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Overview

Multi-platform genomic data can be naturally modeled using chain
graphs.

The biological hierarchy (CNA → mRNA → proteins → drug
responses) gives the directed edges between platforms.

Undirected edges determine the conditional independence structure
within each platform in the Gaussian case.

Goal: To develop an inference procedure for chain graph models
robust to an assumption of normality.

Joint work with Moumita Chakraborty and Min Jin Ha (MD
Anderson) and Veera Baladandayuthapani (Michigan). Supported by
NSF Grant DMS-2014371.
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An Illustration

Figure: (a) Chain graph structure for CNA, mRNA, RPPA and drug layers, (b)
Empirical density plot of MAPK1 CNA levels. The H-score defined in the text as
a measure of non-normality is equal to 0.988 for MAPK1 CNA. (c) Normal q-q
plot of data corresponding to MAPK1 CNA levels (d) H-scores across
multi-platform genomic data and 20 drugs.
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Inference under non-normality (the one layer case)

Non-normality can appear in multiple layers. Indeed, in our
experience, this is the norm rather than the exception.

Inference of conditional independence structure assuming a GGM is
erroneous.

Common approaches for single layer graphs:

The nonparanormal (Liu et al., 2009, JMLR).

Bayesian copula-based approaches (Pitt et al., 2006, Biometrika).

Robust and alternative multivariate t (Finegold and Drton, 2011 AoAs;
2014 BA).

Bhadra et al. (2018, Biometrics).
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A limitation of the nonparanormal/copula-based methods

The nonparanormal and copula-based approaches assume that the
data can be “transformed to normality.”

Specifically, if (Y1, . . . ,Yp) follows a nonparanormal, then there exist
monotone f1, . . . , fp such that (f1(Y1), . . . , fp(Yp)) follows a
multivariate Gaussian.

A critical assumption for the identifiability of the nonparanormal is
that the means and variances are preserved before and after
transformation, i.e, E (Yi ) = E [fi (Yi )] and V (Yi ) = V [fi (Yi )](Eq. (3),
Liu et al., 2009, JMLR).

We want to handle cases where these moments may not even exist
(examples: horseshoe or t distributed marginals with low df).

5 / 19



The models of Finegold and Drton (2011 AoAS; 2014 BA)

Basic model:
(Y1/d1, . . . ,Yp/dp) ∼ N (0,Σ−1)

Finegold and Drton (2011): d1 = · · · = dp ∼ InvGamma(τ/2, τ/2)

Finegold and Drton (2014): di
ind∼ InvGamma(τ/2, τ/2).

The first case gives the usual multivariate t (after marginalizing out
the shared latent variable), the second model was termed the
“alternative” multivariate t.

Zeros in Σ−1 determine the conditional uncorrelatedness (resp.,
conditional independence in the Gaussian case).
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The model of Bhadra et al. (2018, Biometrics)

Unclear why a t distributed marginal is appropriate for all margins as
in Finegold and Drton.

Bhadra et al. (2018) allow di to be almost arbitrary non-negative
random variables that can model both polynomially and exponentially
decaying tails.

The trouble is in interpreting zeros in Σ−1. It signifies neither
conditional independence (the Gaussian case) nor conditional
uncorrelatedness (the t case).

The main result of Bhadra et al. is that

{Σ−1}i ,j = 0↔ P(Yi < 0 | Y−{i ,j}) = P(Yi < 0 | Y−i )

Zero patterns in Σ−1 determines the sign independence pattern.
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Models for multi-layer data: the Gaussian chain graph case

One way is to specify via layer-wise node-conditional regressions:

X(l)|X[1:l−1] ∼ N|Tl |(βlX[1:l−1],J −1l ), l = 2, . . . , L,

X(1) ∼ Nq1(0,J −11 ).

Non-zero entries in βl and Jl encode directed and undirected edges
respectively.

(u− v) ∈ E when the (v , u)th entry in Jl equals zero for nodes u and
v in the same layer l .

Similarly, (u → v) ∈ E when the (v , u)th entry of βl is zero, for
L(u) < L(v) and L(v) = l .

Examples: Ha et al. (2021, JASA), Lin et al. (2016, JMLR) and
many others.
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RCGM: Robust chain graph models

We apply the sign independence framework of Bhadra et al. (2018)
to the chain graph model of Ha et al. (2021):

DlX(l) = BlD[1:l−1]X[1:l−1] + εl , εl ∼ N|Tl |(0,K
−1
l ), 2 ≤ l ≤ L,

ε1 = D1X(1), ε1 ∼ Nq1(0,K−11 ),

where Dl is diagonal matrix of scale variables for the nodes in layer l .
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What are we able to infer?

