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Overview

The one and two groups models

The horseshoe+ prior

Theoretical properties

Simulations and applications on a prostate cancer data set

Joint work with Jyotishka Datta (SAMSI and Duke
University); Nick Polson and Brandon Willard (The University
of Chicago).
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The high-dimensional normal means problem

Data: n conditionally independent continuous observations
y = (y1, y2, . . . , yn) ; yi |θi ∼ Normal(θi , 1).

Testing and null hypotheses: H0,i : θi = 0, i = 1, . . . , n.
Goal: provide a decision rule with good error rates.

Multiplicity problem: Number of hypotheses (n) very large
⇒ Higher chance of false positives.

Estimation: Goal: provide an estimator for (θ1, . . . , θn) with
good MSE properties.
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Nearly black vectors: Global shrinkage estimators

Nearly black vectors: #(θi 6= 0) ≤ pn where pn = o(n) as
pn, n→∞.

Pure “global” shrinkage estimators (e.g, James-Stein) do
poorly in this setting.

Johnstone and Silverman (2004) show that a simple
thresholding-based estimator has better risk bounds than the
James-Stein estimator in this case.
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Nearly black vectors: the two groups model

Use indicators νi , i = 1, . . . , n such that νi = 0 indicates
θi = 0 and νi = 1 indicates θi 6= 0.

Given µ, suppose, θi ’s are conditionally independent and:

θi |µ ∼ (1− µ) δ{0}︸︷︷︸
Spike

+µ

Slab︷ ︸︸ ︷
Normal(0, ψ2) (1)

Recall the likelihood is given by yi |θi ∼ Normal(θi , 1). Thus,
the marginal distribution of yi |µ is then a mixture of normals:

yi |µ ∼ (1− µ)Normal(0, 1) + µNormal(0, 1 + ψ2) (2)
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Posterior mean under the two groups model: the
global-local shrinkage

The posterior mean E (θi |yi ) under the two groups model is:

E (θi |yi ) = ωi
ψ2

1 + ψ2
yi = ω∗i yi

where, ωi is the posterior inclusion probability P(θi 6= 0|yi ).

If ψ2 →∞ as the number of tests n→∞, we have

E (θi |yi ) ≈ ωiyi

The ψ2 term provides “global” shrinkage. The ωi terms act
“locally” to adapt to the sparsity level of the data.
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Towards the one group model

Instead of starting with a classification scheme to arrive at an
estimator ω∗i yi , the one-group approach directly models the
posterior inclusion probability ω∗i without making use of the
discrete mixture.

Carvalho, Polson and Scott (2009) observed a suitable
“global-local” mixture prior leads to the same form of the
posterior mean.

The “global” term should provide substantial shrinkage
towards zero.

The local terms should have heavy tails so that “signals” are
not shrunk too much.
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Advantages of the “One-group model”

“Sparsity can be construed in a weaker sense, where all of the
entries in θ are nonzero, yet most are small compared to a
handful of large signals.” [Polson & Scott (2010), Stephens
and Balding (2009)]

The one-group model yields Analytically Tractable Marginal
and under suitable choices of the hyper-parameters, behaves
like a two-groups model.

Normal scale mixture allows for block-updating the local and
global shrinkage parameters ⇒ Fast Computation .
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The horseshoe prior (Carvalho, Polson and Scott (2010))

The horseshoe prior falls in a class of “global-local” shrinkage
priors:

yi |θi , λi , τ ∼ Normal(θi , 1),

θi |λi , τ ∼ Normal
(
0, λ2i

)
,

λi |τ ∼ C+(0, τ). (Heavy Tailed Prior)

Posterior mean: E(θi |yi , τ) = (1− E(

κi︷ ︸︸ ︷
1

1 + λ2i τ
2
|yi , τ))yi .

Two-groups Model One-group Model
E (θi |yi ) ≈ ωiyi ; ωi = P(θi 6= 0|yi ) E(θi |yi , τ) = (1− E(κi |yi , τ))yi

1− E(κi |yi , τ) mimics the posterior inclusion probability ωi .
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Global-local shrinkage priors: other examples

Since horseshoe, there has been considerable work in this area.

