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Lévy noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Malaria transmission: A statistical model . . . . . . . . . . 58
3.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4. An adaptive particle allocation scheme for off-line sequen-
tial importance sampling algorithms . . . . . . . . . . . . . . 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Problem statement and background . . . . . . . . . . . . . 80
4.3 Applications to likelihood estimation (independent case) . . 82
4.4 Applications to likelihood estimation (dependent case) . . . 84

4.4.1 Joint estimation of q and φk . . . . . . . . . . . . 88
4.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . 89

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

v



LIST OF FIGURES

Figure

1.1 Diagnostic plots for iterated filtering. (a) likelihood at each iter-
ation, evaluated by sequential Monte Carlo; the broken straight
line marks the likelihood at the truth. (b) - (e) likelihood surface
for each parameter sliced through the maximum; points show pa-
rameter values where the likelihoods were evaluated; solid straight
lines mark the maximum likelihood estimate; broken straight lines
mark the true parameter value. . . . . . . . . . . . . . . . . . . . 9

1.2 A pictorial representation of the time evolution of a sequential
Monte Carlo scheme adapted from Doucet et al. (2001). The ar-
rows point to the direction of increasing time. Superscripts P and
F denote prediction and filtering respectively. The curved solid
line denotes the likelihood surface at a given time. The blue and
yellow balls represent the different particles in the state space at
a given time. The radii of the balls are proportional to their im-
portance weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



3.1 Flow diagram for a compartment model of malaria transmission.
Human classes are S1 (susceptible), S2 (partially protected), E
(exposed, carrying a latent infection), I1 (infected and infectious)
and I2 (asymptomatic, with reduced infectivity). The possibility
of transition between class X and Y is denoted by a solid arrow,
with the corresponding rate written as µXY . The dotted arrows
represent interactions between the human and mosquito stages of
the parasite. Mosquito dynamics are modeled via the two stages
κ (the latent force of infection) and λ (the current force of infec-
tion), with τ being the mean latency time. The model, which we
call VS2EI2 with ‘V’ for ‘vector’ followed by a list of the human
classes with their multiplicities as superscripts, is formalized by
equations (3.1–3.8). We also consider the subcase with µI2S2 = ∞
and µS2I2 = µI1S1 = 0. The class I2 can then be eliminated, and so
transition directly from I1 to S2 becomes possible. Also, individ-
uals in S2 are fully protected in this case. The remaining classes
{S1, E, I1, S2} can then be mapped onto the classes {S,E, I, R} in
a standard epidemiological susceptible-exposed-infected-recovered
model (Anderson and May, 1991; Keeling and Ross, 2008) with
added vector dynamics and waning immunity; we therefore call
this special case VSEIR. . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Monthly reported P. falciparum malaria cases (solid line) and
monthly rainfall from a local weather station (broken line) for Kutch. 67

3.3 Difference between the conditional log likelihood of yn given y1, . . . , yn−1

for the VS2EI2 model with rainfall and the VSEIR model with rain-
fall, plotted against time (bold line). For comparison, reported
malaria cases in Kutch are also shown (thin line). . . . . . . . . . 71

3.4 Profile likelihood plot for the reporting rate (ρ) for the VS2EI2

model with rainfall (solid line) and the VSEIR model with rainfall
(broken line). The profile is estimated via fitting a smooth curve
through Monte Carlo evaluations shown as open circles (VS2EI2)
and filled circles (VSEIR). The dashed vertical lines construct ap-
proximate 95% confidence intervals (Barndorff-Nielsen and Cox,
1994). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Profile likelihood plot for the mean development delay time of
mosquitoes (τ) for the VS2EI2 model with rainfall (solid line) and
the VSEIR model with rainfall (broken line). The dashed vertical
lines construct approximate 95% confidence intervals. . . . . . . . 76

vii



4.1 Plot of the two dimensional AR(1) process. Left panel shows the
state (X1, X2) and observation (Y 1, Y 2) vectors. Outliers are in-
troduced only in Y 1 at time points 4,51,75 and 90. The vector Y 1

is shown in the right panel, upper part is before introducing out-
liers (same as that of left panel) and lower part is after introducing
outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



LIST OF TABLES

Table

3.1 A likelihood-based comparison of the fitted models. Corresponding
point estimates are presented in Table 3.3. The column labeled
p corresponds to the number of estimated parameters, including
unknown initial conditions. Parameters which were not estimated
are documented in Table 3.2. AIC is computed as AIC = −2`+2p. 71

3.2 List of symbols used in the chapter along with a brief description
and units. Some parameters were not estimated as part of the
analysis presented in this chapter, and the last column gives their
fixed values. Alternative values of these fixed parameters were
investigated, but did not affect the conclusions of the analysis.
The values of the remaining parameters are give in Table 3.3. . . 72

3.3 Estimated model parameters. The columns marked ‘without rain’
correspond to maximum likelihood point estimates under the con-
straint β = 0. The last two columns give the lower and upper
bounds for approximate 95% confidence intervals for the VS2EI2

model with rainfall, derived from profile likelihood computations
as shown in Figures 3.4 and 3.5; values of 0 and ∞ correspond to
confidence intervals extending to the boundary of the parameter
space. Note: these models coincide with a subset of the models
estimated by Laneri et al. (2010). . . . . . . . . . . . . . . . . . . 73

4.1 Comparison of adaptive and non-adaptive particle filters. The gain
α as defined in equation (4.10) was found to be 45.862%. . . . . . 93

ix



ABSTRACT

Time series analysis for nonlinear dynamical systems with applications to
modeling of infectious diseases

by

Anindya Bhadra

Chair: Edward L. Ionides

Estimation of static (or time constant) parameters in a general class of nonlinear,

non-Gaussian, partially observed Markovian state space model is an active area of

research that has seen an explosion in the last seventeen years since the formulation

of the particle filter and sequential Monte Carlo methods. In this dissertation, we

focus on a likelihood based estimation technique known as iterated filtering. The

main attractive feature of iterated filtering is we do not need to evaluate the state

transition densities in a partially observed Markovian state space model. Instead,

we just need to be able to draw samples from those densities, which is typically

simpler. This allows great flexibility to the modeler since inference can proceed as

long as one is able to write down state transition equations generating trajectories

from the model. We discuss some key theoretical properties of iterated filtering. In

particular, we prove the consistency of the method and find connections between

iterated filtering and well known stochastic approximation methods. We also use

the iterated filtering technique to estimate parameters and hence answer scientific

questions regarding the effect of climate on malaria transmission in Northwest

x



India. We conclude by suggesting possible improvements to likelihood estimation

techniques via sequential Monte Carlo filters in an off-line setting.

xi



CHAPTER 1

Introduction

Partially observed Markov process models, also known as hidden Markov mod-

els, have a long history in many branches of science, engineering and economics

(Cappé et al., 2005). This dissertation is broadly concerned with parameter esti-

mation techniques in partially observed Markov process models. We also discuss a

practical application of such techniques in estimating parameters in an infectious

disease model of malaria transmission in order to better understand interactions of

intrinsic and extrinsic factors in disease transmission. Finally, some improvements

in estimation techniques are presented. The overall organization of this dissertation

is as follows:

� In this chapter, we give necessary background on partially observed Markov

process models, sequential Monte Carlo and infectious diseases that are useful

to understand the subsequent chapters.

