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Overview

Marginal likelihood or evidence is fundamental to Bayesian statistics.

Used for empirical Bayes tuning of hyperparameters, model selection
using Bayes factors.

There is no dearth of generic approaches, yet calculation of evidence
is mostly unresolved in Gaussian graphical models (GGMs), except for
very specific priors such as the Wishart or G-Wishart.

Goal: To provide a tractable approach for evidence calculation in
GGMs under mild requirements.

Joint work with Ksheera Sagar (Purdue), Sayantan Banerjee (IIM
Indore) and Jyotishka Datta (Virginia Tech).
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Evidence in GGMs

Suppose yn×p ∼ N (0, In ⊗Ω−1p×p). Evidence calculation is simple in
principle:

f (y) =

∫
Ω∈M+

p

f (y | Ω)f (Ω)dΩ.

The restriction of the integral to the space of positive definite
matrices causes a lot of difficulties, except for Wishart and specific
instances of G-Wishart (Uhler et al., 2018, AoS).

For the same reason, a “default” covering density is very hard to
design: difficulties for importance, bridge or path sampling.
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Generic approaches for estimating evidence

Harmonic mean estimates and variants (Newton and Raftery, 1994,
JRSSB; Gelfand and Dey, 1994, JRSSB)

Importance sampling approaches:

Bridge sampling and variants (path, warped bridge) (Gelman and
Meng, 1998, Stats. Sci.; Meng and Wong, 1996, Sinica; Meng and
Schilling, 2002, JCGS),
Annealed importance sampling (Neal, 2001, Stats. Comput.)

Nested sampling (Skilling, 2006, BA).

Chib (1995, JASA) and Chib and Jeliazkov (2001, JASA) based on
MCMC posterior draws.

Excellent review article by Llorente et al. (2022, SIAM Review).
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Do generic approaches work in GGMs?

HM estimates can have unbounded variance: limit distribution is α
stable (Wolpert and Schmeider, 2012).

We are not aware of any principled way of choosing an importance or
bridge density under a positive definite restriction.

Nested sampling requires sampling from a progressively higher
likelihood region: very hard to implement in high dimensions.

A case in point: the specialized Monte Carlo method of Atay-Kayis
and Massam (2005, Biometrika) for G-Wishart marginals appeared a
good 10 years after these generic approaches.
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Chib (1995)

Recall the fundamental Bayesian identity:

f (y) =
f (y | θ)f (θ)

f (θ | y)
,

The likelihood and the prior can typically be evaluated at some
θ = θ∗, the trouble is evaluating f (θ | y).

Chib’s strategy:

Decompose Ω = (z , θ) = (nuisance parameter, parameter of interest).

Run a Gibbs sampler iterating between f (z | θ, y) and f (θ | z , y).
Converges to f (z , θ | y). Correct marginals for (z | y) and (θ | y).

Estimate using the Gibbs draws:

f̂ (θ∗ | y) = M−1
M∑
i=1

f (θ∗ | z (i), y), z (i) ∼ f (z | y).

Need the constants only for f (θ | z , y); not for f (z | θ, y).
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Pros and cons of Chib (1995)

Chib’s approach is automatic in the same way a Gibbs sampler is
automatic: a covering (importance, bridge) density is not required.

But applying Chib’s method requires designing a suitable f (θ | z , y)
that can be evaluated (merely sampling from it is not enough).

Application is a matter of art and not generic in a way the harmonic
mean estimate is generic.

Some known difficulties in finite mixture models (Neal, 1999).
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Chib’s approach for GGMs: the telescoping block
decomposition

Apply the decomposition:

Ωp×p =

[
Ω(p−1)×(p−1) ω rp

ωTrp ωpp

]
.

Let θp = (ω rp , ωpp) and z = collection of all other latent variables.

Wang (2012, BA) showed in the context of sampling that
f (θp | y, z) = f (ω rp , ωpp | y, z) = f (ω rp | y, z)f (ωpp | ω rp , y, z)
decomposes as (normal × gamma) under suitable priors on Ωp×p.

We will use this for density evaluation, since the normalizing
constants for both normal and gamma densities are available!
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Chib’s approach for GGMs: the telescoping block
decomposition

We have

log f (y1:p) = log f (y1:p | θp) + log f (θp)− log f (θp | y1:p).

Slightly rewrite:

log f (y1:p) = log f (yp | y1:p−1,θp) + log f (y1:p−1 | θp) + log f (θp)− log f (θp | y1:p)

:= Ip + IIp + IIIp − IVp.

