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Overview

The one and two groups models

@ The horseshoe+ prior

@ Theoretical properties

Simulations and applications on a prostate cancer data set

e Joint work with Jyotishka Datta (SAMSI and Duke
University); Nick Polson and Brandon Willard (The University
of Chicago).



The high-dimensional normal means problem

e Data: n conditionally independent continuous observations
.y = (YI7Y27 e 7}/n) ' yl"ai ~ Norma‘l(gh 1)

o Testing and null hypotheses: Hy;: 0; =0, i=1,...,n.
Goal: provide a decision rule with good error rates.

e Multiplicity problem: Number of hypotheses (n) very large
= Higher chance of false positives.

e Estimation: Goal: provide an estimator for (61, ...,6,) with
good MSE properties.



Nearly black vectors: Global shrinkage estimators

o Nearly black vectors: #(60; # 0) < p, where p, = o(n) as
Pn, N — 00.

@ Pure "global” shrinkage estimators (e.g, James-Stein) do
poorly in this setting.

@ Johnstone and Silverman (2004) show that a simple
thresholding-based estimator has better risk bounds than the
James-Stein estimator in this case.



Nearly black vectors: the two groups model

@ Use indicators v;,i = 1,...,n such that v; = 0 indicates
f; = 0 and v; = 1 indicates 6; # 0.

@ Given p, suppose, 6;'s are conditionally independent and:

Slab
—N—
01l ~ (1= 1) b10) -+ Normal (0, v?) &
~—~

Spike

@ Recall the likelihood is given by y;|6; ~ Normal(6;,1). Thus,
the marginal distribution of y;|x is then a mixture of normals:

yilu ~ (1 = p)Normal(0, 1) + uNormal(0, 1 + ¢?) (2)



Posterior mean under the two groups model: the

global-local shrinkage

@ The posterior mean E(6;|y;) under the two groups model is:
¥? .
E(9ilyi) = Wit g T Wi

where, w; is the posterior inclusion probability P(6; # 0|y;).

o If 1?2 — oo as the number of tests n — 0o, we have

‘ E(0ily:) ~ wiy,"

@ The 92 term provides “global” shrinkage. The w; terms act
“locally” to adapt to the sparsity level of the data.



Towards the one group model

@ Instead of starting with a classification scheme to arrive at an
estimator w?y;, the one-group approach directly models the
posterior inclusion probability w? without making use of the
discrete mixture.

e Carvalho, Polson and Scott (2009) observed a suitable
“global-local” mixture prior leads to the same form of the
posterior mean.

@ The “global” term should provide substantial shrinkage
towards zero.

@ The local terms should have heavy tails so that “signals” are
not shrunk too much.



Advantages of the “One-group model”

@ "Sparsity can be construed in a weaker sense, where all of the
entries in 6 are nonzero, yet most are small compared to a
handful of large signals." [Polson & Scott (2010), Stephens
and Balding (2009)]

@ The one-group model yields | Analytically Tractable Marginal
and under suitable choices of the hyper-parameters, behaves
like a two-groups model.

@ Normal scale mixture allows for block-updating the local and
global shrinkage parameters = | Fast Computation |.




The horseshoe prior (Carvalho, Polson and Scott (2010))

@ The horseshoe prior falls in a class of “global-local” shrinkage

priors:
yil0i, Ai, 7 ~ Normal(6;, 1),
0;|\i, 7 ~ Normal (0, )\,2) ,
\i|T ~ CT(0,7). (Heavy Tailed Prior)
Kj
1
e Posterior mean: E(0;|y;,7) = (1 — E(m lyi, 7))y
Two-groups Model One-group Model

E(0ily:) = wiyi; wi = P(0i # Olyi) | E(Oilyi,7) = (1 — E(xilyi, 7))yi

e 1 — E(k;|y;, 7) mimics the posterior inclusion probability w;.