� In chapter 2, we describe some results on iterated filtering, a sequential Monte

Carlo based technique for likelihood based parameter estimation for a broad

class of partially observed Markov process models.

� In chapter 3, we use the technique described in chapter 2 for a real world

application. In particular, we model malaria transmission in India.
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� In chapter 4, we discuss some results regarding the improvement in likelihood

estimation techniques with sequential Monte Carlo based filters. This is

motivated by practical problems encountered with data analysis in chapter

3.

1.1 Dynamic models

A dynamical system is a mathematical rule which describes the time evolution

of a point’s position in space. Examples include the mathematical models that

describe the trajectory of an aircraft or the evolution of a disease. These relations

are described by a set of differential equations. The equations describing the sys-

tem can be deterministic or stochastic, giving rise to a deterministic or stochastic

dynamical system respectively. Similarly, depending on the nature of the governing

differential equations, the dynamical system may be linear or non-linear.

A dynamical system has a state determined by a collection of real numbers,

or more generally by a set of points in an appropriate state space. The equations

defining the system determines the transitions (which could be deterministic or

stochastic) between the different states.

In many situations, only a few of the states of the dynamical system may be

observed with some measurement error. Usually, the parameters determining the

transition rates between the states are also unknown. Henceforth, we will call

such a system a partially observed dynamical system. If the evolution of such

a dynamical system follows the Markov property, we will use the term partially

observed Markovian dynamical system to denote it. As explained before, such a

dynamical system can be deterministic or stochastic.

A common statistical problem in dynamical systems is to estimate the unknown

parameters determining the dynamical system. Several techniques, like the least

square, Bayesian or maximum likelihood estimation have been developed for this,
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as surveyed in Cappé et al. (2005). A particular procedure, developed by Ionides

et al. (2006) describes an algorithm that uses sequential Monte Carlo filter (also

known as Particle Filter) to recursively compute the maximum likelihood estimate

of the model parameters. As will be shown in the subsequent chapters, the proce-

dure is also effective in the estimation of time constant parameters, a traditionally

hard problem.

1.2 Plug and play inference for dynamic models

In this dissertation, we focus our attention on a specific type of dynamic models,

which we call mechanistic models. What this means is the model tries to take into

account the evolution of the underlying process from a phenomenological point

of view. The main concern in the model building exercise is to conform to the

scientific knowledge about the dynamical system under consideration, rather than

the ease of statistical modeling. The process of mechanistic modeling thus involves

writing down a system of equations describing the time evolution of the process that

follows from a scientific understanding of the system (state equations). Equations

are also written down to connect the evolution of the state processes to observed

quantities (observation equations). These models will often contain non-linearity

and non-Gaussianity that arise naturally in many physical phenomena unless one

is trying to simplify analysis by making things artificially (in some cases) conform

to the illusion of linear Gaussianity.

Once such a model is built, one can consider several questions of statistical as

well as scientific nature. Examples of statistical questions will include considera-

tions of model fit, range of plausible values of model parameters as well as their

identifiability. The scientific questions will often be concerned about the interpre-

tation of model parameters and will try to connect them meaningfully to questions

of practical utility. These two types of questions are of complementary, rather than
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of conflicting nature in a mechanistic setting.

Simulation based inference techniques are often popular for mechanistic mod-

els. These techniques essentially involve a comparison of sample paths generated

from the equations describing the state process of the model to data. Though

some ad-hoc metrics can be used for this comparison, especially when computa-

tion of likelihood is expensive, e.g., Approximate Bayesian Computation of Mar-

joram et al. (2003), or gradient matching of Ellner et al. (2002), it is also possible

to employ simulation based techniques when one wishes to carry out likelihood

based inference (Ionides et al., 2006). We reserve the term “plug and play” for the

class of inference techniques that require only simulations from the state transition

densities and not its explicit evaluation. Plug and play can still require explicit

evaluation of the observation density. A similar terminology used in the literature

for this type of inference procedure is “equation free” (Kevrekidis et al., 2004; Xiu

et al., 2005).

We now list the properties of the general type of dynamical systems we will

treat in this dissertation. These are (a) partially observed, (b) continuous-time,

(c) nonlinear, (d) Markovian and (e) stochastic. This combination of properties

arises naturally since

(a) In many physical processes it is impossible to observe or measure all the

required states in a system.

(b) The underlying process in many naturally arising systems are best described

in continuous-time, although observations are usually only available in discrete time

points.

(c) The type of systems we focus on come from epidemiology where nonlinearity

is very common. Examples can be found in chapter 3. Nonlinearity is found in

numerous other physical processes.

(d) If all quantities required to describe the state transitions are included in the
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present state, the future states will be independent of the past given the present,

i.e., Markovian.

(e) Stochasticity is the link that explains the difference between the data and

the solution to noise-free deterministic equations. We will mainly be concerned

with two sources of stochasticity. The first arises from a consideration that our

process model is not a perfect representation of the underlying dynamical process

and hence a source of error (process noise) is introduced in the equations defining

the state transitions of the model. The second source of error connects the hidden

states to the observations (measurement noise).

Consideration of only measurement noise reduces our inference problem to non-

linear regression, which is well-studied. Perfectly observed dynamical systems, i.e.

systems with only process noise but no observation noise, are also amenable to

simpler treatments (Basawa and Prakasa Rao, 1980). We will, however, treat both

sources of noise simultaneously here, i.e. the more general case.

Considerable work has been done on these models (e.g., Anderson and Moore,

1979; Liu, 2001; Doucet et al., 2001) but methodologies that are applicable to a

wide range of models encompassing all the properties (a)-(e) as described above,

have been hard to find. Since we are mainly going to focus on plug and play type

inference methodology for partially observed dynamical systems, we now give some

background on previous works in that.

Kendall et al. (1999) have proposed a method of simulated moments approxi-

mating the likelihood. Iterated filtering of Ionides et al. (2006) computes the max-

imum likelihood estimates in a partially observed Markov model via a plug and

play sequential Monte Carlo filter. Approximate Bayesian Sequential Monte Carlo

method of Liu and West (2001) is another viable alternative.

A recent addition to the toolbox of Bayesian plug and play approaches is the

Particle Markov chain Monte Carlo technique of Andrieu et al. (2010). This ap-
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proach designs the proposal distributions in a Markov chain Monte Carlo scheme

with the help of sequential Monte Carlo and has potential to be successful in set-

tings where a choice of a good proposal distribution is not obvious. We provide a

comparative analysis of Particle Markov chain Monte Carlo and iterated filtering

of Ionides et al. (2006) in section 1.2.1 and show that iterated filtering compares

favorably to state-of-the-art Bayesian techniques, thus providing some motivation

for a detailed study of iterated filtering in chapter 2.

1.2.1 Example of a comparative analysis of the state of the art in

Bayesian and likelihood based plug and play inference: Parti-

cle Markov chain Monte Carlo vs Iterated Filtering

Before we discuss the properties of iterated filtering, we wish to show a com-

parative analysis of iterated filtering and Particle Markov chain Monte Carlo of

Andrieu et al. (2010), which we believe are the state of the art in likelihood based

and Bayesian plug and play techniques for partially observed Markovian dynamical

systems. This example is adapted from Bhadra (2010).

