
Beyond Matérn: on the class of confluent
hypergeometric covariance functions for Gaussian

process modeling

Anindya Bhadra
www.stat.purdue.edu/∼bhadra

Purdue University

1 / 25



Overview

Mean zero Gaussian processes (GP) are completely determined by
their covariance functions.

There is an over-reliance in spatial statistics and GP literature in
general on the Matérn covariance function. There are good reasons
for this. We first discuss the strengths and limitations of Matérn.

We then propose a new interpretable covariance function keeping the
strengths of Matérn and rectifying one major limitation.

Preprint at: https://arxiv.org/abs/1911.05865. Joint work with
Pulong Ma (SAMSI & Duke University). Supported by NSF Grant
DMS-2014371.
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Gaussian processes and covariance functions

A stochastic process {Z (s) ∈ R : s ∈ D ⊂ Rd} is a Gaussian process
(GP) if every finite-dimensional realization Z (s1), . . . ,Z (sn) jointly
follows a multivariate normal distribution for si ∈ D and every n.

The properties of a GP are determined completely by the mean and
covariance functions. In this talk, the mean is assumed zero
throughout.

Z (·) is said to be a stationary process with a covariance function
cov(Z (s),Z (s + h)) = C (h) if C (·) solely a function of the increment
h.

If C (·) is a function of ‖h‖ with ‖ · ‖ denoting the Euclidean norm,
then C (·) is called isotropic.
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Origin and tail behavior of covariance functions

The behavior of the covariance function at small distances determines
the smoothness behavior of the process (formally, the degree of the
mean squared differentiability).

The behavior of the covariance function at large distances determines
whether distant observations are allowed to be correlated (long range
dependence).

Many popular covariance functions (e.g., squared exponential) are
inflexible, in the sense that processes using these covariances are
infinitely mean squared differentiable (very smooth).

Computer experiments researchers are usually OK with that but Stein
(1999) thinks very smooth spatial processes are unrealistic.
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Matérn

The isotropic Matérn covariance function is of the form

M(h) = σ2
21−ν

Γ(ν)

(√
2ν

φ
h

)ν
Kν

(√
2ν

φ
h

)
,

where σ2 > 0 is the variance parameter, φ > 0 is the range
parameter, and ν > 0 is the smoothness parameter that controls the
differentiability of the associated random process.

Processes with a Matérn covariance function are exactly bνc times
differentiable in the mean squared sense.

This precise control over smoothness via ν is a key reason for the
popularity of Matérn, as is the interpretability of other parameters.

Stein (1999) makes a summary recommendation to conclude his first
chapter: “Use the Matérn model.”
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Tail decay of Matérn

For large h, the behavior of the Matérn covariance function is given
by:

M(h) � hν−1/2 exp

(
−
√

2ν

φ
h

)
, h→∞.

Eventually, the exp(−
√

2νh/φ) term dominates, and the covariance
decays exponentially for large h, no flexibility there!

May be inappropriate for settings where processes display high
correlation at large distances.
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Polynomial-tailed covariances, e.g., Cauchy

If exponential tail decay is a problem, of course one may use a
polynomial-tailed covariance function (e.g., generalized Cauchy).

However, the cost of switching to polynomial covariances is great!

Processes using a Cauchy covariance function are either infinitely
mean squared differentiable (very smooth) or not at all (very rough).
There is no middle ground. Same issue with power exponential family.

Our proposal: a new covariance function with interpretable
parameters that has the same origin behavior as Matérn and hence,
allows precise control over smoothness; but also has polynomial tails.
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Motivating example: the OCO-2 data

Figure: XCO2 data from June 1 to June 16, 2019. The units are ppm.

Spatial process: unlikely to be very smooth.

Large gaps between longitude bands. If a rapidly decaying covariance
function is used, harder to borrow information across large distances.
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Matérn + Cauchy?

Porcu and Stein (2012) propose a simple solution: use a summed
Matérn and Cauchy covariance, which is a valid covariance function!

Matérn dominates near the origin, Cauchy dominates at the tails.

We identify at least three problems with this:

Parameter interpretability is lost and there are more parameters than
needed: e.g., one scale parameter from Matérn and one from Cauchy.

Consequently, numerical optimization is hard.

The microergodic parameter (i.e., the parameter that is consistently
estimable under infill asymptotics) has no closed form.

