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Overview

@ Goal: To develop a new Bayes estimator for sparse precision matrices
for multivariate Gaussian data.

A full Gibbs sampler for efficient sampling.

Theoretical contrast with popular existing methods such as the
graphical lasso and graphical SCAD.

Numerical examples.

e Joint work with Yunfan Li and Bruce Craig at Purdue. Supported by
NSF Grant DMS-1613063.
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Some existing estimators

@ Estimators that assume an unstructured precision matrix usually make

an assumption of sparsity.
o Frequentist: graphical lasso (Friedman et al. 2008, Biostatistics);
graphical SCAD (Lam and Fan, 2009, AoS).
e Bayesian: the Bayesian graphical lasso (Wang, 2012, BA); the
proposed graphical horseshoe estimator.

e Estimators that assume an underlying structure (banding, latent
factors, low rank)
o Frequentist: Bickel and Levina (2008, AoS) and many others
o Bayesian: Banerjee and Ghosal (2014, EJS (banded)); Pati et al.
(2014, AoS (sparse latent factors))
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Some existing estimators

o Let Q be p x p positive definite. Observe i.i.d.
yx ~ Normal(0,Q71),

for k=1,...,nand let p > n.

o Let S=73"7,yiy} Penalized likelihood approaches maximize
log(det @) — tx(5Q/n) — 3 a((wi)
iJ
o Graphical lasso: ¢y (|x]) = Alx]; A > 0.
e Graphical SCAD:

/ a\ — |x
PA(Ix]) = A {1{|x|g,\} + ((a—|1)|))\+1{x|>’\}} i A>0,a>2.
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Some existing estimators

e Wang (2012, BA) showed the frequentist glasso estimate is posterior
mode under the prior

P
p(Q2|X) oc [ [{DE(wy | M)} [ [{EXP(wii | A/2)} s, -
i<j i=1
where S, is the set of positive definite matrices.

@ He also developed a block Gibbs sampler for a full Bayes solution - a
strategy we will closely follow.

@ The posterior mean estimate under this prior is known as the
Bayesian graphical lasso (BGL).
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Issues with the existing estimators

@ Graphical lasso introduces bias in estimating large signals due to soft
thresholding.

@ Graphical SCAD penalty is non-convex and unbiased for large signals,
but the estimate is not guaranteed to be positive definite in finite
samples.

@ We will also argue neither graphical lasso nor graphical SCAD
provides strong enough shrinkage towards zero, resulting in poorer
information-theoretic properties.
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Our proposal

o With the constraint Q € S, define element-wise (i,j =1,...,p)

wji 1,
wijj.i<j ~ Normal(0, )\121_7.2)’
Nji<j ~ CT(0,1),
@ That is, the prior on Q is
p(Q|7) o [ [ Normal(w;j 0, A57%) [T C* (X 10, 1)1ges,,
i<j i<j

@ A non-informative prior on the diagonal terms and independent
global-local horseshoe priors on off-diagonal terms to ensure (i)

efficient shrinkage of noise terms and (ii) not shrinking the signals.
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Some examples of global-local priors

@ The order of peakedness near
zero: HS+ ~ DL > HS >
GDP = Laplace > Cauchy
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@ The order of tail heaviness:
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Posterior simulation

@ The posterior is

5 1 wh
p(Q Y, A\ T) x ]Q|2exp{ - tr<§5§2> } Hexp( — ﬁ)lﬂesp-
i<j ij
o Write
Q- ( L-p)-p) @-plp > 5 ( Sp)(-p) S(-p)p ) '
“(—p)p “pp 7 S(—p)p Spp

o Define 8 = w(_p)p and v = wpp — wzfp)pQ(:lp)(fp)w(_P)P'
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Posterior simulation

e Wang (2012, BA) showed
(7, Bl Q—p)=p), Y N\, 7) ~ Gamma(n/2 + 1, sp,/2) x Normal(—Cs(_p),, C),

where C = {spr(_lp)(_p) + (A 2) 1

o Conditional posteriors of off-diagonal terms are normal, those of
diagonal terms are inverse gamma.

o If the initial € is positive definite, ensures all subsequent iterations are
also positive definite.
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Posterior simulation

e The difference is, for BGL, Ajj ~ Exp(1) but for GHS \; ~ C*(0,1),
a priori.

@ Here, we follow the key data augmentation technique proposed by
Makalic and Schmidt (2016, IEEE Sig. Proc. Letters):

if x? | a ~ InvGamma(1/2,1/a) and a~ InvGamma(1/2,1),
then marginally, x ~ C™0,1)

e That is, a half-Cauchy is a mixture of two inverse gammas.

@ BUT! Inverse gamma is conjugate to itself and to the variance
parameter in a normal linear regression model.
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Posterior simulation

All conditional posteriors are available in closed form, leading to a full
Gibbs sampler.

They are either multivariate normal, gamma or inverse gamma.

Computational complexity is O(p3).

For full details, see Algorithm 1 of Li, Craig and Bhadra (2017, arXiv:
1707.06661).

MATLAB code on github at http://github.com/1iyf1988/GHS.
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http://github.com/liyf1988/GHS

A useful lemma (Li, Craig and Bhadra, 2017)

Modification of Barron and Clarke (1990, IEEE Trans. Inf. Theory).
Let the true parameter be Qg and Ac = {Q: D(pq,||pa) < €}.

Let v(dQ2) be the prior measure of Q and
vp(dQQ) o [T pa(yi)v(dS2) be the posterior measure.

Pn = [ pava(dQ) be the posterior mean estimate of the density.