Andrieu et al. (2010) present an elegant theory for novel methodology which

makes Bayesian inference practical on state space models. We use their example,

a sophisticated financial model involving a continuous time stochastic volatility

process driven by Lévy noise, to compare their methodology with a state-of-the-art

non-Bayesian approach. We applied iterated filtering (Ionides et al., 2006; Ionides

et al., 2009) implemented via the mif function in the R package pomp (King et al.,

2009). We describe the model here in brief as the purpose is just to compare the

two inference procedures. For a detailed explanation of the models, the reader

is referred to Andrieu et al. (2010). The Levy-driven stochastic volatility model
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defining the stock prices is

dy(t)

y(t)
= (µ+ βσ2(t))dt+ σ(t)dB(t) (1.1)

dσ2(t) = −λσ2(t)dt+ dz(λt) (1.2)

where y(t) is the price of a financial asset, µ is the drift parameter, β is the

risk premium and B(t) is a Brownian motion. Models like these are developed

in Barndorff-Nielsen and Shephard (2001) and have become popular in financial

econometrics (Andrieu et al., 2010). Equation (1.2) defines the volatility σ2(t)

as a Levy driven Ornstein-Uhlenbeck process where λ > 0 and z(t) is a purely

non-Gaussian Levy process. Now it is easy to see that the state and observation

processes defining this dynamical system are (σ2(t), z(t)) and y(t) respectively.

After discretization, we have the following form for the two dimensional state

process,

(σ2(n∆), z(λn∆)) = (exp(−λ∆)σ2((n− 1)∆), z(λ(n− 1)∆)) + ηn

for n = 1, . . . , N . where,

ηn =
∞∑
i=1

{( aiκ

Aλ∆

)−1/κ

∧ eiv1/κ
i

}
(exp(−λ∆ri), 1) +

Z(λ∆)∑
i=1

ci(exp(−λ∆r∗i ), 1)(1.3)

where A = 2κδκ2/Γ(1 − κ). Let B = 1/2γ1/κ. Then in equation (1.3), ai, ei and

vi are independent; ei are iid exponential with mean 1/B; ∆ is the time step for

discretization of the continuous-time model; vi, ri, r
∗
i are standard uniform random

variables and a1 < a2 < . . . are arrival times of a Poisson process of intensity 1;

ci are iid G(1− κ, 1/B). Here G(a, b) denotes the Gamma distribution with mean

ab and variance ab2. Z(λ∆) is a Poisson random variable with mean λ∆δγκ. The
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observation process is defined as

yn ∼ N(µ∆ + βψ2
n, ψ

2
n)

for n = 1, . . . , N . where,

ψ2
n = λ−1

[
z(λn∆)− σ2(n∆)− z(λ(n− 1)∆) + σ2((n− 1)∆

]
In their example Andrieu et al. (2010) use µ = 0, β = 0,∆ = 1, N = 400 and

thus the problem is to estimate δ, λ, κ and γ. Andrieu et al. (2010) use the follow-

ing parameter values in their simulation study (κ, δ, γ, λ) = (0.5, 1.41, 2.83, 0.10).

For their Bayesian analysis, they assume the following priors, κ ∼ B(10, 10), δ ∼

G(1,
√

50), γ ∼ G(1,
√

200) and λ ∼ G(1, 0.5). Here B(α, β) denotes the Beta dis-

tribution with mean α/(α+ β) and variance αβ/(α+ β)2(α+ β + 1). A normal

random-walk Metropolis-Hastings algorithm is used for joint updating of param-

eters. The authors use MCMC runs of length 50,000 and report possible lack of

identifiability of parameters in the model.

Fig. 1.1 shows some results from applying the iterated filtering algorithm with

1000 particles to the simulation study described by Andrieu et al. (2010, section

3.2) in order to carry out likelihood based inference. If θ denotes the parame-

ter vector of interest, the algorithm generates a sequence of parameter estimates

θ̂1, θ̂2, . . . converging to the maximum likelihood estimate θ̂. As a diagnostic, the

log-likelihood of θ̂i is plotted against i (Fig. 1.1(a)). We see the sequence of log-

likelihoods rapidly converges. On simulation studies like this, a quick check for

successful maximization is to observe that the maximized log-likelihood typically

exceeds the log-likelihood at the true parameter value by approximately half the

number of estimated parameters (Fig. 1.1(a)). One can also check for successful lo-

cal maximization by sliced likelihood plots (Fig. 1.1(b-e)), in which the likelihood

8
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Figure 1.1: Diagnostic plots for iterated filtering. (a) likelihood at each iteration,
evaluated by sequential Monte Carlo; the broken straight line marks the
likelihood at the truth. (b) - (e) likelihood surface for each parameter
sliced through the maximum; points show parameter values where the
likelihoods were evaluated; solid straight lines mark the maximum like-
lihood estimate; broken straight lines mark the true parameter value.

surface is explored along one of the parameters, keeping the other parameters

fixed at the estimated local maximum. The likelihood surface is seen to be flat as

λ varies, consistent with the authors’ observation that some parameter combina-

tions are weakly identified in this model. A profile likelihood analysis could aid the

investigation of the identifiability issue. Due to the quick convergence of iterated

filtering with a relatively small number of particles, many profile likelihood plots

can be generated at the computational expense of, say, one MCMC run of length

50,000.

The decision about whether one wishes to carry out a Bayesian analysis should
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depend on whether one wishes to impose a prior distribution on unknown param-

eters. Here, we have shown that likelihood-based non-Bayesian methodology pro-

vides a computationally viable alternative to a state-of-the-art Bayesian approach

for complex dynamic models.

1.3 Sequential Monte Carlo

Sequential Monte Carlo filters, starting with the bootstrap filter of Gordon et al.

(1993) have inspired a huge body of literature over the last 17 years. It is now

possible to use these filters in the state estimation problems in nonlinear dynamical

systems where the only viable option used to be the Kalman filter with its often

hard to meet linear Gaussian assumption, or its variants using local linearity or

Gaussianity, e.g., the extended Kalman filter (Arulampalam et al., 2002).

This inference technique used in chapter 2 uses the basic Sequential Monte

Carlo (SMC) filter in order to compute the conditional estimates of the state vari-

ables. Here, we describe the basic SMC algorithm that is necessary to undererstand

chapter 2.

The basic SMC algorithm is based on the following identities in a Markovian

state space model

fXt|Y1:t(xt|y1:t; θ) =
fXt|Y1:t−1(xt|y1:t−1; θ)fYt|Xt(yt|xt; θ)∫
fXt|Y1:t−1;θ(xt|y1:t−1; θ)fYt|Xt(yt|xt; θ)dxt

(1.4)

fXt+1|Y1:t(xt+1|y1:t; θ) =

∫
fXt+1|Xt(xt+1|xt; θ)fXt|Y1:t(xt|y1:t; θ)dxt (1.5)

In this section it is understood that subscripts to the letter f corresponds to the

random variables whose densities are considered. All these conditional densities

are assumed to exist. The quantities on the left hand sides of equations (1.4)

and (1.5) are known as the filter and prediction densities respectively. Following

standard notation in SMC literature, xt denotes the unobserved state process, yt
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denotes the observations, θ is a vector of parameters and y1:t = (y1, . . . , yt). It is

also assumed that x1:t and y1:t are realizations for real valued random variables

X1:t and Y1:t. This allows us to define the following algorithm

1. Suppose the set of “particles” {XF
t,j, j = 1, . . . , J} be approximately dis-

tributed as the conditional density of the state process fXt|Y1:t(xt|y1:t; θ).