The trouble is, finite mixtures like this are in general cumbersome.
Infinite mixtures are often more pleasant.
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Mixture of Matérn: construction (and some intuition)

Our key innovation is to note the correspondence between the GIG
normalizing constant of Barndorff-Nielsen (1977) and Matérn:

πGIG (x) =
(a/b)p/2

2Kp(
√
ab)

x (p−1) exp{−(ax + b/x)/2}; a, b > 0, p ∈ R.

Thus,

Kp(
√
ab) =

1

2
(a/b)p/2

∫ ∞
0

x (p−1) exp{−(ax + b/x)/2}dx .

Take a = φ−2, b = 2νh2 and p = ν. This yields:

M(h) = σ2
21−ν

Γ(ν)

(√
2ν

φ
h

)ν
Kν

(√
2ν

φ
h

)

=
σ2

2νφ2νΓ(ν)

∫ ∞
0

x (ν−1) exp{−(x/φ2 + 2νh2/x)/2}dx .
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Mixture of Matérn: construction (and some intuition)

With this GIG integral representation of Matérn, our construction is
simply a mixture over φ2:

C(h) =

∫ ∞
0

M(h)dG(φ2)

=

∫ ∞
0

[
σ2

2νφ2νΓ(ν)

∫ ∞
0

x (ν−1) exp{−(x/φ2 + 2νh2/x)/2}dx
]
dG(φ2)

Fubini
=

σ2

2νΓ(ν)

∫ ∞
0

x (ν−1)

[∫ ∞
0

φ−2ν exp{−x/(2φ2)}dG(φ2)

]
exp (−νh2/x)dx .

Main intuition: the outer integral is a Gaussian variance mixture with
respect to x . A result of Barndorff-Nielsen et al. (1982) allows us to
connect the tail behavior of C (h) with that of the mixing density for
x , which in turn depends on the inner integral over φ2.

Recall, we want polynomial tail for C (h). Barndorff-Nielsen allows us
to simply reverse engineer the dG (φ2) mixing density to achieve this!
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Mixture of Matérn: construction (and some intuition)

Following these tail considerations, we arrive at: φ2 ∼ IG(α, β/2).
This is far from accidental.

Fortuitously, this mixing leaves the flexible origin behavior of Matérn
intact, otherwise this would be no better than (generalized) Cauchy!

Finally, we are ready to present that: C (h) =
∫∞
0 M(h) π(φ2)dφ2 is

a valid covariance function on Rd with the following form:

C (h) =
σ2βαΓ(ν + α)

Γ(ν)Γ(α)

∫ ∞
0

x (ν−1)(x + β)−(ν+α) exp (−νh2/x)dx ,

where σ2 > 0 is the variance parameter, α > 0 is the tail decay
parameter,

√
β > 0 is the range parameter, and ν > 0 is the

smoothness parameter.

One more parameter (α) compared to Matérn that controls the
polynomial tail decay.
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Mixture of Matérn: the confluent hypergeometric class

The integral on the last slide looks daunting, but there is an
equivalent representation in terms of a special function that can be
evaluated in other ways, e.g., via a quickly converging infinite series.

In particular, it turns out we have

C (h) =
σ2Γ(ν + α)

Γ(ν)
U(α, 1− ν, νh2/β),

where U(a, b, c) is the confluent hypergeometric function of the
second kind.

Hence, we call the new covariance class the confluent hypergeometric
(CH) class.

Efficient implementations are available in R, MATLAB or GSL.
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The CH class: parameter interpretability

Arguably the key distinguishing feature from the summed Matérn +
Cauchy covariance is that we have 4 parameters, each with a specific
interpretation.

Easy to check that C (0) = σ2, i.e., σ2 is the variance parameter.

Similarly,
√
β is the range parameter, since C (·) depends of h2/β.

But MOST IMPORTANTLY, we establish the following two
properties:
(a) Origin behavior: The differentiability of the CH class is solely

controlled by ν in the same way as the Matérn class.
(b) Tail behavior: C (h) � |h|−2αL(h2) as h→∞, where L(·) is a slowly

varying function at ∞.

