Graphical Evidence

Anindya Bhadra
www.stat.purdue.edu/~bhadra

Purdue University

Overview

- Marginal likelihood or evidence is fundamental to Bayesian statistics.
- Used for empirical Bayes tuning of hyperparameters, model selection using Bayes factors.
- There is no dearth of generic approaches, yet calculation of evidence is mostly unresolved in Gaussian graphical models (GGMs), except for very specific priors such as the Wishart or G-Wishart.
- Goal: To provide a tractable approach for evidence calculation in GGMs under mild requirements.
- Joint work with Ksheera Sagar (Purdue), Sayantan Banerjee (IIM Indore) and Jyotishka Datta (Virginia Tech).

Evidence in GGMs

- Suppose $\mathbf{y}_{n \times p} \sim \mathcal{N}\left(0, \mathbf{I}_{n} \otimes \boldsymbol{\Omega}_{p \times p}^{-1}\right)$. Evidence calculation is simple in principle:

$$
f(\mathbf{y})=\int_{\boldsymbol{\Omega} \in \mathcal{M}_{p}^{+}} f(\mathbf{y} \mid \boldsymbol{\Omega}) f(\boldsymbol{\Omega}) d \boldsymbol{\Omega}
$$

- The restriction of the integral to the space of positive definite matrices causes a lot of difficulties, except for Wishart and specific instances of G-Wishart (Uhler et al., 2018, AoS).
- For the same reason, a "default" covering density is very hard to design: difficulties for importance, bridge or path sampling.

Generic approaches for estimating evidence

- Harmonic mean estimates and variants (Newton and Raftery, 1994, JRSSB; Gelfand and Dey, 1994, JRSSB)
- Importance sampling approaches:
- Bridge sampling and variants (path, warped bridge) (Gelman and Meng, 1998, Stats. Sci.; Meng and Wong, 1996, Sinica; Meng and Schilling, 2002, JCGS),
- Annealed importance sampling (Neal, 2001, Stats. Comput.)
- Nested sampling (Skilling, 2006, BA).
- Chib (1995, JASA) and Chib and Jeliazkov (2001, JASA) based on MCMC posterior draws.
- Excellent review article by Llorente et al. (2022, SIAM Review).

Do generic approaches work in GGMs?

- HM estimates can have unbounded variance: limit distribution is α stable (Wolpert and Schmeider, 2012).
- We are not aware of any principled way of choosing an importance or bridge density under a positive definite restriction.
- Nested sampling requires sampling from a progressively higher likelihood region: very hard to implement in high dimensions.
- A case in point: the specialized Monte Carlo method of Atay-Kayis and Massam (2005, Biometrika) for G-Wishart marginals appeared a good 10 years after these generic approaches.

Chib (1995)

- Recall the fundamental Bayesian identity:

$$
f(\mathbf{y})=\frac{f(\mathbf{y} \mid \theta) f(\theta)}{f(\theta \mid \mathbf{y})}
$$

- The likelihood and the prior can typically be evaluated at some $\theta=\theta^{*}$, the trouble is evaluating $f(\theta \mid \mathbf{y})$.
- Chib's strategy:
- Decompose $\boldsymbol{\Omega}=(z, \theta)=$ (nuisance parameter, parameter of interest).
- Run a Gibbs sampler iterating between $f(z \mid \theta, \mathbf{y})$ and $f(\theta \mid z, \mathbf{y})$. Converges to $f(z, \theta \mid \mathbf{y})$. Correct marginals for $(z \mid \mathbf{y})$ and $(\theta \mid \mathbf{y})$.
- Estimate using the Gibbs draws:

$$
\hat{f}\left(\theta^{*} \mid \mathbf{y}\right)=M^{-1} \sum_{i=1}^{M} f\left(\theta^{*} \mid z^{(i)}, \mathbf{y}\right), \quad z^{(i)} \sim f(z \mid \mathbf{y})
$$

- Need the constants only for $f(\theta \mid z, \mathbf{y})$; not for $f(z \mid \theta, \mathbf{y})$.

Pros and cons of Chib (1995)

- Chib's approach is automatic in the same way a Gibbs sampler is automatic: a covering (importance, bridge) density is not required.
- But applying Chib's method requires designing a suitable $f(\theta \mid z, y)$ that can be evaluated (merely sampling from it is not enough).
- Application is a matter of art and not generic in a way the harmonic mean estimate is generic.
- Some known difficulties in finite mixture models (Neal, 1999).

