The horseshoe+ estimator of sparse signals

Anindya Bhadra bhadra@purdue.edu www.stat.purdue.edu/~bhadra

Purdue University

January 21, 2015

1/29

- The one and two groups models
- The horseshoe+ prior
- Theoretical properties
- Simulations and applications on a prostate cancer data set
- Joint work with Jyotishka Datta (SAMSI and Duke University); Nick Polson and Brandon Willard (The University of Chicago).

(日)

The high-dimensional normal means problem

- **Data:** *n* conditionally independent continuous observations $y = (y_1, y_2, ..., y_n)$; $y_i | \theta_i \sim \text{Normal}(\theta_i, 1)$.
- Testing and null hypotheses: H_{0,i} : θ_i = 0, i = 1,..., n.
 Goal: provide a decision rule with good error rates.
- Multiplicity problem: Number of hypotheses (n) very large
 ⇒ Higher chance of false positives.
- Estimation: Goal: provide an estimator for $(\theta_1, \ldots, \theta_n)$ with good MSE properties.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Nearly black vectors: $\#(\theta_i \neq 0) \leq p_n$ where $p_n = o(n)$ as $p_n, n \to \infty$.
- Pure "global" shrinkage estimators (e.g, James-Stein) do poorly in this setting.
- Johnstone and Silverman (2004) show that a simple thresholding-based estimator has better risk bounds than the James-Stein estimator in this case.

Nearly black vectors: the two groups model

- Use indicators ν_i , i = 1, ..., n such that $\nu_i = 0$ indicates $\theta_i = 0$ and $\nu_i = 1$ indicates $\theta_i \neq 0$.
- Given μ , suppose, θ_i 's are conditionally independent and:

$$heta_i | \mu \sim (1-\mu) \underbrace{\delta_{\{0\}}}_{Spike} + \mu \underbrace{\operatorname{Normal}(0, \psi^2)}_{Spike}$$
(1)

 Recall the likelihood is given by y_i|θ_i ~ Normal(θ_i, 1). Thus, the marginal distribution of y_i|μ is then a mixture of normals:

$$y_i | \mu \sim (1 - \mu) \operatorname{Normal}(0, 1) + \mu \operatorname{Normal}(0, 1 + \psi^2)$$
 (2)

5 / 29

Posterior mean under the two groups model: the global-local shrinkage

• The posterior mean $E(\theta_i|y_i)$ under the two groups model is:

$$E(\theta_i|y_i) = \omega_i \frac{\psi^2}{1+\psi^2} y_i = \omega_i^* y_i$$

where, ω_i is the posterior inclusion probability $P(\theta_i \neq 0|y_i)$.

• If $\psi^2 \to \infty$ as the number of tests $n \to \infty,$ we have

$$E(\theta_i|y_i) \approx \omega_i y_i$$

• The ψ^2 term provides "global" shrinkage. The ω_i terms act "locally" to adapt to the sparsity level of the data.

Towards the one group model

- Instead of starting with a classification scheme to arrive at an estimator $\omega_i^* y_i$, the one-group approach *directly models the posterior inclusion probability* ω_i^* without making use of the discrete mixture.
- Carvalho, Polson and Scott (2009) observed a suitable "global-local" mixture prior leads to the same form of the posterior mean.
- The "global" term should provide substantial shrinkage towards zero.
- The local terms should have heavy tails so that "signals" are not shrunk too much.

・ コット ふぼう ふ ほう ・ ほう

- "Sparsity can be construed in a weaker sense, where all of the entries in θ are nonzero, yet most are small compared to a handful of large signals." [Polson & Scott (2010), Stephens and Balding (2009)]
- The one-group model yields Analytically Tractable Marginal and under suitable choices of the hyper-parameters, behaves like a two-groups model.
- Normal scale mixture allows for block-updating the local and global shrinkage parameters ⇒ Fast Computation.

The horseshoe prior (Carvalho, Polson and Scott (2010))

• The horseshoe prior falls in a class of "global-local" shrinkage priors:

 $egin{aligned} &y_i | heta_i, \lambda_i, au \sim \operatorname{Normal}(heta_i, 1), \ & heta_i | \lambda_i, au \sim \operatorname{Normal}\left(0, \lambda_i^2
ight), \ & heta_i | au \sim \mathcal{C}^+(0, au). \end{aligned}$ (Heavy Tailed Prior)

• Posterior mean:
$$\mathbb{E}(\theta_i|y_i,\tau) = (1 - \mathbb{E}(\overbrace{\frac{1}{1+\lambda_i^2\tau^2}}^{\kappa_i}|y_i,\tau))y_i.$$

Two-groups Model	One-group Model
$E(heta_i y_i) pprox \omega_i y_i; \ \omega_i = P(heta_i eq 0 y_i)$	$\mathbb{E}(heta_i y_i, au) = (1 - \mathbb{E}(\kappa_i y_i, au))y_i$

• $1 - \mathbb{E}(\kappa_i | y_i, \tau)$ mimics the posterior inclusion probability ω_i .