2. The mutation or prediction step:

Sample XP
t+1,j from the state transition density fXt+1|Xt(xt+1|xt = XF

t,j; θ).

Then {XP
t+1,j} has a marginal density fXt+1|Y1:t(xt+1|y1:t; θ)

3. The selection step:

Resample with replacement {XP
t+1,j} according to their weights wj = fYt|Xt(yt|xt =

XP
t,j; θ). Note that the weights need to be evaluated. Now {XF

t+1,j} solves the

filtering problem at time t+ 1. Go back to step 1 and repeat for t = t+ 1.

4. Ẽ[xt|y1:t] and Ṽ[xt|y1:t−1] are the sample mean and sample variance of XF
t,j

and XP
t,j respectively. These quantities are available as a result of running

steps 1 through 3 and will be useful in the iterated filtering algorithm de-

scribed in chapter 2.

In step 2, note that we draw samples from fXt+1|Xt(xt+1|xt; θ). This lies at the

heart of the plug and play property, since this essentially means we can gener-

ate samples from the equations describing the model trajectory, without worrying

about the presence of a closed-form state transition density. Step 2 can be modified

in various ways (e.g. the auxiliary particle filter of Pitt and Shephard (1999)) that

takes advantage of the present observation yt. However, that modification comes

at the expense of the plug and play property.

Figure 1.2 shows a pictorial representation of the sequential Monte Carlo scheme.

Row (a) shows J particles distributed according to the prediction density at time

11



t − 1. Each of these J particles are then weighted according to step 3 of the al-

gorithm described above and the corresponding weights are called wj (row (b)).

Note how particles whose weights fall below a certain threshold (unfit particles,

using evolutionary terms) are eliminated at this stage. Then resampling with re-

placements according to wj takes place among the surviving particles and heavier

particles can be resampled more than once (gives rise to more descendants). This

is shown in row (c) in yellow and we resample until we reach J particles (strictly

speaking, J can vary between time points). Each of these particles are then per-

turbed according to step 2 of the algorithm. Thus, one prediction and one selection

step (steps 2 and 3) describe the complete set of operations for one time point.

The resultant row (d) shows the progression of the set of particles from time t− 1

to t. The set of operations is then repeated for the next time point. Note the

correspondence between rows (a) and (d), (b) and (e).

The resampling step of the algorithm (step 3) is crucial. In absence of it after

only a few time steps, all the weights are concentrated on only one particle and the

rest of the particles are eliminated (Gordon et al., 1993). Thus, with only one sur-

viving particle, the algorithm fails to describe the required densities. However, the

resampling stage is not without its share of problems. Most importantly, it results

in the so called “sample impoversihment”. Heavier particles are resampled many

times, introducing a lack of diversity in the resultant sample. As is easy to see in

the transitions from row (c) to (d) in figure 1.2, the only source of diversity is then

the randomness introduced by the independent draws from fXt+1|Xt(xt+1|xt; θ), i.e.,

the process noise. Hence this problem is most severe in the case of small process

noise and the particles collapse to a single point within a few iterations (Aru-

lampalam et al., 2002). Also, this lack of diversity among the particles explain

why smoothers based on particles’ paths degenerate (Arulampalam et al., 2002).

Strategies to counter sample impoverishment is an active area of research in it-
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self (Gilks and Berzuini, 2001). We will not focus on these problems any further

in this dissertation.

{XP
t−1, J} (a)

{XP
t−1, wj} (b)

{XF
t , wj} (c)

{XP
t , J} (d)

{XP
t , wj} (e)

Figure 1.2: A pictorial representation of the time evolution of a sequential Monte
Carlo scheme adapted from Doucet et al. (2001). The arrows point
to the direction of increasing time. Superscripts P and F denote pre-
diction and filtering respectively. The curved solid line denotes the
likelihood surface at a given time. The blue and yellow balls represent
the different particles in the state space at a given time. The radii of
the balls are proportional to their importance weights.
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1.4 Infectious disease models

It is useful to model the evolution of an infectious disease as a dynamical system.

Information needed to build a dynamic model is often available from the biological

considerations of the model and time series data of disease cases are available to

fit and test the models. Generally, the states of the system are defined keeping

in mind the separate stages in the evolution of the disease e.g., individuals who

are susceptible to the disease, recovered from the disease or currently infected etc.

Usually, not all the states can be observed, i.e. the number of people currently

undergoing treatment for the disease at a hospital might be counted but there

is no way to exactly count the people who are susceptible to the disease at any

given instant. It is therefore an example of a partially observed dynamical system.

Usually the transition rates are unknown, and have to be estimated from the data,

though an initial guess is often available based on prior scientific knowledge.

There are several illustrative examples of the use of dynamical system in the

modeling of an infectious disease. We will focus our attention to the compartment

model, where each compartment denotes a state in the system. The classic SIR

model by Kermack and McKendrick (1927) groups Nt individuals as susceptible

(St), infected (It) and recovered (Rt). Inclusion of exposed classes, age-structured

classes are some natural extensions. In chapter 3, we will use one such compartment

model for malaria transmission. Population models can be stochastic or determin-

istic, may be in discrete or continuous time and may take discrete or continuous

values. Real world processes are continuous time, discrete values and stochastic.

The stochasticity could be demographic (arising due to uncertainty in individual

outcomes) or environmental (arising due to factors affecting the whole population,

e.g. climate or economy). It is sensible to model the variance of demographic

stochasticity as linear in population size and that environmental stochasticity as

quadratic in population size.
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Mechanistic modeling of dynamical systems offers a way to integrate ecological

parameters into disease models and to study the relationship between the two.

One of the main objectives of this dissertation is to describe such a partially ob-

served stochastic dynamic system model of the evolution of malaria developed by

Laneri et al. (2010). We will use the iterated filtering procedure developed by Ion-

ides et al. (2006) to estimate the parameters for this system. A central scientific

question for epidemic malaria has been whether the interannual cycles observed

in the epidemics are driven by climate or are instead generated by the intrinsic

dynamics of the disease itself or a combination of the two. The particular climate

driver we are interested in this case is rainfall. Determining the role of climate

on disease transmission is also central in building an early warning system for epi-

demics. We discuss a mechanistic model of malaria transmission to explicitly test

the hypothesis of climate forcing versus intrinsic dynamics in chapter 3.
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CHAPTER 2

Iterated Filtering

2.1 Introduction

Partially observed Markov process (POMP) models are of widespread impor-

tance throughout science and engineering. As such, they have been studied under

various names including state space models (Durbin and Koopman, 2001), dy-

namic models (West and Harrison, 1997) and hidden Markov models (Cappé et al.,

2005). Applications include ecology (Newman et al., 2008), economics (Fernández-

Villaverde and Rubrio-Ramı́rez, 2007), epidemiology (King et al., 2008), finance

(Johannes et al., 2009), meteorology (Anderson and Collins, 2007), neuroscience

(Ergun et al., 2007) and target tracking (Godsill et al., 2007).