Global-local shrinkage priors: other examples

@ Since horseshoe, there has been considerable work in this area.

o The horseshoe Prior (Carvalho, Polson and Scott, 2010).

o The hypergeometric Inverted-beta priors (Polson and Scott,
2010)

o The generalized double Pareto priors (Armagan, Dunson and
Lee, 2011)

o The three parameter beta priors (Armagan, Dunson and Clyde,
2011) (which includes the NEG priors (Griffin and Brown,
2011) and the half-t prior).

o The Dirichlet-Laplace prior (Bhattacharya et al., 2012).
(resembles the joint distribution of 8, unlike the other
shrinkage priors that mimic the marginal behavior).

@ “Global-local” shrinkage priors because they shrink small
observations (encourages sparsity) but leave the tails
unshrunk (helps detect signals)
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Properties of the horseshoe prior

@ The horseshoe prior has a number of attractive features for
the sparse signal recovery problem :

© Datta and Ghosh (2013): horseshoe estimator attains Bayes
Oracle in testing.

@ Polson and Scott (2012): Horseshoe estimator fys uniformly
dominates the traditional sample mean estimator in MSE.

© van der Pas et al. (2014): Horseshoe estimator has good
posterior concentration properties for nearly black objects
(Donoho et al., 1992). Specifically, the horseshoe estimator
attains the asymptotically minimax risk rate.

sup Ey[|fns — 0|* < pnlog (n/pn)
0€h[pn]
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Our Contributions: The horseshoe+ prior

e We (Bhadra, Datta, Polson, and Willard, 2014) propose a
new prior (horseshoe+) that sharpens the ability of the
horseshoe estimator to extract signals from sparsity.

@ horseshoe+ is a ‘natural’ extension of the horseshoe model.

o Advantages:

@ Lower mean squared error compared to existing sparse
estimators (horseshoe, Dirichlet-Laplace).

@ Achieves lower misclassification probability.

© Better posterior concentration properties in the
Kullback-Liebler (K-L) sense.
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Hierarchical Models: horseshoe and horseshoe+

The horseshoe hierarchical model We define the horseshoe+ model
is defined by similarly by
(yiwiv )‘i>7-) ~ N(@,’, 1)’ ()/iwiv A, Tli,T) ~ N(eia 1)7
(0il\i7) ~ N (0,77) (@33, i, 7) ~ N (0,47)
(AilT) ~ €T (0, 7). (Ailnis ) ~ C(0,7m5)
ni~ C+ (07 1) .

@ Horseshoe: \;’s are conditionally independent with p(\;|7):

2

PV = S oy

o Horseshoe+: \;'s are conditionally independent with p(\;|7):

In )\,’ T

@ An extra In(\;/7) term in the numerator.
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The horseshoe+ Jacobian

@ The horseshoe prior:

A~ C+(O,T) ) HS Hs+
= p(rilr) o —— : N ﬁ
wi(L— k) (1= wi(1—72)) 7 ol
Jacobian e

Ja
14
L
Jacobian
8

@ The horseshoe+ prior:

12
L

1
4

(AilT) ~ CT(0,7m;); mi ~ CT(0,1)

1 In {(1 - ri)/riT?} — :
2 00 02 04 06 08 1.0 00 02 04 06 08 10
I<;,'(]_ — ,L;’-) (1 — I'i,'(T + ]_)) keppa kappa

Jacobian

= p(ki|T) x

Figure : Comparison of the Jacobian
terms for the HS and the HS+ priors with

@ The horseshoe+ Jacobian
T=1/2.

pushes the posterior mass to
the extremes (k =0, 1)
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Comparison of different priors: near origin and at the tails

@ The order of peakedness
near zero:

HS+ ~ DL > HS > GDP =

Laplace > Cauchy

™o)

00 02 04 06 08 1.0
L L L L L L

jé —— GoP
i
Il -+ Cauchy
I + Laplace
,! { . HS

v -+~ HSPlus

DL

@ The order of tail heaviness:
GDP > Cauchy >
HS+ > HS > DL >
Laplace.

