, v and G).

@ Terms that were integrated out can always be sampled at the
posterior, since we are working in a conjugate framework.
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MCMC for ~ given G and T

@ Given the current =, propose v* by either (a) changing a
non-zero entry in -y to zero with probability (1 — c,) or (b)
changing a zero entry in « to one, with probability c.,.

@ Calculate f(t|vy*, G) and f(t|7y,G) where f denotes the HMT
density.
© Jump from ~ to v* with probability

f(tlv*, G)p(v*)q(v|v*) }
C (Y, G)p()a(vly)

r(y,y") = min{l
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MCMC for G given ~v and T

@ Given the current G, propose G* by either (a) changing a
non-zero edge in G to zero with probability (1 — ag) or (b)
changing a zero entry in G to one, with probability ag.

@ Calculate f(t]y,G*) and f(t|7y,G) where f denotes the HMT
density.

© Jump from G to G* with probability

f(t|G*,v)p(G")q(G[G") }
" f(t|G,v)r(G)q(G*|G)

r(G,G*) = min {1
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Regeneration of B g in the posterior

e B, g is the p, x g matrix of regression coefficients.

@ By marginalizing it out we lose the association between the
SNPs and expression levels necessary for an eQTL analysis.

@ However, due to the conjugate structure, can be regenerated
in the posterior conditional on 4 and G.

o Generate X|Y,B4g,7, G from
HIW G {b + n, dlg+ (Y — X;B..g) (Y — X,B..g)} .

@ Generate B, g|Y,X¢,v, G from
MNp g { (XL Xy + M ) XY (XL Xy 4+ 71 )7 EG )
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Simulation study 1

@ We choose p =498, g = 300 and n = 120.

@ The eleven true predictors are {30, 40, 57, 62, 161, 239, 269,
322, 335, 399, 457}.

@ True adjacency matrix for G is shown below.

Responses

100 200 300
Responses
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Results: Posterior probabilites
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o Left: Posterior probabilities for «y, true variables circled in red.

@ Right: Posterior probabilities for G, compare with true graph.
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Results: Does joint selection help over individual selection

of variables and covariances?
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o Left: ROC curve for 4, solid line: joint estimation, broken
line: diagonal graph.

@ Right: ROC curve for G, solid line: joint estimation, broken
line: zero mean model.
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Simulation study 2

@ We choose p =498, g = 100 and n = 120.

e Consider 3 true predictors {30, 161, 239}. Associations
between predictors and responses are generated according to
following table:

SNP (p) Transcript (gp)

30 1-20, 71-80
161 17-20
239 1-20, 71-80

@ Corresponding elements of B have sd 0.3.

@ Rest of the responses are simulated from noise with sd 0.1.
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Simulation study 2: The true graph
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Results: Posterior probabilites
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@ Left: Posterior probabilities for «y, true variables circled in red.

@ Right: Posterior probabilities for G, with a cutoff on the
posterior probabilities of edge inclusion set to 0.4
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Results: Association analysis between SNPs and transcripts
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@ Left: Association of SNP 161 with all the 100 transcripts,
showing enhanced association for transcripts 17-20.

@ Right: association of SNP 239 with all the 100 transcripts,
showing enhanced association for transcripts 1-20 and 71-80.
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eQTL Analysis

@ Essentially, this is a regression problem where X = An n x p
matrix of SNPs (Single Neucleotide Polymorphisms) and Y =
An n x g matrix of gene expression data, for the same set of n
individuals.

@ An eQTL analysis tries to infer the p x g matrix B, trying to
associate genetic variability to the gene expressions.

@ It's long been known that the genes are a part of a
regulatory /interaction nework.

@ Statistically speaking, it is unreasonable to assume
independence among the g traits.
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Application to human eQTL analysis

@ n = 60 unrelated individuals of Northern and Western
European ancestry from Utah (CEU).

@ SNP data publicly available from International Hapmap
project (http://hapmart.hapmap.org).

@ A total of p = 3125 SNPs found on 5" UTR of mRNA with
minor allele frequency > 0.1

@ Gene expression data are also publicly available from the
Sanger Institute website
(ftp://ftp.sanger.ac.uk/pub/genevar).

o We work with ¢ = 100 most variable transcripts out of a total
of 47293.
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e Controlling for FDR at 5% level yields 8 globally significant
SNPs and 38 non-zero inverse covariance matrix elements.

@ Yields a total of 43 significant associations.

@ Chen et al. (2008, Bioinformatics) detected a slightly higher
number of associations by considering both 3’ and 5’ UTRs
simultaneously.

@ Yields a total of 55 significant edges.
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Open questions and current investigations

@ Could the technique be extended to more flexible models, e.g.
models that can handle a nonlinear mean function?

@ Is it possible to show simultaneous variable and graph
selection consistency?

@ What about non-Bayesian approaches?
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