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Overview

(Undirected) probabilistic graphical models encode a Markov random
field, denoting conditional independence relationships.

May include latent variables, used in generative models such as
Boltzmann machines (also called energy-based models).

Apart from very specific cases (such as multivariate Gaussian), these
models have an intractable normalizing constant that affect any
likelihood-based inference (MLE or Bayesian).

Goal: To provide a tractable approach for likelihood-based inference
in these models.

Joint work with Yujie Chen and Antik Chakraborty (Purdue).
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Fully observed exponential family graphical models

m Let p denote the number of variables.

m We consider models of the form: py(x) = exp(—Ep(x))/z(6). More
explicitly:

Pe(Xlw-pr):%exp DOT0)+ Y 0w Tiwlg.x) + Y C(x)

Jjev (U,k)EE JeV

m Restriction to exponential family offers crucial advantages, and Ey(x)
and VyEy(x) have simple forms that are easy to evaluate.

m Examples:

® Ising: C(xj) =0, Tj(x;) = xj and Tj(x;j, xk) = xjxx. Sample space:
{0,1}” and © = RP*P.

® Poisson graphical model (Besag, 1974): C(x;) = log x;!, Tj(x;) = x;
and Tjc(xj, xk) = xjxi, sample space: {0,1,...,}, © € RP*P with

non-positive off-diagonal elements. ,
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Typical inference methodology in fully observed cases:
pseudolikelihood and MCMC for doubly intractable models

m The node-conditional distribution of X; | X_; is:

1
po(xj | x—j) = 26:%) exp § 0; T;(x) + C(x) + 2kezl\l:(j)9jk Tik (x5, xk)

a univariate exp. family distribution, with known z(-).

m Besag (1974, JRSSB) proposed using ij 1 P(X; | XZj), the

pseudolikelihood, which is tractable, instead of likelihood.

m Doubly intractable MCMC: Exchange algorithm (Murray et al., 2006),
contrastive divergence (Hinton, 2002) etc. One idea: Run auxiliary
chain to generate samples from py(-). Then MC approximate using:

Vologz(0) = Eynp,{—Vo(Eo(Y))}
m Score matching: Hyvarinen (2005, JMLR).
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Partially observed exponential family graphical models

m Models of the form: py(v, h) = z(0) ! exp(—Ey(v, h)) and
2(0) = 2y n exp(—Eg(v, h)).

m Specifically,
log pg(v, h) ZQJJVJ+ZOkkhk+ZO/vJvJ
J#
+ Z ekk’hkhk’ + Zejk‘/jhk — |0g 2(9),

kK .k

for 6 € RIP+m*(ptm)

m Note: pg(v) =D, po(v,h) is not in exponential family in general! It
is the "product of experts” model of Hinton (2002).
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Examples in partially observed cases: Boltzmann machines

Fig. 1.(c): DBM Fig. 1.(d): DBM rearranged as an RBM

Figure 1: From left to right: BM, RBM, DBM with three visible nodes. DBM has three
layers of hidden variables. The notation is: hidden nodes (h; € {0, 1}, shaded in gray),
visible nodes (vx € {0, 1}, transparent). Deep hidden nodes in layer | are denoted by RO,
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Some remarks on Boltzmann machines

m One of the earliest forms of generative models that allows learning a
latent structure for pg(h | v).

m Can capture interactions not belonging in the exponential family. In
fact, with enough hidden nodes, is a universal approximator of any
distribution on {0,1}? (Montufar and Ay, 2011, Neural Comp.).

m Currently not very popular due to difficulties in training.
m We will try to understand the cause of this difficulty, and what can be

done about it.
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Typical inference methodology in partially observed cases:
contrastive divergence

m Due to Hinton (2002, Neural Comp.).

m Consider gradient based learning. We have:

af;(;) _ 0 |Og Zahepe(v7 h) _ Z aEQé;a h)pg(V, h) _ Z aEe{;‘év h) Pe(h | V),

v,h h

m Recall, in RBM: Eg(v,h) = — 3. Ojvjhi. Thus, Hinton writes:

VG(t) |Og p@(hvv) = <hVT>data - <hVT>model7

® Subscript “data” denote an expectation with respect to pye(h | v) at
the observed v, which is analytic.