The Cesaro-average risk R, of the estimator p, admits the following
lower and upper bounds for all € > 0:

1 1 — . 1
—€— Elog v(A) < R, = - ZlED(onHpj) <e— Elog v(Ae),
J:

where [E denotes an expectation with respect to the data distribution.
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K-L risk bounds

o If we take e = 1/n, then R, is a function of two things: (i) the sample
size n and (ii) v(Ay/), the prior measure of K-L information
neighborhood of true €.

@ BUT! Recall the horseshoe density is unbounded at zero. When the
true parameter is zero, it places more mass in the K-L neighborhood
than any prior that is continuous and bounded above.

@ This immediately includes the double exponential prior in BGL.

@ The graphical SCAD estimate does not admit an interpretation as a
posterior mode similar to BGL, but if we view the corresponding
penalty as negative of the log of prior, it's easy to see that prior will
be bounded above.
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K-L risk bounds (Thm. 3.2; Li, Craig and Bhadra, 2017)

@ For p, under the graphical horseshoe prior,
polog {M%log (2Mn'/2p)} + pilog 1% < log (A1) <
polog{M Ter log (21/2Mn'/2p)} + p1log -5 1755+ Where pg is the number
of zero eIements in g, p1 is the number of nonzero elements in Qg,
and G, G, G5, G4 are constants.

@ Suppose p(wjj) is any other prior density that is continuous, bounded
above, and strictly positive on a neighborhood of the true value wjjo.
Then p2log -& 1/2 <logv(A1/n) <p 2log K 1/2 , where Kj and K are
constants.
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K-L risk bounds: summary

@ The bounds for all methods diverge when p?/n — oo.

@ But the upper and lower bounds for GHS diverge slower when true Q
is sparse.

@ For finite n and finite p > n, we see a nontrivial improvement over
BGL and graphical SCAD.
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Bias

@ We are also able to show the graphical horseshoe estimate is nearly
unbiased in estimating large signals.

@ This is at a contrast with the BGL, which will leave a constant bias
regardless of the signal strength due to soft thresholding.

@ These results mirror the findings of lasso vs. horseshoe in the normal
means model.
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Numerical examples

We consider the following structures for true €:

@ Random. A sparse matrix is generated. Then each off-diagonal
element is randomly assigned a sign.

o Hubs. The rows/columns are partitioned into disjoint groups { Gy }£.
Within each group a sparse structure is generated, but no connections
between groups.

@ Cliques. A sparse decomposable graph that admits clique-separator
decomposition.
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Numerical examples (p = 100, n = 50)

Random Hubs
nonzero pairs 35/4950 90/4950
nonzero elem. ~ —Unif(0.2,1) 0.25
GL1 GL2 GSCAD BGL GHS GL1 GL2 GSCAD BGL GHS
Stein's loss 10.20 13.42 10.05 80.92 6.44 10.12 12.78 10.01 77.85 12.56
(0.53) (1.06) (0.55) (1.63) (0.85) (0.53) (0.96) (0.50) (1.66) (1.04)
F norm 4.33 5.30 4.31 5.58 3.31 3.95 4.63 3.94 5.97 3.96
(0.18) (0.20) (0.16) (0.26) (0.29) (0.13) (0.18) (0.14) (0.30) (0.27)
TPR .8246 7097 9977 .8709 .5903 .8649 .7333 .9987 .8513 .2687
(.0520)  (.0620)  (.0078)  (.0470)  (.0537) | (.0443)  (.0751)  (.0053)  (.0378)  (.0764)
FPR .0947 .0374 .9955 .1055 .0004 .0919 .0281 .9976 1189 .0013
(.0141)  (.0070)  (.0102)  (.0059)  (.0003) | (.0130)  (.0086)  (.0069)  (.0058)  (.0005)
Avg CPU time 0.30 0.35 6.24 40.94 38.32 0.14 0.16 4.01 35.44 41.58
Cliques positive Cliques negative
nonzero pairs 30/4950 30/4950
nonzero elem. -0.45 0.75
GL1 GL2 GSCAD BGL GHS GL1 GL2 GSCAD BGL GHS
Stein's loss 9.16 14.16 8.99 81.58 5.87 11.00 14.37 10.90 81.27 6.28
(0.55) (1.06) (0.52) (2.51) (0.93) (0.43) (1.02) (0.43) (1.98) (1.09)
F norm 3.75 5.01 3.71 5.44 3.81 6.00 6.86 5.99 6.51 3.64
(0.16) (0.16) (0.17) (0.33) (0.41) (0.14) (0.16) (0.14) (0.20) (0.36)
TPR 1 1 1 1 7487 .9993 .9880 1 19993 9733
(0) (0) (0) (0) (.0427) | (.0047)  (.0221) (0) (.0047)  (.0421)
FPR .0900 .0255 .9901 .1014 .0003 .0922 .0279 .9752 .1161 .0010
(.0098) (.0056) (.0177) (.0052) (.0003) (.0135) (.0084) (.0219) (.0051) (.0005)
Avg CPU time 0.24 0.28 4.52 34.45 41.65 0.18 0.20 6.91 33.88 41.05
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Summary and conclusions

@ The proposed estimator performs better than competing methods in
terms of Stein’s loss (a finite sample estimate of the K-L risk). Also
performs well in terms of estimation and variable selection.

@ The full Gibbs sampler helps avoiding issues such as tuning an M—-H
sampler, notoriously difficult in high dimensions.

@ We have provided some preliminary theory, but the rich theory
developed for horseshoe priors in the normal means model is waiting
to be applied here!

@ Preprint: arXiv: 1707.06661; Code: http://github.com/liyf1988/GHS
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