—— GDP
-+ Cauchy

+ Laplace

™o)

0.00 0.01 0.02 0.03 0.04
L L L L L

@ pps+(0) > prs(#) in a neigbourhood around near zero and

also at infinity.

@ Dirichlet Laplace has spike at zero, but exponentially decaying

tail.
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Properties of Horsehoe+ (I): the marginal prior density

@ The horseshoe+ density satisfies the following:

L og (142 < prss(6) < —
w221 8 62 LR - 2|6

2]

l 0) =
w:gopHer() 00

@ The horseshoe+ prior has unbounded mass near the origin
and polynomially decaying tails.
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Properties of horseshoe+ (I1): mean squared error

Theorem

(Barndorff-Nielsen et al., 1982). Consider the Gaussian scale
mixture y|u ~ Normal(0, u). If we can write f(u) oc u*1L(u) as
u — oo, then m(y) oc |y|**=*L(y?) as |y| — oo, where L(-) is a
slowly varying function, defined as limy,_,o L(ty)/L(y) =1 for any
t € (0,00).

@ The heavy tail of the prior scale translates to heavy tail of the

marginal. Can show mysi(y) = mus(y)log(|y|)(1 4 o(1)) as
ly| = oo.
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Properties of horseshoe+ (I1): mean squared error

e Tweedie formula relates the marginal m(y;) to the posterior
moments

d
E@ily;) = y+ dT/i[lOg m(yi)]
d2
Var(dily;) = 1+ W[Iog m(y:)]-

@ After some simple calculations, it follows that

1

MSEws. (0;) < MSEns(0;) — —————
s+ (01) (6:) y? log |yil

+0(1/y7).

as |yi| — oc.

18/29



Properties of horseshoe+ (lIl): posterior concentration

@ Fact 1: The posterior distribution of the shrinkage coefficient
ki given 7 and the observation y; would converge to the
degenerate distribution at one if 7 — 0.

@ Fact 2: The posterior distribution of the shrinkage coefficient
ki given 7 and an observation y; would converge to the
degenerate distribution at zero if |y;| — oo.
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Properties of horseshoe+ (lIl): posterior concentration

2
P(ki < €|y, 7) < ey7'7'2e(1 — €)72 for any fixed € € (0,1), and any
7 € (0,1) uniformly in y; € R.

Theorem

|

P(ki > nlyi,7) < e_"(l_‘s)y?f L. C(n,d) for any fixed n € (0,1), any
d such that né < 7 and un/formly in yi € R, where C(n,9) is a
constant mdependent of y;.
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Properties of horseshoe+ (lIl): posterior concentration

@ Decision rule :

Reject Hp; if wj =1 — E(n;|y,-,7') > 1/2.

Probability of type-I error:t; = {\/_72/\/7r In(1/27) } (1+ o(1))

Probability of type-Il error: ty < (2®(,/ (1 %) VC) —1)(1 + o(1))

@ Using these two results, we can show that horseshoe+
achieves the optimal Bayes risk in testing.
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Properties of horseshoe+ (IV): Kullback-Leibler (KL) risk

@ 0y = true parameter, py = p(y|0) = sampling model.
o L(p1,p2) = Ep,(log(p1/p2)) = KL divergence of po from p;.
o Ac = {0 : L(pa,, po) < €} KL information nbd. of size €.
® pn = | poin(df) = posterior predictive density.
Lemma (Clarke and Barron, 1990)
Suppose 1(Ae) > 0, then R, Cesaro-average risk of p, will satisfy:

Ro=n"1>" L(pg,, f) < € — n"log(u(A.))
j=1

Characterizes KL-risk in terms of ;(A¢) = prior mass around
bo.

@ The p(Ac) bound is larger for the horseshoe+ prior. R,
converges at a faster rate.
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Simulations: MSE comparison

o We provide a

comprehensive MSE @ Data generating scheme in
comparison with existing Bhattacharya et al. (2014)
sparse estimators.