This chapter investigates theoretical properties of a technique for estimating

unknown parameters of POMPs, called iterated filtering, which was proposed by

Ionides et al. (2006). Iterated filtering methodology provides simple algorithms

to compute maximum likelihood estimates for a very general class of partially

observed Markov process models. At each subsequent filtering iteration, a class

of approximating models converges toward the POMP under investigation. The

theoretical foundation of iterated fitering is a novel relationship between certain

conditional moments of the approximating models and the derivative of the log

likelihood, presented as Theorem 2.2.1 below. In several case-studies, iterated fil-
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tering algorithms have been shown capable of addressing scientific challenges in

the study of infectious disease transmission in large populations (Ionides et al.,

2006; King et al., 2008; Bretó et al., 2009; He et al., 2010). The partially observed

nonlinear stochastic systems arising in the study of disease transmission and re-

lated ecological systems are a challenging environment to test statistical methodol-

ogy (Bjørnstad and Grenfell, 2001), and many statistical methodologies have been

tested on these systems in the past fifty years (e.g., Cauchemez and Ferguson,

2008; Toni et al., 2008; Keeling and Ross, 2008; Ferrari et al., 2008; Morton and

Finkenstadt, 2005; Grenfell et al., 2002; Kendall et al., 1999; Bartlett, 1960; Bailey,

1955). Since iterated filtering has already demonstrated potential for generating

state-of-the-art analyses on a major class of scientific models, we are motivated

to investigate its theoretical properties. It is beyond the scope of this chapter

to investigate whether alternative methodologies which are untested, as yet, on

this class of scientific problems could compete as effective inference tools. Instead,

the goal of this chapter is to present the first formal and complete mathematical

analysis of an iterated filtering algorithm implemented via sequential Monte Carlo.

There are obvious potential extensions, both theoretical and methodological, of the

iterated filtering algorithm studied here. Similar procedures could be developed

for multiple time series (longitudinal data analysis), and for more general situa-

tions where the likelihood is most readily calculated by sequential Monte Carlo or

importance sampling algorithms. This chapter provides a theoretical foundation

for future work on iterated filtering techniques.

One extensively studied issue for POMPs is the reconstruction of unobserved

components of the Markov process from the available observations. Reconstructing

the current state of the process (i.e., determining or approximating its conditional

distribution given all current and previous observations) is known as filtering (An-

derson and Moore, 1979; Arulampalam et al., 2002). Oftentimes one also wishes
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to draw inferences on unknown model parameters from data; we call these static

parameters when we wish to distinguish them from the time-varying components

of the Markov process. A successful numerical solution to the filtering problem

enables evaluation of the likelihood function and therefore brings one tantalizingly

close to efficient estimation of static parameters via likelihood-based approaches,

either Bayesian or non-Bayesian. However, numerical instabilities typically arise

which have inspired a considerable literature (Kitagawa, 1998; Liu and West, 2001;

Storvik, 2002; Ionides et al., 2006; Toni et al., 2008; Polson et al., 2008). As a gen-

eralization, the numerical complications derive from difficulties maximizing or nu-

merically integrating a computationally intensive approximation to the likelihood

function with the possible additional concern of Monte Carlo variability. Iterated

filtering algorithms repeatedly carry out a filtering procedure to explore the likeli-

hood surface at increasingly local scales in search of a maximum of the likelihood

function.

Basic iterated filtering algorithms, such as the one studied in this chapter, have

an attractive practical property that the dynamic model enters the algorithm only

through the requirement that sample paths can be generated at arbitrary param-

eter values. This property has been called plug-and-play (Bretó et al., 2009; He

et al., 2010) since it permits simulation code to be simply plugged into the inference

procedure, enabling scientists to analyze multiple alternative models with only mi-

nor changes to the computations involved. Other plug-and-play methods proposed

for partially observed Markov models include approximate Bayesian computations

implemented via sequential Monte Carlo (Liu and West, 2001; Toni et al., 2008),

an asymptotically exact Bayesian technique combining sequential Monte Carlo

with Markov chain Monte Carlo (Andrieu et al., 2010), simulation-based forecast-

ing (Kendall et al., 1999), and simulation-based spectral analysis (Reuman et al.,

2006).
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Stochastic expectation-maximization and Markov chain Monte Carlo methods

for partially observed Markov process models have been extensively studied (re-

viewed by Cappé et al., 2005) but have limitations and complications when the

unobserved dynamic system operates in continuous time (Roberts and Stramer,

2001; Beskos et al., 2006). These difficulties arise because standard stochastic

expectation-maximization and Markov chain Monte Carlo approaches require the

evaluation of transition probability densities for trajectories of the unobserved dy-

namic system at various values of the unknown parameters. These transition den-

sities can be singular (for example, in many diffusion models) or close to singu-

lar (for example, in models that are well approximated by diffusion processes).

The need for evaluating transition probability densities also means that stochas-

tic expectation-maximization and Markov chain Monte Carlo methods typically

do not enjoy the plug-and-play property. We see, therefore, that plug-and-play

methods are not only computationally convenient but also reduce the technical

difficulties of working with continuous time dynamic process models.

In Section 2.2 we develop a new theoretical framework for iterated filtering.

The previous theoretical foundation for iterated filtering, presented by Ionides

et al. (2006), did not engage directly in the Monte Carlo issues relating to prac-

tical implementation of the methodology. Furthermore, the analogous result to

Theorem 2.2.1 below (Theorem 1 of Ionides et al., 2006) erroneously fails to in-

clude the two separate scales τ and σ. It is relatively easy to check that a (local)

maximum has been attained, and therefore one can view the theory of Ionides et al.

(2006) as motivation for an algorithm whose capabilities were proven by demon-

stration. However, the complete theory presented here gives additional insights

into the capabilities, limitations and practical implementation of iterated filtering.

Section 2.2 presents our main results, drawing on the theories of stochastic op-

timization and sequential Monte Carlo. Our goal is not to employ the most recent
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results available in each of these research areas, but rather to show that some fun-

damental and well-known results from both areas can be combined with a theorem

extending Ionides et al. (2006) to synthesize a new theoretical understanding of

iterated filtering. Proofs of the theorems stated in Section 2.2 are presented to

Section 2.3. Section 2.4 discusses the relationship between this theory and the

practice of iterated filtering. Since the asymptotic justification of iterated filtering

in Section 2.2 is somewhat technical (in contrast to the simplicity of the algorithm

itself), Section 2.4 carries the important burden of explaining how our results relate

to practical data analysis considerations. As one aspect of this relationship, we

argue that users of iterated filtering methodology can draw on the extensive litera-

ture on the practice and theory of stochastic optimization by simulated annealing

(Kirkpatrick et al., 1983; Ingber, 1993; Spall, 2003).

2.2 Notation and main results

Let {X(t), t ∈ T} be a Markov process taking values in X ⊂ Rdx (Rogers and

Williams, 1994). The time index set T ⊂ R may be an interval or a discrete set,

but we are primarily concerned with a finite subset of times t1 < t2 < · · · < tN

at which X(t) is observed, together with some initial time t0 < t1. We write

X0:N = (X0, . . . , XN) =
(
X(t0), . . . , X(tN)

)
. We denote the sequence of obser-

vations by y1:N = (y1, . . . , yN), with yn taking a value in Rdy . We refer to the

observation sequence y1:N as the data, and this is considered as fixed through-

out this chapter. The data are modeled as a realization of a sequence of random

variables Y1:N = (Y1, . . . , YN). We assume the existence of all required joint and

conditional densities for X0:N and Y1:N . These densities are supposed to depend

on an unknown parameter vector θ taking a value in Rp. A POMP may then be

specified at times t0, t1, . . . , tN by an initial density fX0(x0 ; θ), conditional transi-

tion densities fXn|Xn−1(xn |xn−1 ; θ) for 1 ≤ n ≤ N , and the conditional densities
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of the observation process which have the form fYn|Y1:n−1,X1:n(yn | y1:n−1, x1:n ; θ) =

fYn|Xn(yn |xn ; θ). The subscripts of f denote the variables to which the density

corresponds. We use a semicolon to separate the values of random variables from

the values of static parameters. We write f without subscripts to denote the full

collection of densities and conditional densities, and we call f the generic density

of a POMP.