Global-local shrinkage priors: other examples

- Since horseshoe, there has been considerable work in this area.
 - The horseshoe Prior (Carvalho, Polson and Scott, 2010).
 - The hypergeometric Inverted-beta priors (Polson and Scott, 2010)
 - The generalized double Pareto priors (Armagan, Dunson and Lee, 2011)
 - The three parameter beta priors (Armagan, Dunson and Clyde, 2011) (which includes the NEG priors (Griffin and Brown, 2011) and the half-t prior).
 - The Dirichlet-Laplace prior (Bhattacharya et al., 2012). (resembles the joint distribution of θ, unlike the other shrinkage priors that mimic the marginal behavior).
- "Global-local" shrinkage priors because they shrink small observations (encourages sparsity) but leave the tails unshrunk (helps detect signals)

- The horseshoe prior has a number of attractive features for the sparse signal recovery problem :
 - Datta and Ghosh (2013): horseshoe estimator attains Bayes Oracle in testing.
 - **2** Polson and Scott (2012): Horseshoe estimator $\hat{\theta}_{HS}$ uniformly dominates the traditional sample mean estimator in MSE.
 - van der Pas et al. (2014): Horseshoe estimator has good posterior concentration properties for nearly black objects (Donoho et al., 1992). Specifically, the horseshoe estimator attains the asymptotically minimax risk rate.

$$\sup_{\theta \in I_0[p_n]} \mathbb{E}_{\theta} ||\hat{\theta}_{HS} - \theta||^2 \asymp p_n \log (n/p_n)$$

イロト イヨト イヨト イヨト 三日

Our Contributions: The horseshoe+ prior

- We (Bhadra, Datta, Polson, and Willard, 2014) propose a *new* prior (horseshoe+) that sharpens the ability of the horseshoe estimator to extract signals from sparsity.
- horseshoe+ is a 'natural' extension of the horseshoe model.

Advantages:

- Lower mean squared error compared to existing sparse estimators (horseshoe, Dirichlet-Laplace).
- 2 Achieves lower misclassification probability.
- Better posterior concentration properties in the Kullback-Liebler (K-L) sense.

Hierarchical Models: horseshoe and horseshoe+

The horseshoe hierarchical model is defined by

$$egin{aligned} &(y_i| heta_i,\lambda_i, au)\sim \textit{N}(heta_i,1),\ &(heta_i|\lambda_i, au)\sim \textit{N}\left(0,\lambda_i^2
ight),\ &(\lambda_i| au)\sim \textit{C}^+\left(0, au
ight). \end{aligned}$$

We define the horseshoe+ model similarly by

$$egin{aligned} & (y_i| heta_i,\lambda_i,\eta_i, au) \sim \mathcal{N}(heta_i,1), \ & (heta_i|\lambda_i,\eta_i, au) \sim \mathcal{N}\left(0,\lambda_i^2
ight), \ & (\lambda_i|\eta_i, au) \sim \mathcal{C}^+\left(0, au\eta_i
ight), \ & \eta_i \sim \mathcal{C}^+\left(0,1
ight). \end{aligned}$$

• Horseshoe: λ_i 's are conditionally independent with $p(\lambda_i | \tau)$:

$$p(\lambda_i|\tau) = \frac{2}{\pi\tau(1+(\lambda_i/\tau)^2)}$$

• Horseshoe+: λ_i 's are conditionally independent with $p(\lambda_i | \tau)$:

$$p(\lambda_i|\tau) = \frac{4}{\pi^2 \tau} \frac{\ln \{(\lambda_i/\tau)\}}{(\lambda_i/\tau)^2 - 1}$$

• An extra $\ln(\lambda_i/\tau)$ term in the numerator.

13/29

The horseshoe+ Jacobian

• The horseshoe prior:

 The horseshoe+ Jacobian pushes the posterior mass to the extremes (κ = 0, 1) Figure : Comparison of the Jacobian terms for the HS and the HS+ priors with $\tau = 1/2$.

Comparison of different priors: near origin and at the tails

• The order of tail heaviness: GDP > Cauchy > HS+ > HS > DL > Laplace.

- *p*_{HS+}(θ) > *p*_{HS}(θ) in a neigbourhood around near zero and also at infinity.
- Dirichlet Laplace has spike at zero, but exponentially decaying tail.