® Subscript “model” denote an expectation with respect to py (h, v);
which is typically not available in closed form.
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Hinton's solution: the contrastive divergence (CD)
algorithm

m At every iteration 8(9), run a K-step Gibbs sampler sampling from
Py (h | v) and py (v | h).

m For RBM, these are simply batch draws from independent Bernoullis,
because h | v are conditionally independent, and so are v | h.

m If we allow within layer connections in h or v, can't batch sample the
Bernoullis anymore; explains why RBM is used and BM avoided!

m With K — oo converge to pye (h,v). Then can use Monte Carlo
average to compute (hv ) 0de1.

m Hinton suggests using K = 1, because large K is computationally
prohibitive! Persistent CD seems to work even better.
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Towards full likelihood

m The success of CD has led to renewed interests in RBM-based
architectures (e.g., DBM).

m Yet, it is know that CD-based solutions differ from maximum
likelihood solutions (Sutskever and Tieleman, 2010).

m Classical results in statistics (Fisher, 1922; Rao, 1945) suggest
asymptotic efficiency of likelihood-based solutions, so they are worth
investigating.
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Geyer (1991) estimate of z(6)

m Let pp(x) = go(x)/z(0), with gg(x) and Vygp(x) easy to evaluate.

m Suppose ni.i.d. data are observed. For 8, ¢ € ©, we have:

qo(Xie) z(0)
Z lo () nlog ~ @)

m Geyer (1991) proposed the importance sampling estimate:

A0) 1 [ 1 [l a(Y)
)= 7 ] = go(x) 01 = Evea, [%(v)

motivating the Monte Carlo estimate Z, 1 %81 g

(o) — o) = |og
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Our Monte Carlo estimate of z(#) with ¢ = diag(0)

m Geyer's method is for generic 6, ¢.

m Unbiasedness is guaranteed by construction, but the variance can
become unbounded (see Geyer and Thompson, 1992 for examples)

m We choose the trial density py(-) with:

¢ = diag(0) |
m Two key benefits:

* z(¢) = Hle z(0j) is known in closed form (product of univariate
exponential family normalizing constants)

® A sample Y ~ py can be obtained by sampling Y; ~ ps, independently
and setting Y = (Y1,..., Yp).
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Key propositions: bounded variance and exponential
concentration of sample mean

m Monte Carlo estimate of Vyz(0) is similarly available as:

Voz(6) [qu(y)} '

2(0) P ge(Y)

m Main result 1: Monte Carlo estimates of z(6) and Vgz(0) have
bounded variances under mild conditions (see Prop. 3.2 of the

paper).
m Main result 2: When the sample space is bounded (e.g., Ising, BMs),

there is exponential concentration of the sample mean around the
true mean (see Prop. 3.3 of the paper).
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Maximum likelihood inference: fully observed case

We use the Geyer estimates of z(f) and Vyz(6).

Projected gradient descent for MLE looks like:

o+ = Py (9“) + Weﬁ(e(ﬂ))

Vo gp(X)  Voz(0W)
=Po [ 0 + . - -
’ ( e 2(60)

The projection Pg is needed to ensure we stay in the valid parameter
space (e.g., non-positive off-diagonals for Possion model).

In high dimensions, we add an /1 penalty.
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Bayesian inference: fully observed case

m In high dimensions, a blind random walk M—H encounters problems.
m Better to follow the gradient to propose a move.

m We use Hamiltonian Monte Carlo, again using the Geyer estimates of
z(0) and Vyz(0).

m We used scale mixtures of Laplace priors for the elements of 6.
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Likelihood inference: partially observed case (RBMs)

m Consider BMs. In this case the data are (h,v) and the complete data
model is Ising.

m Possible to use EM:
o+l — g0 4 {IP’(h =1]v,0 =0T — Vylog z(e(f>)}

vee—Eg(v,h)]

Env)~ps e—Eo(vh)

e—Eg(V,h)
e—E¢(V,h)

=004y {P(h=1|v,0 =W —

E(hvv)’\‘qu

m Bayesian inference is similar using HMC.
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Inference for full BMs

m Recall again why RBMs are preferred over (full) BMs. Batch Gibbs
sampling of h | v and v | h possible in RBM.

m In our case, the sampling model is the diagonal model (¢ = diag(0)).
It does not matter if there are within layer connections (within h or
within v) or not!