Iterated filtering involves introducing a sequence of approximations to the

model f in which a time-varying parameter process {Θn, 0≤n≤N} is intro-

duced. Specifically, equations (2.1–2.3) define a model g for a Markov process

{(Xn,Θn), 0≤n≤N} and observation process Y1:N .

gXn,Θn|Xn−1,Θn−1
(xn, θn |xn−1, θn−1 ; θ, σ, τ) = fXn|Xn−1(xn |xn−1 ; θn−1) σ

−p κ
(
θn−θn−1

σ

)
,(2.1)

gYn|Xn,Θn
(yn |xn, θn ; θ, σ, τ) = fYn|Xn(yn |xn ; θn), (2.2)

gX0,Θ0
(x0, θ0 ; θ, σ, τ) = fX0(x0 ; θ0) τ

−p κ
(
θ0−θ
τ

)
. (2.3)

Here, κ is a probability density function on Rp which specifies a random walk for

θn. From (2.1), the increments of the random walk are independent of the current

state of the process xn. We suppose that the distribution corresponding to κ has

mean zero and covariance matrix Σ, so that

Eg[Θn |Θn−1] = Θn−1, Varg(Θn |Θn−1) = σ2Σ, (2.4)

Eg[Θ0] = θ, Varg(Θ0) = τ 2Σ. (2.5)

The subscripts for Eg and Varg identify that expectation and variance are taken

with respect to the model g. One natural choice of κ is a multivariate normal

density, which must be truncated to meet condition (A3) of Theorem 2.2.1.

Assuming f is continuously parameterized as a function of θ, which follows

21



from (A2) below, we see from (2.1–2.3) that gX0:N ,Y1:N
(x0:N , y1:N ; θ, σ, τ) approaches

fX0:N ,Y1:N
(x0:N , y1:N ; θ) as both σ → 0 and τ → 0. We call the model g a pertur-

bation of the model f . We refer to σ, τ , κ and Σ as algorithmic parameters since

they play a role in the iterated filtering algorithm but are not part of the statis-

tical model specified by f . The choice of algorithmic parameters may affect the

numerical efficiency of iterated filtering algorithms, but does not affect the resulting

statistical conclusions.

We define the log likelihood function to be `(θ) = log fY1:N
(y1:N ; θ). We write

∇ for a vector of partial derivatives with respect to each component of θ, and ∇2

for the Hessian matrix of second partial derivatives. A result underpinning iterated

filtering is that ∇`(θ) can be approximated in terms of moments of the filtering

distributions for g. Specifically, the following Theorem 2.2.1 relates this derivative

to the filtering means and prediction variances for g, defined as

θFn = θFn (θ, σ, τ) = Eg[Θn |Y1:n= y1:n] =

∫
θn gΘn|Y1:n

(θn | y1:n ; θ, σ, τ) dθn

V P
n = V P

n (θ, σ, τ) = Varg(Θn |Y1:n−1= y1:n−1)

(2.6)

for n = 1, . . . , N , with θF0 = θ. We assume the regularity conditions (A1–A4)

below, with | · | denoting the absolute value of a vector or the largest absolute

eigenvalue of a square matrix.

(A1) (i) There is a constant C1(θ) such that supxn
fYn|Xn(yn |xn ; θ) ≤ C1(θ) for

all n. Additionally, C1(θ) is bounded on compact subsets of Rp. (ii) For all

θ, fY1:N
(y1:N ; θ) > 0.

(A2) Defining θ[k] to be k concatenated copies of θ, gY1:n|Θ0:n(y1:n | θ0:n) is twice

continuously differentiable as a function of θ0:n at θ0:n = θ[n+1].

(A3) There is a constant C2 with κ(θ) = 0 for |θ| > C2 and κ(θ) > 0 for |θ| ≤ C2.

(A4) κ(θ) is twice differentiable on {|θ| < C2}, and ∇2κ(θ) is Lipschitz continuous.
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Condition (A1) is not restrictive. Condition (A2) gives a way of specifying that

the likelihood surface is smoothly parameterized. The conditional density

gY1:n|Θ0:n(y1:n | θ0:n) =

∫
fX0(x0 ; θ0)

n∏
k=1

fYk|Xk
(yk |xk ; θk)fXk|Xk−1

(xk |xk−1 ; θk−1) dx0:n

(2.7)

does not depend on θ, σ, τ or the choice of the perturbation kernel κ. The re-

lationship between smoothness of the likelihood surface, the transition density

fXk|Xk−1
(xk |xk−1 ; θ), and the observation density fYk|Xk

(yk |xk ; θ) is simple to es-

tablish only under the restrictive condition that X is a compact set (Jensen and

Petersen, 1999). Therefore, we note an alternative to (A2) which is more restrictive

but more readily checkable:

(A2 ′) X is a compact subset of Rdx . Both fXk|Xk−1
(xk |xk−1 ; θ) and fYk|Xk

(yk |xk ; θ)

are twice continuously differentiable with respect to θ. These derivatives are

also continuous with respect to xk−1 and xk.

Conditions (A3) and (A4) can be satisfied by the choice of the algorithmic pa-

rameters. The assumption of a spherical support for κ in (A3) is mathematically

convenient but we believe this requirement could be relaxed to some more general

assumption of compact support.

Theorem 2.2.1. Suppose conditions (A1–A4). Let σ be a function of τ with

στ−3 → 0 as τ → 0. Using notation from (2.6),

lim
τ→0

N∑
n=1

(
V P
n

)−1(
θFn − θFn−1

)
= ∇`(θ). (2.8)

A proof of Theorem 2.2.1 is given in Section 2.3.1, based on a Taylor series

expansion around θn = θFn−1 of gYn|Y1:n−1,Θn
(yn | y1:n−1, θn ; θ, σ, τ). Theorem 2.2.1

builds on a result of Ionides et al. (2006), however both the assumptions employed

and the details of the proof differ substantially from this previous article. Our new
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result is necessary for the following Theorems 2.2.2 and 2.2.3.

The quantities θFn and V P
n in Theorem 2.2.1 do not usually have closed form,

and so numerical approximations must be made for any practical application of

this result. Numerical approximation of moments is generally more convenient

than approximating derivatives, and this is the reason that Theorem 2.2.1 may

be useful. However, one might suspect that there is no “free lunch” and therefore

the numerical calculation of the left hand side of (2.8) should become fragile as σ

and τ becomes small. We will see that this is indeed the case, but that iterated

filtering methods mitigate the difficulty to some extent by averaging numerical

error over subsequent iterations. To be concrete, we suppose henceforth that nu-

merical filtering will be carried out using the basic sequential Monte Carlo method

presented as Algorithm 1. Sequential Monte Carlo provides a flexible and widely

used class of filtering algorithms, with many variants designed to improve numer-

ical efficiency (Cappé et al., 2007). The relatively simple sequential Monte Carlo

method in Algorithm 1 is more readily comprehended, analyzed and implemented.