Chib's approach for GGMs: the telescoping block decomposition

- Apply the decomposition:

$$
\boldsymbol{\Omega}_{p \times p}=\left[\begin{array}{cc}
\boldsymbol{\Omega}_{(p-1) \times(p-1)} & \omega_{\bullet p} \\
\omega_{\bullet} p & \omega_{p p}^{T}
\end{array}\right] .
$$

- Let $\boldsymbol{\theta}_{p}=\left(\omega_{\bullet p}, \omega_{p p}\right)$ and $z=$ collection of all other latent variables.
- Wang (2012, BA) showed in the context of sampling that $f\left(\boldsymbol{\theta}_{p} \mid \mathbf{y}, z\right)=f\left(\boldsymbol{\omega}_{\bullet}, \omega_{p p} \mid \mathbf{y}, z\right)=f\left(\omega_{\bullet} \mid \mathbf{y}, z\right) f\left(\omega_{p p} \mid \omega_{\bullet}, \mathbf{y}, z\right)$ decomposes as (normal \times gamma) under suitable priors on $\boldsymbol{\Omega}_{p \times p}$.
- We will use this for density evaluation, since the normalizing constants for both normal and gamma densities are available!

Chib's approach for GGMs: the telescoping block decomposition

- We have

$$
\log f\left(\mathbf{y}_{1: p}\right)=\log f\left(\mathbf{y}_{1: p} \mid \boldsymbol{\theta}_{p}\right)+\log f\left(\boldsymbol{\theta}_{p}\right)-\log f\left(\boldsymbol{\theta}_{p} \mid \mathbf{y}_{1: p}\right)
$$

- Slightly rewrite:

$$
\begin{aligned}
\log f\left(\mathbf{y}_{1: p}\right) & =\log f\left(\mathbf{y}_{p} \mid \mathbf{y}_{1: p-1}, \boldsymbol{\theta}_{p}\right)+\log f\left(\mathbf{y}_{1: p-1} \mid \boldsymbol{\theta}_{p}\right)+\log f\left(\boldsymbol{\theta}_{p}\right)-\log f\left(\boldsymbol{\theta}_{p} \mid \mathbf{y}_{1: p}\right) \\
& :=\mathrm{I}_{p}+\mathrm{II}_{p}+\mathrm{III}_{p}-\mathrm{IV}_{p}
\end{aligned}
$$

- We can evaluate the partial likelihood I_{p} using

$$
\mathbf{y}_{p} \mid \mathbf{y}_{1: p-1}, \boldsymbol{\theta}_{p} \sim \mathcal{N}\left(-\mathbf{y}_{1: p-1} \omega_{\bullet p} / \omega_{p p}, 1 / \omega_{p p}\right)
$$

- Assume III_{p} can be evaluated and Wang's result from the previous slide will be used for evaluating IV_{p}. There remains II_{p} to deal with.

Chib's approach for GGMs: the telescoping block decomposition

- BUT! The term II is telescoping. We have:

$$
\begin{aligned}
\mathrm{II}_{p}= & \log f\left(\mathbf{y}_{1: p-1} \mid \boldsymbol{\theta}_{p}\right) \\
= & \log f\left(\mathbf{y}_{p-1} \mid \mathbf{y}_{1: p-2}, \boldsymbol{\theta}_{p}, \boldsymbol{\theta}_{p-1}\right)+\log f\left(\mathbf{y}_{1: p-2} \mid \boldsymbol{\theta}_{p}, \boldsymbol{\theta}_{p-1}\right) \\
& +\log f\left(\boldsymbol{\theta}_{p-1} \mid \boldsymbol{\theta}_{p}\right)-\log f\left(\boldsymbol{\theta}_{p-1} \mid \mathbf{y}_{1: p-1}, \boldsymbol{\theta}_{p}\right) \\
:= & \mathrm{I}_{p-1}+\mathrm{II}_{p-1}+\mathrm{III}_{p-1}-\mathrm{IV}_{p-1} .
\end{aligned}
$$

- We use a form of iterative proportional scaling (IPS). Define $\widetilde{\Omega}_{(p-1) \times(p-1)}$ as:

$$
\widetilde{\boldsymbol{\Omega}}_{(p-1) \times(p-1)}=\boldsymbol{\Omega}_{(p-1) \times(p-1)}-\frac{\boldsymbol{\omega}_{\bullet p} \boldsymbol{\omega}_{\bullet p}^{T}}{\omega_{p p}}:=\left[\begin{array}{cc}
\widetilde{\boldsymbol{\Omega}}_{(p-2) \times(p-2)} & \widetilde{\boldsymbol{\omega}}_{\bullet(p-1)} \\
\widetilde{\boldsymbol{\omega}}_{\bullet(p-1)}^{T} & \widetilde{\omega}_{(p-1)(p-1)}
\end{array}\right] .
$$