Properties of Horsehoe+ (I): the marginal prior density

• The horseshoe+ density satisfies the following:

• The horseshoe+ prior has unbounded mass near the origin and polynomially decaying tails.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Theorem

(Barndorff-Nielsen et al., 1982). Consider the Gaussian scale mixture $y|u \sim \text{Normal}(0, u)$. If we can write $f(u) \propto u^{\lambda-1}L(u)$ as $u \to \infty$, then $m(y) \propto |y|^{2\lambda-1}L(y^2)$ as $|y| \to \infty$, where $L(\cdot)$ is a slowly varying function, defined as $\lim_{y\to\infty} L(ty)/L(y) = 1$ for any $t \in (0, \infty)$.

• The heavy tail of the prior scale translates to heavy tail of the marginal. Can show $m_{HS+}(y) = m_{HS}(y) \log(|y|)(1 + o(1))$ as $|y| \to \infty$.

Properties of horseshoe+ (II): mean squared error

• Tweedie formula relates the marginal *m*(*y_i*) to the posterior moments

$$\begin{split} \mathrm{E}(\theta_i|y_i) &= y + \frac{d}{dy_i}[\log m(y_i)]\\ \mathrm{Var}(\theta_i|y_i) &= 1 + \frac{d^2}{dy_i^2}[\log m(y_i)]. \end{split}$$

• After some simple calculations, it follows that

$$extsf{MSE}_{ extsf{HS}+}(\hat{ heta}_i) \leq extsf{MSE}_{ extsf{HS}}(\hat{ heta}_i) - rac{1}{y_i^2 \log|y_i|} + O(1/y_i^3).$$

as $|y_i| \to \infty$.

- Fact 1: The posterior distribution of the shrinkage coefficient *κ_i* given *τ* and the observation *y_i* would converge to the degenerate distribution at one if *τ* → 0.
- Fact 2: The posterior distribution of the shrinkage coefficient *κ_i* given τ and an observation *y_i* would converge to the degenerate distribution at zero if |*y_i*| → ∞.

Theorem

 $P(\kappa_i < \epsilon | y_i, \tau) \le e^{\frac{y_i^2}{2}\tau^2} \epsilon(1-\epsilon)^{-2}$ for any fixed $\epsilon \in (0,1)$, and any $\tau \in (0,1)$ uniformly in $y_i \in \mathcal{R}$.

Theorem

 $P(\kappa_i > \eta | y_i, \tau) \leq e^{-\eta(1-\delta)\frac{y_i^2}{2}} \frac{1}{\tau^2} C(\eta, \delta)$ for any fixed $\eta \in (0, 1)$, any δ such that $\eta \delta < \frac{1}{1+\tau^2}$ and uniformly in $y_i \in \mathcal{R}$, where $C(\eta, \delta)$ is a constant independent of y_i .

20 / 29

Properties of horseshoe+ (III): posterior concentration

• Decision rule :

Reject
$$H_{0i}$$
 if $\omega_i = 1 - \mathbb{E}(\kappa_i | y_i, \tau) > 1/2$.

Theorem

Probability of type-I error:
$$t_1 = \left\{\sqrt{2}\tau^2/\sqrt{\pi \ln(1/2\tau)}\right\} (1+o(1))$$

Theorem

Probability of type-II error:
$$t_2 \leq (2\Phi(\sqrt{rac{2}{\eta(1-\delta)}}\sqrt{C})-1)(1+o(1))$$

• Using these two results, we can show that horseshoe+ achieves the optimal Bayes risk in testing.

Properties of horseshoe+ (IV): Kullback-Leibler (KL) risk

- θ_0 = true parameter, $p_{\theta} = p(y|\theta)$ = sampling model.
- $L(p_1, p_2) = E_{p_1}(\log(p_1/p_2)) = KL$ divergence of p_2 from p_1 .
- $A_{\epsilon} = \{\theta : L(p_{\theta_0}, p_{\theta}) < \epsilon\}$ KL information nbd. of size ϵ .
- $\hat{p}_n = \int p_\theta \mu_n(d\theta) = \text{posterior predictive density.}$

Lemma (Clarke and Barron, 1990)

Suppose $\mu(A_{\epsilon}) > 0$, then R_n , Cesaro-average risk of \hat{p}_n will satisfy:

$$R_n = n^{-1} \sum_{j=1}^n L(p_{\theta_0}, \hat{p}_j) \le \epsilon - n^{-1} \log(\mu(A_{\epsilon}))$$

Characterizes KL-risk in terms of $\mu(A_{\epsilon}) =$ prior mass around θ_0 .