It has also been found adequate for previous data analyses using iterated filtering

(Ionides et al., 2006; King et al., 2008; Bretó et al., 2009; He et al., 2010). We

suspect that the qualitative conclusions obtained here would apply to variations

on Algorithm 1.

To calculate Monte Carlo estimates of the quantities in (2.6), we apply Algo-

rithm 1 to the model g with Zn = (Xn,Θn), ψ = (θ, σ, τ) and J particles. We write

ZF
n,j =

(
XF
n,j ,Θ

F
n,j

)
and ZP

n,j =
(
XP
n,j ,Θ

P
n,j

)
for the Monte Carlo samples from the

filtering and prediction calculations in Algorithm 1. Then, using xT to denote the

transpose of x, we define

θ̃Fn = θ̃Fn (θ, σ, τ, J) = 1
J

∑J
j=1 ΘF

n,j,

Ṽ P
n = Ṽ P

n (θ, σ, τ, J) = 1
J−1

∑J
j=1

(
ΘP
n,j − θ̃Fn−1

)(
ΘP
n,j − θ̃Fn−1

)T
.

(2.9)
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Input:

• POMP model described by a generic density h having parameter vector ψ and
corresponding to a Markov process Z0:N , observation process Y1:N , and data
y1:N

• number of particles, J

Procedure:

1 initialize filter particles ZF
0,j ∼ hZ0(z0 ;ψ) for j in 1 : J

2 for n in 1 : N
3 for j in 1 : J draw prediction particles ZP

n,j ∼ hZn|Zn−1

(
zn |ZF

n−1,j ;ψ
)

4 set w(n, j) = hYn|Zn

(
yn |ZP

n,j ;ψ
)

5 draw k1, . . . , kJ such that P{kj=i} = w(n, i)/
∑

`w(n, `)
6 set ZF

n,j = ZP
n,kj

7 end for

Algorithm 1: A basic sequential Monte Carlo procedure for a discrete-time
Markov process. For the unperturbed model, set Zn = Xn, h = f and ψ = θ.
For the perturbed model, set Zn = (Xn,Θn), h = g and ψ = (θ, σ, τ). The resam-
pling in step 5 is taken to follow a multinomial distribution to build on previous
theoretical results making this assumption (Del Moral and Jacod, 2001; Crisan
and Doucet, 2002). An alternative is the systematic procedure in Arulampalam
et al. (2002, Algorithm 2) which has less Monte Carlo variability. We support the
use of systematic sampling in practice, and we suppose that all our results would
continue to hold in such situations.

We now present, as Theorem 2.2.2, an analogue to Theorem 2.2.1 in which the

filtering means and prediction variances are replaced by their Monte Carlo coun-

terparts. A proof of this result is given in Section 2.3.3. The stochasticity in

Theorem 2.2.2 is due to Monte Carlo variability, conditional on the data y1:N , and

we write Ẽ and Ṽar to denote Monte Carlo means and variances. The Monte Carlo

random variables required to implement Algorithm 1 are presumed to be drawn

independently each time the algorithm is evaluated.

Theorem 2.2.2. Let {σm}, {τm} and {Jm} be positive sequences with τm → 0,

σmτ
−3
m → 0 and τmJm →∞. Define θ̃Fn,m = θ̃Fn (θ, σm, Jm) and Ṽ P

n,m = Ṽ P
n,m(θ, σm, Jm)

via (2.9). Supposing conditions (A1–A4),

25



lim
m→∞

Ẽ
[ N∑
n=1

(
Ṽ P
n,m

)−1(
θ̃Fn,m − θ̃Fn−1,m

)]
= ∇`(θ), (2.10)

lim
m→∞

τ 2
mJm Ṽar

( N∑
n=1

(
Ṽ P
n,m

)−1(
θ̃Fn,m − θ̃Fn−1,m

))
< ∞, (2.11)

with convergence being uniform for θ in compact sets.

Theorem 2.2.2 suggests that a Monte Carlo method which leans on Theo-

rem 2.2.1 will require a sequence of Monte Carlo sample sizes, Jm, which increases

faster than τ−1
m . Otherwise, the Monte Carlo bias in estimating θFn −θFn−1, which is

of order τm/Jm, will eventually dominate the information in θFn −θFn−1 about ∇`(θ),

which is of order τ 2
m. Even with τmJm →∞, we see from (2.11) that the estimated

derivative in (2.10) may have increasing Monte Carlo variability as m→∞. This

trade-off between bias and variance is to be expected in any Monte Carlo nu-

merical derivative, a classic example being the Kiefer-Wolfowitz algorithm (Kiefer

and Wolfowitz, 1952; Spall, 2003). Algorithms which are designed to balance such

trade-offs have been extensively studied under the label of stochastic approximation

(Kushner and Yin, 2003; Spall, 2003; Andrieu et al., 2005).

Theorem 2.2.3 gives an example of a stochastic approximation procedure, de-

fined by the recursive sequence θ̂m in (2.12). Because each step of this recursion

involves an application of the filtering procedure in Algorithm 1, we call (2.12)

below an iterated filtering algorithm. To prove the convergence of this algorithm

to a value θ̂ maximizing the log likelihood function `(θ) we make the following

assumptions, which are standard sufficient conditions for stochastic approximation

methods.

(B1) Define ζ(t) to be a solution to dζ/dt = ∇`(ζ(t)). Suppose that θ̂ is an

asymptotically stable equilibrium point, meaning that (i) for every η > 0 there

exists a δ(η) such that |ζ(t)− θ̂| ≤ η for all t > 0 whenever |ζ(0)− θ̂| ≤ δ, and

(ii) there exists a δ0 such that ζ(t) → θ̂ as t→∞ whenever |ζ(0)− θ̂| ≤ δ0.
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(B2) With probability one, supm |θ̂m| < ∞. Further, θ̂m falls infinitely often into

a compact subset of {ζ(0) : limt→∞ ζ(t) = θ̂}.

The conditions (B1–B2) are the basis of the classic results of Kushner and Clark

(1978). Although research into stochastic approximation theory has continued

(e.g., Kushner and Yin, 2003; Andrieu et al., 2005; Maryak and Chin, 2008), (B1–

B2) remain a textbook approach (Spall, 2003). The relative simplicity and elegance

of Kushner and Clark (1978) makes an appropriate foundation for investigating the

links between iterated filtering, sequential Monte Carlo and stochastic approxima-

tion theory. There is, of course, scope for variations on our results based on the

diversity of available stochastic approximation theorems. Although neither (B1–

B2) nor alternative sufficient conditions are easy to verify, stochastic approxima-

tion methods have nevertheless been found effective in many situations. Condition

(B2) is most readily satisfied if θ̂m is constrained to a neighborhood in which θ̂

is a unique local maximum, which gives a guarantee of local rather than global

convergence. Global convergence results have been obtained for related stochastic

approximation procedures (Maryak and Chin, 2008) but are beyond the scope of

this chapter. Practical implementation issues are discussed in Section 2.4 below.