Then $\widetilde{\boldsymbol{\Omega}}_{(p-1) \times(p-1)}$ is p.d. and $\left(\mathbf{y}_{1: p-1} \mid \boldsymbol{\theta}_{p}, \boldsymbol{\Omega}_{(p-1) \times(p-1)}\right) \sim \mathcal{N}\left(0, \widetilde{\boldsymbol{\Omega}}_{(p-1) \times(p-1)}^{-1}\right)$.

- Thus, I_{p-1} can be evaluated using:

$$
\mathbf{y}_{p-1} \mid \mathbf{y}_{1: p-2}, \boldsymbol{\theta}_{p}, \boldsymbol{\theta}_{p-1} \sim \mathcal{N}\left(-\mathbf{y}_{1: p-2} \widetilde{\boldsymbol{\omega}}_{\bullet(p-1)} / \widetilde{\omega}_{(p-1)(p-1)}, 1 / \widetilde{\omega}_{(p-1)(p-1)}\right)
$$

Overall strategy

(a)
(b)

Figure: (a) Decomposition of $\Omega_{p \times p}$. Purple, green and blue blocks denote $\boldsymbol{\theta}_{p}, \boldsymbol{\theta}_{p-1}$ and finally $\boldsymbol{\theta}_{1}=\omega_{11}$. Red arrow denotes how the algorithm proceeds, fixing one row/column at a time, and (b) the telescoping sum giving the log-marginal $\log f\left(\mathbf{y}_{1: p}\right)$.

- Run Chib p times, adjusting Ω each time. In each equation, evaluate only I, III and IV. Eliminate II via telescoping sum.

A demonstration on Wishart (known marginal)

- Suppose $\boldsymbol{\Omega} \sim \mathcal{W}_{p}(\mathbf{V}, \alpha)$. Then,

$$
\begin{aligned}
\log f\left(\mathbf{y}_{1: p}\right)= & -\frac{n p}{2} \log (\pi)+\log \Gamma_{p}\left(\frac{\alpha+n}{2}\right)-\log \Gamma_{p}\left(\frac{\alpha}{2}\right) \\
& +\frac{(\alpha+n)}{2} \log \left|\mathbf{I}_{p}+\mathbf{V}^{1 / 2} \mathbf{S} \mathbf{V}^{1 / 2}\right|
\end{aligned}
$$

- The closed form expression for the marginal provides an oracle.

Computing $\mathrm{III}_{p}\left(=\log f\left(\boldsymbol{\theta}_{\rho}\right)\right)$

- Recall, $\boldsymbol{\theta}_{p}=\left(\boldsymbol{\omega}_{\bullet p}, \omega_{p p}\right)$.
- If $\boldsymbol{\Omega} \sim \mathcal{W}_{p}\left(\mathbf{I}_{p}, \alpha\right)$ then $f\left(\boldsymbol{\omega}_{\bullet p}, \omega_{p p}\right)=f\left(\omega_{\bullet p} \mid \omega_{p p}\right) f\left(\omega_{p p}\right)$, where,

$$
\left.\boldsymbol{\omega}_{\bullet p} \mid \omega_{p p} \sim \mathcal{N}\left(0, \omega_{p p} \mathbf{I}_{p-1}\right), \omega_{p p} \sim \text { Gamma(shape }=\alpha / 2, \text { rate }=1 / 2\right)
$$

- Computing III_{p} is easy: normal \times gamma.

Computing $^{I_{p}}\left(=\log f\left(\boldsymbol{\theta}_{\rho} \mid \mathbf{y}_{1: p}\right)\right)$

- Decompose $\mathbf{S}=\mathbf{y}^{\top} \mathbf{y}$ analogous to $\boldsymbol{\Omega}$ and reparameterize $\left(\omega_{\bullet} p, \omega_{p p}\right) \mapsto\left(\boldsymbol{\beta}_{\bullet} p, \gamma_{p p}\right):$

$$
\mathbf{S}=\left[\begin{array}{cc}
\mathbf{S}_{(p-1) \times(p-1)} & \mathbf{S}_{\bullet} p \\
\mathbf{S}_{\bullet p}^{T} & s_{p p}
\end{array}\right], \boldsymbol{\beta}_{\bullet p}=\omega_{\bullet p}, \gamma_{p p}=\omega_{p p}-\omega_{\bullet p}^{T} \boldsymbol{\Omega}_{(p-1) \times(p-1)}^{-1} \omega_{\bullet p} .
$$