We can evaluate the partial likelihood Ip using

yp | y1:p−1,θp ∼ N (−y1:p−1ω rp /ωpp, 1/ωpp),

Assume IIIp can be evaluated and Wang’s result from the previous slide will be
used for evaluating IVp. There remains IIp to deal with.
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Chib’s approach for GGMs: the telescoping block
decomposition

BUT! The term II is telescoping. We have:

IIp = log f (y1:p−1 | θp)

= log f (yp−1 | y1:p−2,θp,θp−1) + log f (y1:p−2 | θp,θp−1)

+ log f (θp−1 | θp)− log f (θp−1 | y1:p−1,θp)

:=Ip−1 + IIp−1 + IIIp−1 − IVp−1.

We use a form of iterative proportional scaling (IPS). Define Ω̃(p−1)×(p−1) as:

Ω̃(p−1)×(p−1) = Ω(p−1)×(p−1) −
ω rp ωTrp
ωpp

:=

[
Ω̃(p−2)×(p−2) ω̃ r(p−1)

ω̃Tr(p−1) ω̃(p−1)(p−1)

]
.

Then Ω̃(p−1)×(p−1) is p.d. and (y1:p−1 | θp, Ω(p−1)×(p−1)) ∼ N (0, Ω̃−1
(p−1)×(p−1)).

Thus, Ip−1 can be evaluated using:

yp−1 | y1:p−2, θp, θp−1 ∼ N (−y1:p−2ω̃ r(p−1) /ω̃(p−1)(p−1), 1/ω̃(p−1)(p−1)).
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Overall strategy

(a) (b)
log f (y1:p) = Ip + ��IIp + IIIp − IVp

��IIp = Ip−1 + ��IIp−1 + IIIp−1 − IVp−1

��IIp−1 = Ip−2 + ��IIp−2 + IIIp−2 − IVp−2
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��II3 = I2 + ��II2 + III2 − IV2

��II2 = I1 + (II1 = 0) + III1 − IV1

log f (y1:p) =

p∑
j=1

Ij + 0 +

p∑
j=1

IIIj −
p∑

j=1

IVj

Figure: (a) Decomposition of Ωp×p. Purple, green and blue blocks denote
θp,θp−1 and finally θ1 = ω11. Red arrow denotes how the algorithm proceeds,
fixing one row/column at a time, and (b) the telescoping sum giving the
log-marginal log f (y1:p).

Run Chib p times, adjusting Ω each time. In each equation, evaluate
only I, III and IV. Eliminate II via telescoping sum.
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A demonstration on Wishart (known marginal)

Suppose Ω ∼ Wp(V, α). Then,

log f (y1:p) =− np

2
log(π) + log Γp

(
α + n

2

)
− log Γp

(α
2

)
+

(α + n)

2
log
∣∣∣Ip + V1/2SV1/2

∣∣∣ .
The closed form expression for the marginal provides an oracle.
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Computing IIIp (= log f (θp))

Recall, θp = (ω rp , ωpp).

If Ω ∼ Wp(Ip, α) then f (ω rp , ωpp) = f (ω rp | ωpp)f (ωpp), where,

ω rp | ωpp ∼ N (0, ωppIp−1), ωpp ∼ Gamma(shape = α/2, rate = 1/2).

Computing IIIp is easy: normal × gamma.
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Computing IVp (= log f (θp | y1:p))

Decompose S = yTy analogous to Ω and reparameterize
(ω rp, ωpp) 7→ (β rp , γpp):

S =

[
S(p−1)×(p−1) s rp

sTrp spp

]
, β rp = ω rp , γpp = ωpp − ωTrpΩ−1

(p−1)×(p−1)ω rp.
Key result of Wang (2012, BA):

f (β rp, γpp | rest) = N (β rp | −Cs rp ,C)×G

(
γpp |

n + α− p − 1

2
+ 1,

spp + 1

2

)
.

where C = {(spp + 1)Ω−1
(p−1)×(p−1)}

−1

Allows computation of IVp using Chib’s two block strategy.
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Computing IIIp−1, . . . , III1 and IVp−1, . . . , IV1

Same strategy as in going from Ip to Ip−1.