Theorem 1

(i) (At least one node is non-normal). Conditional sign-independence
follows from B and K as:

(a) (u and v in the same layer). Suppose L(u) = L(v) and
ρ = kuv = kvu. Then ρ = 0 if and only if Xu |= s Xv |Zu, where
Zu = X[1:L(u)]\{Xu,Xv}.

(b) (u and v in different layers). Suppose L(u) < L(v) and ρ = Bvu.
Then ρ = 0 if and only if Xu |= s Xv |Zd , where Zd = X[1:L(v)−1]\Xu.

(ii) (Between normal nodes). ρ = 0 if and only if Xu |= Xv |Zu for
L(u) = L(v) and Xu |= Xv |Zd for L(u) < L(v).
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The model for D

A key benefit of the normal scale mixture framework as in Bhadra et
al. (2018) is that it is possible to reverse engineer the mixing
variables di from a knowledge of the marginal tails of yi .

The main tool is a result of Barndorff-Nielsen et al. (1982) that says
if (yi | di ) ∼ N(0, di ) and marginally

(Polynomial tails). If f (yi ) ∝ |yi |2λi−1, as |yi | → ∞, then
p(di ) ∝ dλi−1

i , as di →∞.

(Exponential tails). If f (yi ) ∝ |yi |2λi−1 exp{−(2ψi )
1/2|yi |}, as

|yi | → ∞, then p(di ) ∝ dλi−1
i exp(−ψidi ), as di →∞.
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The model for D

Our prior for di in this paper is a mixture:

di | πi ∼ ωipi + (1− ωi )δ1,

ωi ∼ Bernoulli(πi ),

πi ∼ Beta(ai , bi ).

πi is the probability that node i will be non-normal, its prior
hyperparameters ai and bi are selected via p-values of KS test for
normality for node i .

But we also want to leave a non-zero probability for a node being
normal. Hence the Dirac mass at 1.

Conditional on a node being normal, the Barndorff-Nielsen result from
the previous slide is used to select the hyperparameters for pi .
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Inference under a mixture prior on D

We are still able to infer conditional sign independence between two
nodes where at least one is non normal.

Similarly, we are able to infer conditional independence between two
normal nodes.

Except, now these conclusions are true with some probability
determined by πi .
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The priors on Bl and Kl

Recall that the RCGM model is written as a sequence of partial
regressions.

Bl is a matrix of regression coefficients connecting layer l − 1 and l
and Kl is the precision matrix among the nodes in layer l .

We use spike-and-slab priors for all, except for the diagonal terms in
Kl , which are assigned gamma priors.

Inference proceeds via MCMC in the usual manner, details are in the
the supplement to the paper.
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Numerical experiments

We compare three methods:

RCGM

BANS (Ha et al., 2021, JASA): Performs Bayesian estimation in
Gaussian chain graphs.

LBBM (Lin et al. 2016, JMLR): Performs `1 penalized estimation in
Gaussian chain graphs (lasso for Bl , glasso for Kl , proceed via ADMM).

Caveat: Although RCGM and BANS take a Bayesian approach, they
use the node-conditional/pseudo likelihoods rather than full likelihood
for estimation (currently computationally very expensive).

Metric for comparison: the performance in sign recovery, calculated
via Hamming loss.
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Numerical experiments

Figure: ROC curves for the simulation setting (q, L, n, pE ) = (50, 4, 200, 0.08)
across high, medium and low levels of non-normality π, where q, L and pE denote
the dimension of graph, number of layers and sparsity respectively. Panels (a) and
(b) correspond to scaling by Exponential(mean = 2.5) and
Inv-Gamma(shape = 3, rate = 6) respectively.
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Pharmacogenomics in lung cancer

Figure: Sankey diagram showing connectivity between the 4 platforms across 10
pathways. Each box in the left three columns is a pathway-molecular platform
combination, and widths of the lines between them are proportional to the
number of directed edges connecting them. Gray lines denote edges between
pathway-platform blocks and drugs.
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Pharmacogenomics in lung cancer

Figure: The estimated multilayered network for DNA Damage Response pathway.
Blue and red edges indicate positive and negative dependencies, while CD and
CSD stand for conditionally dependent and conditionally sign-dependent edges
respectively. The width of the edges is proportional to the posterior inclusion
probabilities.
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