- Key result of Wang (2012, BA):

$$
f\left(\boldsymbol{\beta}_{\bullet p}, \gamma_{p p} \mid \text { rest }\right)=\mathcal{N}\left(\boldsymbol{\beta}_{\bullet p} \mid-\mathbf{C s}_{\bullet p}, \mathbf{C}\right) \times \mathrm{G}\left(\gamma_{p p} \left\lvert\, \frac{n+\alpha-p-1}{2}+1\right., \frac{s_{p p}+1}{2}\right) .
$$

$$
\text { where } \mathbf{C}=\left\{\left(s_{p p}+1\right) \boldsymbol{\Omega}_{(p-1) \times(p-1)}^{-1}\right\}^{-1}
$$

- Allows computation of IV_{p} using Chib's two block strategy.

Computing $\mathrm{III}_{p-1}, \ldots, \mathrm{III}_{1}$ and $\mathrm{IV}_{p-1}, \ldots, \mathrm{IV}_{1}$

- Same strategy as in going from I_{p} to I_{p-1}.
- Proceed backwards starting from the p th row. At each step, adjust the upper left sub-matrix $\Omega_{j \times j}$ via IPS:
for $(j=p-1, \ldots, 1)$ do
Update $\boldsymbol{\Omega}_{j \times j} \leftarrow \boldsymbol{\Omega}_{j \times j}-\frac{\omega_{\bullet}(j+1)}{} \omega_{\bullet}^{\top} \omega_{j+1, j+1)}$.
end for
- Calculate III_{j} and IV_{j} with the updated $\boldsymbol{\Omega}_{j \times j}$.

Results for Wishart

Dimension and Parameters	Truth	Proposed	AIS	Nested
$(p=5, n=10, \alpha=7)$	-84.13	$-84.13(-0.02)$	$-84.3(0.68)$	$-84.26(0.57)$
$(p=10, n=20, \alpha=13)$	-365.11	$-365.12(0.06)$	$-397.64(6.1)$	$-392.2(6.04)$
$(p=15, n=30, \alpha=20)$	-837.7	$-837.67(0.13)$	$-1000.45(13.5)$	$-994.87(13.7)$
$(p=25, n=50, \alpha=33)$	-2417.65	$-2417.14(1.11)$	$-\infty$	$-\infty$
$(p=30, n=60, \alpha=39)$	-3553.62	$-3548.02(3.04)$	$-\infty$	$-\infty$

Table: Mean (sd) of estimated log marginal for Wishart for the proposed approach, AIS, nested sampling; under 25 random permutations of the nodes $\{1, \ldots, p\}$ using 5000 samples.

Evidence under element-wise priors

- Clearly, we did not get into all this trouble just for Wishart!
- Consider the element-wise prior:

$$
f(\boldsymbol{\Omega} \mid \lambda)=C^{-1} \prod_{i<j} f\left(\omega_{i j} \mid \lambda\right) \prod_{j=1}^{p} f\left(\omega_{j j} \mid \lambda\right) \mathbb{1}\left(\boldsymbol{\Omega} \in \mathcal{M}_{p}^{+}\right)
$$

- Two examples (global-local shrinkage priors):
- Bayesian graphical lasso (BGL):

$$
\begin{gathered}
f\left(\omega_{i j} \mid \lambda\right)=(\lambda / 2) \exp \left(-\lambda\left|\omega_{i j}\right|\right) \\
\Uparrow \mathfrak{l}(\text { Andrews and Mallows, 1974) } \\
\omega_{i j}\left|\tau_{i j}, \lambda \sim \mathcal{N}\left(0, \tau_{i j}\right), \quad \tau_{i j}\right| \lambda \sim \operatorname{Exp}\left(\lambda^{2} / 2\right) .
\end{gathered}
$$

- Graphical horseshoe (GHS):

$$
\omega_{i j}\left|\tau_{i j}, \lambda \sim \mathcal{N}\left(0, \tau_{i j}\right), \quad \tau_{i j}\right| \lambda \sim \mathcal{C}^{+}(0, \lambda)
$$

Evidence under element-wise priors

- The off-diagonal $\omega_{i j}$ terms are normal conditional on $\tau_{i j}$.
- Similarly, the diagonal $\omega_{j j}$ are exponential.
- The presence of these mixing $\tau_{i j}$ variables is the ONLY difference with the Wishart case for our purposes.
- The $\tau_{i j}$ terms can be sampled easily.
- MAIN IDEA: Absorb the $\tau_{i j}$ terms into Chib's latent z (they are sampled, but their densities are not evaluated). Conditional on these, evaluate the normal and gamma densities exactly as in Wishart.

