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Overview

(Undirected) probabilistic graphical models encode a Markov random
field, denoting conditional independence relationships.

May include latent variables, used in generative models such as
Boltzmann machines (also called energy-based models).

Apart from very specific cases (such as multivariate Gaussian), these
models have an intractable normalizing constant that affect any
likelihood-based inference (MLE or Bayesian).

Goal: To provide a tractable approach for likelihood-based inference
in these models.

Joint work with Yujie Chen and Antik Chakraborty (Purdue).
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Fully observed exponential family graphical models

Let p denote the number of variables.

We consider models of the form: pθ(x) = exp(−Eθ(x))/z(θ). More
explicitly:

pθ(x1, . . . , xp) =
1

z(θ)
exp

∑
j∈V

θjTj(xj) +
∑

(j,k)∈E

θjkTjk(xj , xk) +
∑
j∈V

C (xj)

 .

Restriction to exponential family offers crucial advantages, and Eθ(x)
and ∇θEθ(x) have simple forms that are easy to evaluate.

Examples:

• Ising: C (xj) = 0, Tj(xj) = xj and Tjk(xj , xk) = xjxk . Sample space:
{0, 1}p and Θ = Rp×p.

• Poisson graphical model (Besag, 1974): C (xj) = log xj !, Tj(xj) = xj
and Tjk(xj , xk) = xjxk , sample space: {0, 1, . . . , }, Θ ∈ Rp×p with
non-positive off-diagonal elements.
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Typical inference methodology in fully observed cases:
pseudolikelihood and MCMC for doubly intractable models

The node-conditional distribution of Xj | X−j is:

pθ(xj | x−j) =
1

z(θ; x−j)
exp

θjTj(xj) + C (xj) + 2
∑

k∈N(j)

θjkTjk(xj , xk)

 ,

a univariate exp. family distribution, with known z(·).

Besag (1974, JRSSB) proposed using
∏p

j=1 p(Xj | X−j), the
pseudolikelihood, which is tractable, instead of likelihood.

Doubly intractable MCMC: Exchange algorithm (Murray et al., 2006),
contrastive divergence (Hinton, 2002) etc. One idea: Run auxiliary
chain to generate samples from pθ(·). Then MC approximate using:

∇θ log z(θ) = EY∼pθ{−∇θ(Eθ(Y ))}

Score matching: Hyvärinen (2005, JMLR).
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Partially observed exponential family graphical models

Models of the form: pθ(v,h) = z(θ)−1 exp(−Eθ(v,h)) and
z(θ) =

∑
v,h exp(−Eθ(v,h)).

Specifically,

log pθ(v,h) =
∑
j

θjjvj +
∑
k

θkkhk +
∑
j 6=j ′

θjj ′vjvj ′

+
∑
k 6=k ′

θkk ′hkhk ′ +
∑
j ,k

θjkvjhk − log z(θ),

for θ ∈ R(p+m)×(p+m).

Note: pθ(v) =
∑

h pθ(v,h) is not in exponential family in general! It
is the “product of experts” model of Hinton (2002).
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Examples in partially observed cases: Boltzmann machines
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Some remarks on Boltzmann machines

One of the earliest forms of generative models that allows learning a
latent structure for pθ(h | v).

Can capture interactions not belonging in the exponential family. In
fact, with enough hidden nodes, is a universal approximator of any
distribution on {0, 1}p (Montufar and Ay, 2011, Neural Comp.).

Currently not very popular due to difficulties in training.

We will try to understand the cause of this difficulty, and what can be
done about it.

7 / 25



Typical inference methodology in partially observed cases:
contrastive divergence

Due to Hinton (2002, Neural Comp.).

Consider gradient based learning. We have:

∂`(θ)

∂θ
=
∂ log

∑
h pθ(v,h)

∂θ
=
∑
v ,h

∂Eθ(v,h)

∂θ
pθ(v,h)−

∑
h

∂Eθ(v,h)

∂θ
pθ(h | v),

Recall, in RBM: Eθ(v,h) = −
∑

j ,k θjkvjhk . Thus, Hinton writes:

∇θ(t) log pθ(h, v) = 〈hvT 〉data − 〈hvT 〉model,

• Subscript “data” denote an expectation with respect to pθ(t) (h | v) at
the observed v, which is analytic.

• Subscript “model” denote an expectation with respect to pθ(t) (h, v);
which is typically not available in closed form.
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Hinton’s solution: the contrastive divergence (CD)
algorithm

At every iteration θ(t), run a K -step Gibbs sampler sampling from
pθ(t)(h | v) and pθ(t)(v | h).