@ Performance Criterion: Ynx1 ~ Normal(€nx1, In)
mean squared error for the 0=(A,...,A,0,...,0)
pos’Ferior median over 100 T m
replicates.

e Candidates: Dirichlet o Multiplicity n = 200. For
Laplace DLy, each n,

(Bhattacharya et al., q=1,5,10,20,30% of n
2014), horseshoe and and A=7,8.
horseshoe+.

23 /29



Simulations: MSE comparison

Proportion of signals

0.01 0.05 0.1

A A A
Prior 7 8 7 8 7 8
D-L 3.88 (8.57) 2.63 (2.97) 16.46 (16.81) 14.8 (14.98) 29.12 (19.74) 31.8 (21.7)
HS Cauchy 2.57 (2.93) 2.93(3.47) 13.93(6.54) 14.39(12.23) 26.77 (9.39) 27.73 (9.27)
HS+ Cauchy | 2.43 (2.7) 2.98 (3.47) 13.26 (6.51) 12.58 (5.83) 25.55 (9.29) 26.14 (9.12)
HS Unif 297 (3.2) 3.39(4.08) 14.23 (6.53) 13.9 (6.79) 27.22 (9.8)  28.54 (10.18)
HS+ Unif 2.86 (3.07) 3.3 (4.06) 13.5 (6.47) 13.07 (6.03) 26.83 (10.98) 26.92 (9.73)

Proportion of signals

0.2 0.3

A A

Prior 7 8 7 8

D-L 53.32 (23.23) 51.08 (23.98) 72.32 (20.76) 79.19 (40.48)
HS Cauchy 57.15 (14.52)  56.62 (16.59) 82 (14.65) 84.8 (25.57)
HS+ Cauchy | 51.5 (11.03) 50.37 (13.41) 73.74 (11.93) 76.85 (20.15)
HS Unif 56.98 (13) 55.06 (13.19) 83.15 (21.05) 81.66 (16.25)
HS+ Unif 53.19 (14.27) 52.27 (19.32) 74.43 (12.84) 77.89 (26.77)

Table : Average mean squared error (and s.d.) about the posterior median computed over 100
simulated data sets.
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Simulations: misclassification probability

00 01 02 03 04 05
proportion of signals , p,/n

Figure : Misclassification probability plots for the horseshoe+,
horsesshoe, and the Dirichlet-Laplace (DL, ,,) shrinkage priors,
Benjamini-Hochberg and the Bayes oracle for p € (0.1,0.5).
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Real data application: prostate cancer data

@ We use the prostate cancer data set from Efron (2008).

@ The data are inverse cdf transform for 6033 genes for
two-sample t-test statistic (computed over 52 cancer patients
and 50 normal subjects).

o Specifically, y; = ®1(F¢ gr—100(t;)). Natural to model
y; = Normal(0;,1); i =1,...,6033.

@ Histogram of y; displays heavy tails, suggesting a few
regulatory genes.
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Real data application: prostate cancer data

Table : The test statistics (y-values) and the effect-size estimates for the
top 10 genes selected by Efron (2008) by the horseshoe, horseshoe+
models, and Efron’s two-groups model estimates.

Gene  y-value
610 5.29 5.20 5.12 4.11
1720 4.83 477 4.54 3.65
332 4.47 3.24 411 3.24
364 -4.42 443 -4.14 -3.57
914 440 440 3.89 3.16
3940 -433 -3.78 -3.77 -3.52
4546 -429 -3.88 -3.46 -3.47
1068 425 371 3.03 2.99
579 4.19 3.99 2.88 2.92
4331 -4.14 -3.48 -326 -3.30

9;-/S+ G,HS Q’Efron

@ HS+ shrinks the large signals less compared to HS and Efron.
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Conclusions

@ We proposed a new prior for estimation/testing in the sparse
normal means problem.

@ Theoretical and empirical results suggest considerable
improvements over existing alternatives.

@ Open question: Necessary conditions for “global-local”
shrinkage priors?

@ Open question: Extending the hierarchy? What about HS ++
.72
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Thank you!