The horseshoe Prior (Carvalho, Polson and Scott, 2010).
The hypergeometric Inverted-beta priors (Polson and Scott,
2010)
The generalized double Pareto priors (Armagan, Dunson and
Lee, 2011)
The three parameter beta priors (Armagan, Dunson and Clyde,
2011) (which includes the NEG priors (Griffin and Brown,
2011) and the half-t prior).
The Dirichlet-Laplace prior (Bhattacharya et al., 2012).
(resembles the joint distribution of θ, unlike the other
shrinkage priors that mimic the marginal behavior).

“Global-local” shrinkage priors because they shrink small
observations (encourages sparsity) but leave the tails
unshrunk (helps detect signals)
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Properties of the horseshoe prior

The horseshoe prior has a number of attractive features for
the sparse signal recovery problem :

1 Datta and Ghosh (2013): horseshoe estimator attains Bayes
Oracle in testing.

2 Polson and Scott (2012): Horseshoe estimator θ̂HS uniformly
dominates the traditional sample mean estimator in MSE.

3 van der Pas et al. (2014): Horseshoe estimator has good
posterior concentration properties for nearly black objects
(Donoho et al., 1992). Specifically, the horseshoe estimator
attains the asymptotically minimax risk rate.

sup
θ∈l0[pn]

Eθ||θ̂HS − θ||2 � pn log (n/pn)
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Our Contributions: The horseshoe+ prior

We (Bhadra, Datta, Polson, and Willard, 2014) propose a
new prior (horseshoe+) that sharpens the ability of the
horseshoe estimator to extract signals from sparsity.

horseshoe+ is a ‘natural’ extension of the horseshoe model.

Advantages:
1 Lower mean squared error compared to existing sparse

estimators (horseshoe, Dirichlet-Laplace).

2 Achieves lower misclassification probability.

3 Better posterior concentration properties in the
Kullback-Liebler (K-L) sense.
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Hierarchical Models: horseshoe and horseshoe+

The horseshoe hierarchical model
is defined by

(yi |θi , λi , τ) ∼ N(θi , 1),

(θi |λi , τ) ∼ N
(
0, λ2i

)
,

(λi |τ) ∼ C+ (0, τ) .

We define the horseshoe+ model
similarly by

(yi |θi , λi , ηi , τ) ∼ N(θi , 1),

(θi |λi , ηi , τ) ∼ N
(
0, λ2i

)
,

(λi |ηi , τ) ∼ C+ (0, τηi ) ,

ηi ∼ C+ (0, 1) .

Horseshoe: λi ’s are conditionally independent with p(λi |τ):

p(λi |τ) =
2

πτ(1 + (λi/τ)2)
.

Horseshoe+: λi ’s are conditionally independent with p(λi |τ):

p(λi |τ) =
4

π2τ

ln {(λi/τ)}
(λi/τ)2 − 1

.

An extra ln(λi/τ) term in the numerator.

13 / 29



The horseshoe+ Jacobian

The horseshoe prior:

λi ∼ C+(0, τ)

⇒ p(κi |τ) ∝ 1√
κi (1− κi )

1

(1− κi (1− τ2))︸ ︷︷ ︸
Jacobian

The horseshoe+ prior:

(λi |τ) ∼ C+ (0, τηi ) ; ηi ∼ C+ (0, 1)

⇒ p(κi |τ) ∝ 1√
κi (1− κi )

ln
{

(1− κi )/κiτ2
}

(1− κi (τ2 + 1))︸ ︷︷ ︸
Jacobian

The horseshoe+ Jacobian
pushes the posterior mass to
the extremes (κ = 0, 1)
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Figure : Comparison of the Jacobian
terms for the HS and the HS+ priors with
τ = 1/2.
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Comparison of different priors: near origin and at the tails

The order of peakedness
near zero:
HS+ ≈ DL > HS > GDP =
Laplace > Cauchy
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The order of tail heaviness:
GDP > Cauchy >
HS+ > HS > DL >
Laplace.
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pHS+(θ) > pHS(θ) in a neigbourhood around near zero and
also at infinity.
Dirichlet Laplace has spike at zero, but exponentially decaying
tail.
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Properties of Horsehoe+ (I): the marginal prior density