Origin behavior depends on ν, tail behavior depends on α,
independently of each other.
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Process realizations

(a) ν = 0.5 (b) α = 1.1

(c) α = 1.2 (d) α = 1.3

Figure: Realizations from a Gaussian process with zero mean and the proposed
covariance function on a 1-dimensional domain. In panel (a), the y-axis is the
quantity C (h)/C (20) since this cancels out the constants. 15 / 25



Properties of the CH class I: tail behavior of the spectral
density

The spectral density of the CH covariance function admits the
following tail behavior:

f (ω) ∼ σ222νννΓ(ν + α)

πd/2βνΓ(α)
ω−(2ν+d)L(ω2), ω →∞,

where L(x) = {x/(x + β/(2ν))}ν+d/2 is slowly varying at ∞.

For large ω, this is the spectral density of Matérn (given by ω−(2ν+d))
multiplied by a slow function, up to a constant.

Makes sense because tail behavior of the spectral density corresponds
to the origin behavior of the covariance function, and the origin
behaviors of the CH and Matérn classes are similar.
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Properties of the CH class II: the microergodic parameter

Under infill asymptotics, the individual parameters in a covariance
function are not typically consistently estimable, instead some
combination of them is.

Zhang (2004, JASA) derives this in closed form for Matérn. It is:
σ2φ−2ν .

We are also able to derive it in closed form for the CH class. It is:

σ2β−νΓ(ν + α)

Γ(α)
.
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Properties of the CH class III: asymptotic normality of the
mle

We are able to establish asymptotic normality results for the
maximum likelihood estimates of the parameters.

There are also additional results on the asymptotic efficiency of the
kriging estimates and on equivalence of Gaussian measures under the
CH and Matérn classes.

See paper for details.
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Case I: True covariance is Matérn
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Figure: Case 1: Comparison of predictive performance and estimated covariance
structures when the true covariance is the Matérn class with 2000 observations.
The predictive performance is evaluated at 10-by-10 regular grids in the square
domain. These figures summarize the predictive measures based on RMSPE, CVG
and ALCI under 30 simulated realizations.
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Case II: True covariance is CH
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Figure: Case 2: Comparison of predictive performance and estimated covariance
structures when the true covariance is the CH class with 2000 observations. The
predictive performance is evaluated at 10-by-10 regular grids in the square
domain. These figures summarize the predictive measures based on RMSPE, CVG
and ALCI under 30 simulated realizations.
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Case III: True covariance is Cauchy
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Figure: Case 3: Comparison of predictive performance and estimated covariance
structures when the true covariance is the GC class with 2000 observations. The
predictive performance is evaluated at 10-by-10 regular grids in the square
domain. These figures summarize the predictive measures based on RMSPE, CVG
and ALCI under 30 simulated realizations.
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Analysis of the OCO-2 data
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(a) XCO2 data in the study region.
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(b) XCO2 testing data in black.

Figure: XCO2 measurements from June 1 to June 16, 2019 in the study region.

Given the data Z := (Z (s1), . . . ,Z (sn))>, we assume a typical spatial
process model:

Z (s) = Y (s) + ε(s), s ∈ D,

where Y (·) is a GP with mean function µ(·) and covariance C (·, ·).

The term ε(·) is assumed to be a spatial white noise process
accounting for the nugget effect with var(ε(s)) = τ2 > 0.
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Analysis of the OCO-2 data

Table: Cross-validation results on the XCO2 data based on the Matérn and CH
covariance models. The numbers in the first coordinate correspond to those
based on MAR locations for interpolative prediction, and the numbers in the
second coordinate correspond to those based on MBD locations for extrapolative
prediction.

Matérn class CH class

ν = 0.5 ν = 1.5 ν = 0.5 ν = 1.5

τ2 (nugget) 0.0642 0.2215 0.0038 0.1478

RMSPE 0.672, 1.478 0.675, 1.599 0.676, 1.263 0.735, 1.227

CVG(95%) 0.952, 0.929 0.952, 0.951 0.944, 0.921 0.878, 0.937

ALCI(95%) 2.533, 5.095 2.536, 5.044 2.543, 4.722 2.098, 4.855
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Additional results, summary and future directions

We extensively investigated tensor products and other derived
covariances from the CH class; the results are very encouraging (see
paper).

This means, the proposed covariance class may be an important tool
in the study of computer experiments with larger dimensions,
although we only studied a spatial (2-d) application.

In summary: the CH covariance class is more flexible in modeling
distant correlations than Matérn, without sacrificing the control over
smoothness.

Applications to computer experiments and extensions to space-time
covariance functions appear promising future directions.
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