The μ(A_ε) bound is larger for the horseshoe+ prior. R_n converges at a faster rate.

- We provide a comprehensive MSE comparison with existing sparse estimators.
- Performance Criterion: mean squared error for the posterior median over 100 replicates.
- Candidates: Dirichlet Laplace DL_{1/n} (Bhattacharya et al., 2014), horseshoe and horseshoe+.

• Data generating scheme in Bhattacharya et al. (2014)

$$\mathbf{Y}_{n \times 1} \sim \operatorname{Normal}(\theta_{n \times 1}, \mathbf{I}_n)$$
$$\theta = (\underbrace{A, \dots, A}_{[qn]}, \underbrace{0, \dots, 0}_{n-[qn]})$$

 Multiplicity n = 200. For each n, q = 1, 5, 10, 20, 30% of n and A = 7, 8.

Simulations: MSE comparison

	Proportion of signals					
	0.01		0.05		0.1	
		4	А		А	
Prior	7	8	7	8	7	8
D-L	3.88 (8.57)	2.63 (2.97)	16.46 (16.81)	14.8 (14.98)	29.12 (19.74)	31.8 (21.7)
HS Cauchy	2.57 (2.93)	2.93 (3.47)	13.93 (6.54)	14.39 (12.23)	26.77 (9.39)	27.73 (9.27)
HS+ Cauchy	2.43 (2.7)	2.98 (3.47)	13.26 (6.51)	12.58 (5.83)	25.55 (9.29)	26.14 (9.12)
HS Unif	2.97 (3.2)	3.39 (4.08)	14.23 (6.53)	13.9 (6.79)	27.22 (9.8)	28.54 (10.18)
HS+ Unif	2.86 (3.07)	3.3 (4.06)	13.5 (6.47)	13.07 (6.03)	26.83 (10.98)	26.92 (9.73)

	Proportion of signals				
	0.2		0.3		
	A		A	4	
Prior	7	8	7	8	
D-L	53.32 (23.23)	51.08 (23.98)	72.32 (20.76)	79.19 (40.48)	
HS Cauchy	57.15 (14.52)	56.62 (16.59)	82 (14.65)	84.8 (25.57)	
HS+ Cauchy	51.5 (11.03)	50.37 (13.41)	73.74 (11.93)	76.85 (20.15)	
HS Unif	56.98 (13)	55.06 (13.19)	83.15 (21.05)	81.66 (16.25)	
HS+ Unif	53.19 (14.27)	52.27 (19.32)	74.43 (12.84)	77.89 (26.77)	

 ${\sf Table}$: Average mean squared error (and s.d.) about the posterior median computed over 100 simulated data sets.

Simulations: misclassification probability

Figure : Misclassification probability plots for the horseshoe+, horsesshoe, and the Dirichlet-Laplace $(DL_{1/n})$ shrinkage priors, Benjamini-Hochberg and the Bayes oracle for $p \in (0.1, 0.5)$.

Real data application: prostate cancer data

- We use the prostate cancer data set from Efron (2008).
- The data are inverse cdf transform for 6033 genes for two-sample t-test statistic (computed over 52 cancer patients and 50 normal subjects).
- Specifically, $y_i = \Phi^{-1}(F_{t,df=100}(t_i))$. Natural to model $y_i = \text{Normal}(\theta_i, 1); i = 1, \dots, 6033$.
- Histogram of y_i displays heavy tails, suggesting a few regulatory genes.

▲日 ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

Table : The test statistics (*y*-values) and the effect-size estimates for the top 10 genes selected by Efron (2008) by the horseshoe, horseshoe+ models, and Efron's two-groups model estimates.

Gene	y-value	$\hat{ heta}_i^{HS+}$	$\hat{\theta}_{i}^{HS}$	$\hat{ heta}_i^{ ext{Efron}}$
610	5.29	5.20	5.12	4.11
1720	4.83	4.77	4.54	3.65
332	4.47	3.24	4.11	3.24
364	-4.42	-4.43	-4.14	-3.57
914	4.40	4.40	3.89	3.16
3940	-4.33	-3.78	-3.77	-3.52
4546	-4.29	-3.88	-3.46	-3.47
1068	4.25	3.71	3.03	2.99
579	4.19	3.99	2.88	2.92
4331	-4.14	-3.48	-3.26	-3.30

• HS+ shrinks the large signals less compared to HS and Efron.

- We proposed a new prior for estimation/testing in the sparse normal means problem.
- Theoretical and empirical results suggest considerable improvements over existing alternatives.
- Open question: Necessary conditions for "global-local" shrinkage priors?
- Open question: Extending the hierarchy? What about HS ++ ...?

Thank you!