The horseshoe+ density satisfies the following:

Theorem

1

1

π2
√

2π
log

(
1 +

4

θ2

)
< pHS+(θ) ≤ 1

π2|θ|

2

lim
|θ|→0

pHS+(θ) =∞

The horseshoe+ prior has unbounded mass near the origin
and polynomially decaying tails.
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Properties of horseshoe+ (II): mean squared error

Theorem

(Barndorff-Nielsen et al., 1982). Consider the Gaussian scale
mixture y |u ∼ Normal(0, u). If we can write f (u) ∝ uλ−1L(u) as
u →∞, then m(y) ∝ |y |2λ−1L(y2) as |y | → ∞, where L(·) is a
slowly varying function, defined as limy→∞ L(ty)/L(y) = 1 for any
t ∈ (0,∞).

The heavy tail of the prior scale translates to heavy tail of the
marginal. Can show mHS+(y) = mHS(y) log(|y |)(1 + o(1)) as
|y | → ∞.
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Properties of horseshoe+ (II): mean squared error

Tweedie formula relates the marginal m(yi ) to the posterior
moments

E(θi |yi ) = y +
d

dyi
[logm(yi )]

Var(θi |yi ) = 1 +
d2

dy2i
[logm(yi )].

After some simple calculations, it follows that

MSEHS+(θ̂i ) ≤ MSEHS(θ̂i )−
1

y2i log |yi |
+ O(1/y3i ).

as |yi | → ∞.
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Properties of horseshoe+ (III): posterior concentration

Fact 1: The posterior distribution of the shrinkage coefficient
κi given τ and the observation yi would converge to the
degenerate distribution at one if τ → 0.

Fact 2: The posterior distribution of the shrinkage coefficient
κi given τ and an observation yi would converge to the
degenerate distribution at zero if |yi | → ∞.
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Properties of horseshoe+ (III): posterior concentration

Theorem

P(κi < ε|yi , τ) ≤ e
y2i
2 τ2ε(1− ε)−2 for any fixed ε ∈ (0, 1), and any

τ ∈ (0, 1) uniformly in yi ∈ R.

Theorem

P(κi > η|yi , τ) ≤ e−η(1−δ)
y2i
2

1
τ2
C (η, δ) for any fixed η ∈ (0, 1), any

δ such that ηδ < 1
1+τ2

and uniformly in yi ∈ R, where C (η, δ) is a
constant independent of yi .
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Properties of horseshoe+ (III): posterior concentration

Decision rule :

Reject H0i if ωi = 1− E(κi |yi , τ) > 1/2.

Theorem

Probability of type-I error:t1 =
{√

2τ2/
√
π ln(1/2τ)

}
(1 + o(1))

Theorem

Probability of type-II error: t2 ≤ (2Φ(
√

2
η(1−δ)

√
C )− 1)(1 + o(1))

Using these two results, we can show that horseshoe+
achieves the optimal Bayes risk in testing.
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Properties of horseshoe+ (IV): Kullback-Leibler (KL) risk

θ0 = true parameter, pθ = p(y |θ) = sampling model.

L(p1, p2) = Ep1(log(p1/p2)) = KL divergence of p2 from p1.

Aε = {θ : L(pθ0 , pθ) < ε} KL information nbd. of size ε.

p̂n =
∫
pθµn(dθ) = posterior predictive density.

Lemma (Clarke and Barron, 1990)

Suppose µ(Aε) > 0, then Rn, Cesaro-average risk of p̂n will satisfy:

Rn = n−1
n∑

j=1

L(pθ0 , p̂j) ≤ ε− n−1 log(µ(Aε))

Characterizes KL-risk in terms of µ(Aε) = prior mass around
θ0.

The µ(Aε) bound is larger for the horseshoe+ prior. Rn

converges at a faster rate.
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Simulations: MSE comparison

We provide a
comprehensive MSE
comparison with existing
sparse estimators.

Performance Criterion:
mean squared error for the
posterior median over 100
replicates.