For RBM, these are simply batch draws from independent Bernoullis,
because h | v are conditionally independent, and so are v | h.

If we allow within layer connections in h or v, can’t batch sample the
Bernoullis anymore; explains why RBM is used and BM avoided!

With K →∞ converge to pθ(t)(h, v). Then can use Monte Carlo
average to compute 〈hvT 〉model.

Hinton suggests using K = 1, because large K is computationally
prohibitive! Persistent CD seems to work even better.
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Towards full likelihood

The success of CD has led to renewed interests in RBM-based
architectures (e.g., DBM).

Yet, it is know that CD-based solutions differ from maximum
likelihood solutions (Sutskever and Tieleman, 2010).

Classical results in statistics (Fisher, 1922; Rao, 1945) suggest
asymptotic efficiency of likelihood-based solutions, so they are worth
investigating.
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Geyer (1991) estimate of z(θ)

Let pθ(x) = qθ(x)/z(θ), with qθ(x) and ∇θqθ(x) easy to evaluate.

Suppose n i.i.d. data are observed. For θ, φ ∈ Θ, we have:

`(θ)− `(φ) = log
pθ(X)

pφ(X)
=

n∑
i=1

log
qθ(Xi•)

qφ(Xi•)
− n log

z(θ)

z(φ)
.

Geyer (1991) proposed the importance sampling estimate:

z(θ)

z(φ)
=

1

z(φ)

∫
qθ(x)dx =

1

z(φ)

∫
qθ(x)

qφ(x)
qφ(x)dx = EY∼pφ

[
qθ(Y )

qφ(Y )

]
,

motivating the Monte Carlo estimate 1
N

∑N
i=1

qθ(Yi•)
qφ(Yi•)

,

11 / 25



Our Monte Carlo estimate of z(θ) with φ = diag(θ)

Geyer’s method is for generic θ, φ.

Unbiasedness is guaranteed by construction, but the variance can
become unbounded (see Geyer and Thompson, 1992 for examples)

We choose the trial density pφ(·) with:

φ = diag(θ) .

Two key benefits:

• z(φ) =
∏p

j=1 z(θjj) is known in closed form (product of univariate
exponential family normalizing constants)

• A sample Y ∼ pφ can be obtained by sampling Yj ∼ pθjj independently
and setting Y = (Y1, . . . ,Yp).
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Key propositions: bounded variance and exponential
concentration of sample mean

Monte Carlo estimate of ∇θz(θ) is similarly available as:

∇θz(θ)

z(φ)
= EY∼pφ

[
∇θqθ(Y )

qφ(Y )

]
.

Main result 1: Monte Carlo estimates of z(θ) and ∇θz(θ) have
bounded variances under mild conditions (see Prop. 3.2 of the
paper).

Main result 2: When the sample space is bounded (e.g., Ising, BMs),
there is exponential concentration of the sample mean around the
true mean (see Prop. 3.3 of the paper).
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Maximum likelihood inference: fully observed case

We use the Geyer estimates of z(θ) and ∇θz(θ).

Projected gradient descent for MLE looks like:

θ(t+1) = PΘ

(
θ(t) + γ∇θ`(θ(t))

)
= PΘ

(
θ(t) + γ

∇θ qθ(t)(X)

qθ(t)(X)
− γ∇θz(θ(t))

z(θ(t))

)
.

The projection PΘ is needed to ensure we stay in the valid parameter
space (e.g., non-positive off-diagonals for Possion model).

In high dimensions, we add an `1 penalty.
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Bayesian inference: fully observed case

In high dimensions, a blind random walk M–H encounters problems.

Better to follow the gradient to propose a move.

We use Hamiltonian Monte Carlo, again using the Geyer estimates of
z(θ) and ∇θz(θ).

We used scale mixtures of Laplace priors for the elements of θ.
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Likelihood inference: partially observed case (RBMs)

Consider BMs. In this case the data are (h, v) and the complete data
model is Ising.

Possible to use EM:

θ(t+1) = θ(t) + γ
{
P(h = 1 | v, θ = θ(t))vT −∇θ log z(θ(t))

}

= θ(t)+γ

P(h = 1 | v, θ = θ(t))vT −
E(h,v)∼pφ

[
∇θe−Eθ(v,h)

e−Eφ(v,h)

]

E(h,v)∼pφ

[
e−Eθ(v,h)

e−Eφ(v,h)

]
 .

Bayesian inference is similar using HMC.