Proceed backwards starting from the pth row. At each step, adjust
the upper left sub-matrix Ωj×j via IPS:

for (j=p-1,. . . , 1) do

Update Ωj×j ← Ωj×j −
ω r(j+1) ω

Tr(j+1)

ωj+1,j+1
.

end for

Calculate IIIj and IVj with the updated Ωj×j .
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Results for Wishart

Dimension and Parameters Truth Proposed AIS Nested HM Time (s.)
(p = 5, n = 10, α = 7) -84.13 -84.13 (-0.02) -84.3 (0.68) -84.26 (0.57) -82.12 (0.97) 4.85

(p = 10, n = 20, α = 13) -365.11 -365.12 (0.06) -397.64 (6.1) -392.2 (6.04) -345.47 (1.27) 9.41
(p = 15, n = 30, α = 20) -837.7 -837.67 (0.13) -1000.45 (13.5) -994.87 (13.7) -782.43 (0.44) 13.87
(p = 25, n = 50, α = 33) -2417.65 -2417.14 (1.11) −∞ −∞ -2235.19 (3.92) 54.93
(p = 30, n = 60, α = 39) -3553.62 -3548.02 (3.04) −∞ −∞ -3235.46 (4.5) 142.35

Table: Mean (sd) of estimated log marginal for Wishart for the proposed
approach, AIS, nested sampling; under 25 random permutations of the nodes
{1,. . . ,p} using 5000 samples.
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Evidence under element-wise priors

Clearly, we did not get into all this trouble just for Wishart!

Consider the element-wise prior:

f (Ω | λ) = C−1
∏
i<j

f (ωij | λ)

p∏
j=1

f (ωjj | λ)1l(Ω ∈M+
p ).

Two examples (global-local shrinkage priors):
Bayesian graphical lasso (BGL):

f (ωij | λ) = (λ/2) exp(−λ|ωij |)
m (Andrews and Mallows, 1974)

ωij | τij , λ ∼ N (0, τij), τij | λ ∼ Exp(λ2/2).

Graphical horseshoe (GHS):

ωij | τij , λ ∼ N (0, τij), τij | λ ∼ C+(0, λ).
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Evidence under element-wise priors

The off-diagonal ωij terms are normal conditional on τij .

Similarly, the diagonal ωjj are exponential.

The presence of these mixing τij variables is the ONLY difference with
the Wishart case for our purposes.

The τij terms can be sampled easily.

MAIN IDEA: Absorb the τij terms into Chib’s latent z (they are
sampled, but their densities are not evaluated). Conditional on these,
evaluate the normal and gamma densities exactly as in Wishart.
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Computing IVp (= log f (θp | y1:p))

We have

f (β rp, γpp | τ rp , Ω(p−1)×(p−1), y1:p) = N (β rp | −Cs rp , C)

×Gamma

(
γpp |

n

2
+ 1,

spp + λ

2

)
,

where C = {diag−1(τ rp) + (spp + λ)Ω−1(p−1)×(p−1)}
−1

Recall, for Wishart we had

f (β rp, γpp | Ω(p−1)×(p−1), y1:p) = N (β rp | −Cs rp ,C)

×G

(
γpp |

n + α− p − 1

2
+ 1,

spp + 1

2

)
.

where C = {(spp + 1)Ω−1(p−1)×(p−1)}
−1.
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Results
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Figure: Log marginal vs. λ under (a) BGL and (b) GHS (p = 10, n = 150).

λ 0.05 1 2 (= λ0) 3 4 5

logBF
BGL 138.84 7.86 0.18 4.98 13.9 24.34
GHS 115.31 7.89 0.12 1.79 3.63 12.83

Table: Logarithm of Bayes factors.
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Additional results and applications

The strategy also works for calculating evidence under G-Wishart
priors.

Results are quite competitive with current state of the art (Atay-Kayis
and Massam, 2005)

As a by product, we are also able to develop a new row-wise sampler
for G-Wishart that does not require a maximal clique decomposition.

Details in the paper.
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Concluding remarks

The strategy developed will work whenever: (a) the priors on the
off-diagonals of Ω are scale mixtures of normal and (b) the diagonals
of Ω are scale mixtures of exponential.

These are very mild requirements and can handle a broad class of
priors.

Although we did not do so in this paper, one may also shift focus
from the prior to likelihood that are mixtures of normal! Consider
y ∼ tν(µ,Ω−1)

This is equivalent to y | τ ∼ N (µ, τ−1Ω−1), τ ∼ Gamma(ν/2, ν/2).

Should be possible to absorb the τ in the likelihood into Chib’s z and
proceed.
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