Candidates: Dirichlet
Laplace DL1/n
(Bhattacharya et al.,
2014), horseshoe and
horseshoe+.

Data generating scheme in
Bhattacharya et al. (2014)

Yn×1 ∼ Normal(θn×1, In)

θ = (A, . . . ,A,︸ ︷︷ ︸
[qn]

, 0, . . . , 0︸ ︷︷ ︸
n−[qn]

)

Multiplicity n = 200. For
each n,
q = 1, 5, 10, 20, 30% of n
and A = 7, 8.
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Simulations: MSE comparison

Proportion of signals
0.01 0.05 0.1

A A A
Prior 7 8 7 8 7 8

D-L 3.88 (8.57) 2.63 (2.97) 16.46 (16.81) 14.8 (14.98) 29.12 (19.74) 31.8 (21.7)
HS Cauchy 2.57 (2.93) 2.93 (3.47) 13.93 (6.54) 14.39 (12.23) 26.77 (9.39) 27.73 (9.27)
HS+ Cauchy 2.43 (2.7) 2.98 (3.47) 13.26 (6.51) 12.58 (5.83) 25.55 (9.29) 26.14 (9.12)
HS Unif 2.97 (3.2) 3.39 (4.08) 14.23 (6.53) 13.9 (6.79) 27.22 (9.8) 28.54 (10.18)
HS+ Unif 2.86 (3.07) 3.3 (4.06) 13.5 (6.47) 13.07 (6.03) 26.83 (10.98) 26.92 (9.73)

Proportion of signals
0.2 0.3
A A

Prior 7 8 7 8

D-L 53.32 (23.23) 51.08 (23.98) 72.32 (20.76) 79.19 (40.48)
HS Cauchy 57.15 (14.52) 56.62 (16.59) 82 (14.65) 84.8 (25.57)
HS+ Cauchy 51.5 (11.03) 50.37 (13.41) 73.74 (11.93) 76.85 (20.15)
HS Unif 56.98 (13) 55.06 (13.19) 83.15 (21.05) 81.66 (16.25)
HS+ Unif 53.19 (14.27) 52.27 (19.32) 74.43 (12.84) 77.89 (26.77)

Table : Average mean squared error (and s.d.) about the posterior median computed over 100
simulated data sets.
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Simulations: misclassification probability
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Figure : Misclassification probability plots for the horseshoe+,
horsesshoe, and the Dirichlet-Laplace (DL1/n) shrinkage priors,
Benjamini-Hochberg and the Bayes oracle for p ∈ (0.1, 0.5).
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Real data application: prostate cancer data

We use the prostate cancer data set from Efron (2008).

The data are inverse cdf transform for 6033 genes for
two-sample t-test statistic (computed over 52 cancer patients
and 50 normal subjects).

Specifically, yi = Φ−1(Ft,df=100(ti )). Natural to model
yi = Normal(θi , 1); i = 1, . . . , 6033.

Histogram of yi displays heavy tails, suggesting a few
regulatory genes.

26 / 29



Real data application: prostate cancer data

Table : The test statistics (y -values) and the effect-size estimates for the
top 10 genes selected by Efron (2008) by the horseshoe, horseshoe+
models, and Efron’s two-groups model estimates.

Gene y -value θ̂HS+i θ̂HSi θ̂Efron
i

610 5.29 5.20 5.12 4.11
1720 4.83 4.77 4.54 3.65
332 4.47 3.24 4.11 3.24
364 -4.42 -4.43 -4.14 -3.57
914 4.40 4.40 3.89 3.16

3940 -4.33 -3.78 -3.77 -3.52
4546 -4.29 -3.88 -3.46 -3.47
1068 4.25 3.71 3.03 2.99
579 4.19 3.99 2.88 2.92

4331 -4.14 -3.48 -3.26 -3.30

HS+ shrinks the large signals less compared to HS and Efron.
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Conclusions

We proposed a new prior for estimation/testing in the sparse
normal means problem.

Theoretical and empirical results suggest considerable
improvements over existing alternatives.

Open question: Necessary conditions for “global-local”
shrinkage priors?

Open question: Extending the hierarchy? What about HS ++
. . .?
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Thank you!
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