16 / 25



Inference for full BMs

Recall again why RBMs are preferred over (full) BMs. Batch Gibbs
sampling of h | v and v | h possible in RBM.

In our case, the sampling model is the diagonal model (φ = diag(θ)).
It does not matter if there are within layer connections (within h or
within v) or not!

The complete model pθ(h, v) and the conditional model pθ(h | v) are
both Ising (exponential family), even though the marginal model
pθ(v) is not.

Consequently, we can handle a full BM with this approach. We can
also estimate the marginal likelihood for BMs by Chib’s method:

pθ(v) = pθ(h, v)/pθ(h | v).
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Some theoretical results on likelihood based inference

Under some assumptions, we are able to establish consistency of the
`1 penalized estimator and posterior consistency of the Bayes
estimator.

There is support for the proposed gradient-based learning using the
estimated gradient rather than true gradient.

See paper for details.
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Results: Ising for movie ratings data

In the Movielens data (https://grouplens.org/datasets/movielens/),
162, 000 users rated 62, 000 movies on a scale 0–5, in increments of
0.5.

We use a subset of n = 303 users who all rated the same p = 50
movies. We set:

Xij = 1(ratingij ≥ 4.5),

denoting whether the ith user liked the jth movie.

If Xij = Xik = 1, it means user i likes both movies j and k . Positive
and negative values of {θjk} can now be interpreted as preferences.
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Results: Ising for movie ratings data

Positive Edge θ̂jk Negative Edge θ̂jk
Lord of the Rings (2003) - Lord of the Rings (2001) 0.77 Inception (2010) - Batman (1989) -0.95
Lord of the Rings (2002) - Lord of the Rings (2001) 0.72 Terminator (1984) - Dances with Wolves (1990) -0.80
Lord of the Rings (2003) - Lord of the Rings (2002) 0.61 True Lies (1994) - Star Wars: Episode IV (1977) -0.53

Star Wars: Episode V (1980) - Star Wars: Episode IV (1977) 0.56 Memento (2000) - Fugitive (1993) -0.49
Terminator (1984) - Terminator 2: Judgment Day (1991) 0.55 Inception (2010) - Terminator (1984) -0.48

Star Wars: Episode VI (1983) - Star Wars: Episode IV (1977) 0.53 Dances with Wolves (1990) - Twelve Monkeys (1995) -0.44
Star Wars: Episode VI (1983) - Star Wars: Episode V (1980) 0.48 Independence Day (1996) - Batman (1989) -0.44
Raiders of the Lost Ark (1981) - Star Wars: Episode V (1980) 0.40 Godfather (1972) - Independence Day (1996) -0.42

Godfather (1972) - Schindler’s List (1993) 0.25 Inception (2010)-Independence Day (1996) -0.41
Raiders of the Lost Ark (1981) - Star Wars: Episode IV (1977) 0.24 Braveheart (1995) - Toy Story (1995) -0.39

Table: Top 10 positive and negative interactions in the Movie Ratings Network.

Clear Lord of the Rings and Star Wars clusters. Positive edges
dominated by Spielberg–Lucas et al.

We thought the negative edges were interesting. Batman, 1989
(Director: Tim Burton) is different in style than Christopher Nolan’s
Batman franchise (Director of Inception).

No causal conclusions!
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Results: BM and RBM for MNIST

Row 1: Observed digits.

Row 2: RBM-MLE reconstruction.

Row 3: BM-MLE reconstruction.
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Additional results

We also analyzed count RNA-seq data in breast cancer using Poisson
graphical models.

BM seems to give good results with a fewer number of hidden nodes
than RBMs.

See paper for details.
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Conclusions and future works

Likelihood inference is difficult in intractable models because one
needs to simulate auxiliary data from pθ(·) after every update of θ.

Exchange algorithm (Murray et al., 2006), double MH (Liang, 2010),
CD (Hinton, 2002) all suffer from this drawback.

Sampling auxiliary data from pφ(·), the “diagonal model,” offers
crucial advantages.

23 / 25



Conclusions and future works

Our estimates of z(θ) and ∇θz(θ) are unbiased.

But, ratio of unbiased estimates is not in general unbiased (although
it is consistent under mild conditions). We use this ratio estimator for
∇θ log z(θ) = ∇θz(θ)/z(θ).

Thus, our HMC is an “approximate” MCMC (in the sense of Alquier
et al., 2016). The estimate is not finite sample unbiased, and hence,
not a pseudo-marginal approach (like exchange algorithm).

We are working on a valid pseudo marginal scheme as well.
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