Computing $\operatorname{IV}_{p}\left(=\log f\left(\boldsymbol{\theta}_{p} \mid \mathbf{y}_{1: p}\right)\right)$

- We have

$$
\begin{aligned}
f\left(\boldsymbol{\beta}_{\bullet}, \gamma_{p p} \mid \tau_{\bullet p}, \boldsymbol{\Omega}_{(p-1) \times(p-1)}, \mathbf{y}_{1: p}\right) & =\mathcal{N}\left(\boldsymbol{\beta}_{\bullet} \mid-\mathbf{C s}_{\bullet p}, \mathbf{C}\right) \\
& \times \operatorname{Gamma}\left(\gamma_{p p} \left\lvert\, \frac{n}{2}+1\right., \frac{s_{p p}+\lambda}{2}\right),
\end{aligned}
$$

where $\mathbf{C}=\left\{\operatorname{diag}^{-1}\left(\tau_{\bullet p}\right)+\left(s_{p p}+\lambda\right) \boldsymbol{\Omega}_{(p-1) \times(p-1)}^{-1}\right\}^{-1}$

- Recall, for Wishart we had

$$
\begin{aligned}
f\left(\boldsymbol{\beta}_{\bullet p}, \gamma_{p p} \mid \boldsymbol{\Omega}_{(p-1) \times(p-1)}, \mathbf{y}_{1: p}\right) & =\mathcal{N}\left(\boldsymbol{\beta}_{\bullet} \mid-\mathbf{C s}_{\bullet p}, \mathbf{C}\right) \\
& \times \mathrm{G}\left(\gamma_{p p} \left\lvert\, \frac{n+\alpha-p-1}{2}+1\right., \frac{s_{p p}+1}{2}\right) .
\end{aligned}
$$

where $\mathbf{C}=\left\{\left(s_{p p}+1\right) \boldsymbol{\Omega}_{(p-1) \times(p-1)}^{-1}\right\}^{-1}$.

Results

(a) BGL

(b) GHS

Figure: Log marginal vs. λ under (a) BGL and (b) GHS ($p=10, n=150$).

	λ	0.05	1	$2\left(=\lambda_{0}\right)$	3	4	5
\log BF	BGL	138.84	7.86	0.18	4.98	13.9	24.34
	GHS	115.31	7.89	0.12	1.79	3.63	12.83

Table: Logarithm of Bayes factors.

Additional results and applications

- The strategy also works for calculating evidence under G-Wishart priors.
- Results are quite competitive with current state of the art (Atay-Kayis and Massam, 2005)
- As a by product, we are also able to develop a new row-wise sampler for G-Wishart that does not require a maximal clique decomposition.
- Details in the paper.

Concluding remarks

- The strategy developed will work whenever: (a) the priors on the off-diagonals of Ω are scale mixtures of normal and (b) the diagonals of Ω are scale mixtures of exponential.
- These are very mild requirements and can handle a broad class of priors.
- Although we did not do so in this paper, one may also shift focus from the prior to likelihood that are mixtures of normal! Consider $\mathbf{y} \sim t_{\nu}\left(\boldsymbol{\mu}, \boldsymbol{\Omega}^{-1}\right)$
- This is equivalent to $\mathbf{y} \mid \tau \sim \mathcal{N}\left(\boldsymbol{\mu}, \tau^{-1} \boldsymbol{\Omega}^{-1}\right), \tau \sim \operatorname{Gamma}(\nu / 2, \nu / 2)$.
- Should be possible to absorb the τ in the likelihood into Chib's z and proceed.

Main references

- Bhadra, A., Sagar, K., Banerjee, S. and Datta, J. (2022+). Graphical Evidence. (submitted). [arXiv:2205.01016]
- Code: https://github.com/sagarknk/Graphical_Evidence
- Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90, 1313-1321.
- Wang, H. (2012). Bayesian graphical lasso models and efficient posterior computation. Bayesian Analysis 7, 867-886.