m The complete model pyg(h, v) and the conditional model py(h | v) are
both Ising (exponential family), even though the marginal model

po(v) is not.

m Consequently, we can handle a full BM with this approach. We can
also estimate the marginal likelihood for BMs by Chib’s method:

po(v) = po(h,v)/ps(h | v).
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Some theoretical results on likelihood based inference

m Under some assumptions, we are able to establish consistency of the
{1 penalized estimator and posterior consistency of the Bayes
estimator.

m There is support for the proposed gradient-based learning using the
estimated gradient rather than true gradient.

m See paper for details.
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Results: Ising for movie ratings data

m In the Movielens data (https://grouplens.org/datasets/movielens/),
162,000 users rated 62,000 movies on a scale 0-5, in increments of

0.5.

m We use a subset of n = 303 users who all rated the same p = 50

movies. We set:
Xij = 1(rating;; > 4.5),

denoting whether the ith user liked the jth movie.
m If X;j = Xjx = 1, it means user i likes both movies j and k. Positive

and negative values of {6} can now be interpreted as preferences.
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https://grouplens.org/datasets/movielens/

Results: Ising for movie ratings

data

Positive Edge 0; Negative Edge Ok
Lord of the Rings (2003) - Lord of the Rings (2001) 0.77 Inception (2010) - Batman (1989) -0.95
Lord of the Rings (2002) - Lord of the Rings (2001) 0.72 Terminator (1984) - Dances with Wolves (1990) -0.80
Lord of the Rings (2003) - Lord of the Rings (2002) 0.61 True Lies (1994) - Star Wars: Episode IV (1977) -0.53
Star Wars: Episode V (1980) - Star Wars: Episode IV (1977) | 0.56 Memento (2000) - Fugitive (1993) -0.49
Terminator (1984) - Terminator 2: Judgment Day (1991) 0.55 Inception (2010) - Terminator (1984) -0.48
Star Wars: Episode VI (1983) - Star Wars: Episode IV (1977) | 0.53 || Dances with Wolves (1990) - Twelve Monkeys (1995) | -0.44
Star Wars: Episode VI (1983) - Star Wars: Episode V (1980) | 0.48 Independence Day (1996) - Batman (1989) -0.44
Raiders of the Lost Ark (1981) - Star Wars: Episode V (1980) | 0.40 Godfather (1972) - Independence Day (1996) -0.42
Godfather (1972) - Schindler's List (1993) 0.25 Inception (2010)-Independence Day (1996) -0.41
Raiders of the Lost Ark (1981) - Star Wars: Episode IV (1977) | 0.24 Braveheart (1995) - Toy Story (1995) -0.39

Table: Top 10 positive and negative interactions in the Movie Ratings Network.

m Clear Lord of the Rings and Star Wars clusters. Positive edges
dominated by Spielberg—Lucas et al.

m We thought the negative edges were interesting. Batman, 1989
(Director: Tim Burton) is different in style than Christopher Nolan's
Batman franchise (Director of Inception).

m No causal conclusions!
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Results: BM and RBM for MNIST

ol a

Ji

m Row 1: Observed digits.
m Row 2: RBM-MLE reconstruction.
m Row 3: BM-MLE reconstruction.
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Additional results

m We also analyzed count RNA-seq data in breast cancer using Poisson
graphical models.

m BM seems to give good results with a fewer number of hidden nodes
than RBMs.

m See paper for details.
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Conclusions and future works

m Likelihood inference is difficult in intractable models because one
needs to simulate auxiliary data from py(-) after every update of 6.

m Exchange algorithm (Murray et al., 2006), double MH (Liang, 2010),
CD (Hinton, 2002) all suffer from this drawback.

m Sampling auxiliary data from py(-), the “diagonal model,” offers
crucial advantages.
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Conclusions and future works

m Our estimates of z(6) and Vyz(6) are unbiased.

m But, ratio of unbiased estimates is not in general unbiased (although
it is consistent under mild conditions). We use this ratio estimator for
Vo log z(0) = Vyz(0)/z(0).

m Thus, our HMC is an “approximate” MCMC (in the sense of Alquier
et al., 2016). The estimate is not finite sample unbiased, and hence,
not a pseudo-marginal approach (like exchange algorithm).

m We are working on a valid pseudo marginal scheme as well.
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® Code: https://github.com/chenyujiel1104/ExponentialGM
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