Theorem 2.2.3. Let {am}, {σm}, {τm} and {Jm} be positive sequences with τm →

0, σmτ
−3
m → 0, Jmτm → ∞, am → 0,

∑
m am = ∞ and

∑
m a

2
mJ

−1
m τ−2

m < ∞.

Specify a recursive sequence of parameter estimates {θ̂m} by

θ̂m+1 = θ̂m + am

N∑
n=1

(
Ṽ P
n,m

)−1(
θ̃Fn,m − θ̃Fn−1,m

)
, (2.12)

where θ̃Fn,m = θ̃Fn (θ̂m, σm, Jm) and Ṽ P
n,m = Ṽ P

n,m(θ̂m, σm, Jm) are defined in (2.9)

via an application of Algorithm 1. Assuming conditions (A1–A4) and (B1–B2),

limm→∞ θ̂m = θ̂ with probability one.

The proof of Theorem 2.2.3, given in Section 2.3.4, is based on applying Theo-
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rem 2.2.2 in the context of existing results on stochastic approximation.

2.3 Proofs of the main results

We employ Landau notation for the limit τ → 0, namely, we write α = O(β) to

mean that α(τ)
/
β(τ) is bounded, and α = o(β) to mean that limτ→0 α(τ)

/
β(τ) =

0. In Sections 2.3.1 and 2.3.2, we write ∇θ and ∇θn for vectors of partial derivatives

with respect to the components of θ and θn respectively. ∇θngY1:n|Θn(y1:n | θn=φ ; θ, σ, τ)

to denote partial derivatives evaluated at θn=φ.

2.3.1 A proof of Theorem 2.2.1

Suppose inductively that |θFn−1 − θ| = O(τ 2), which holds for n = 1 by con-

struction. We make a Taylor series expansion of gYn|Y1:n−1,Θn
(yn | y1:n−1, θn) about

θn= θFn−1, suppressing the dependence of g on θ, σ and τ , to give

gYn|Y1:n−1,Θn
(yn | y1:n−1, θn) = gYn|Y1:n−1,Θn(yn | y1:n−1, θ

F
n−1)

+ (θn− θFn−1)
T∇θngYn|Y1:n−1,Θn

(yn | y1:n−1, θ
F
n−1) +R1(θn).

(2.13)

Integrating (2.13), we calculate

gYn|Y1:n−1
(yn | y1:n−1) =

∫
gYn|Y1:n−1,Θn

(yn | y1:n−1, θn) gΘn|Y1:n−1
(θn | y1:n−1) dθn

= gYn|Y1:n−1,Θn
(yn | y1:n−1, θ

F
n−1) +R2 (2.14)

where

R2 =

∫
R1(θn) gΘn|Y1:n−1

(θn | y1:n−1) dθn. (2.15)

From Lemma 2.3.3 in Section 2.3.2, there is a constant C3 such that |R1(θn)| is

bounded by C3|θn−θFn−1|2/2 on the set B(τ) = {θn : |θn−θ| ≤ C2(τ −nσ)}, where
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C2 does not depend on τ . From (A1), R1(θn) is also bounded by some constant

C4, uniformly in τ , on the set B(τ) = {θn : |θn − θ| ≤ C2(τ + nσ)}. We therefore

conclude that R2 = O(τ 2 + σ/τ), and so R2 = O(τ 2) by assumption. Dividing

(2.13) by (2.14), and applying Bayes’ formula, we obtain

gΘn|Y1:N
(θn | y1:n)

gΘn|Y1:N−1
(θn | y1:n−1)

= 1 + (θn− θFn−1)
T∇θn log gYn|Y1:n−1,Θn

(yn | y1:n−1, θ
F
n−1) +R3(θn).

(2.16)

The bounds onR1 andR2, together with the observation that gYn|Y1:n−1,Θn
(yn | y1:n−1, θn)

is uniformly bounded away from zero on B(τ), imply that there are constants C5

and C6 such that |R3(θn)| < C5|θn − θFn−1|2 on B(τ) and |R3(θn)| < C6 on B(τ).

We now calculate

θFn − θFn−1 = Eg[Θn− θFn−1 |Y1:n= y1:n]

=

∫
(θn− θFn−1) gΘn|Y1:n

(θn | y1:n) dθn (2.17)

= V P
n ∇θn log gYn|Y1:n−1,Θn

(yn | y1:n−1, θ
F
n−1) +R4 (2.18)

where

R4 =

∫
(θn− θFn−1)R3(θn) gΘn|Y1:n−1

(θn | y1:n−1) dθn. (2.19)

Equation (2.18) follows from (2.17) using (2.16), and we see that R4 = O
(
τ(τ 2 +

σ/τ)
)

so R4 = o(τ 2) by assumption. Applying Lemma 2.3.3 from Section 2.3.2 to

∇θn log gYn|Y1:n−1,Θn
(yn | y1:n−1, θ

F
n−1), we deduce from (2.18) that

θFn − θFn−1 = V P
n ∇θ log fYn|Y1:n−1(yn | y1:n−1 ; θ) + o(τ 2). (2.20)
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The inductive assumption that |θFn − θ| = O(τ 2) is justified by (2.20), since V P
n =

O(τ 2) by construction. A similar argument for the prediction variance gives

V P
n+1 = Varg(Θn+1 |Y1:n= y1:n) = Varg(Θn |Y1:n= y1:n) + σ2Σ

= Eg[(Θn− θFn )(Θn− θFn )T |Y1:n= y1:n] + σ2Σ

= Eg[(Θn− θFn−1)(Θn− θFn−1)
T |Y1:n= y1:n]− (θFn − θFn−1)(θ

F
n − θFn−1)

T + σ2Σ

(2.21)

= V P
n + σ2Σ + o(τ 2), (2.22)

where (2.22) follows from (2.21) via (2.16) and (2.20) together with the observation

that |θFn − θFn−1| = o(τ 2). It follows from (2.22) that |V P
n − V P

1 | = o(τ 2). Noting

that V P
1 = (τ 2 + σ2)Σ, one can multiply (2.20) through by (V P

n )−1 and sum over

n to give (2.8). This completes the proof of Theorem 2.2.1.

2.3.2 Lemmas required for the proof of Theorem 2.2.1

The passage from (2.18) to (2.20) may appear natural, given the smoothly pa-

rameterized sequence of approximations by which g approaches f . However, there

is in fact some subtlety which explains the necessity of the two approximation

parameters σ and τ with στ−3 → 0. If the variability of gΘ1:n|Θ0
(θ1:n | θ0 ;σ) is

small compared to the variability of gΘ0(θ0 ; θ, σ, τ) then, heuristically, one ex-

pects gΘ0:n−1|Y1:n,Θn
(θ0:n−1 | y1:n, θn ; θ, σ, τ) to be concentrated around θn in the

limit as τ → 0. Lemma 2.3.3 takes advantage of a formalization of this limit.

However, the issue may be of minor relevance in practice because one expects

that gΘn−k:n−1 |Y1:n,Θn(θn−k:n−1 | y1:n, θn) will indeed be concentrated around θn when

k�n even if σ is not small compared to τ . Under typical mixing conditions, the

distribution of yn given y1:n−1, θ0:n ; θ, σ depends only weakly on θ0:(n−k−1) unless

k is small. Introducing mixing conditions typically improves the theoretical prop-
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erties of filtering procedures (e.g., Crisan and Doucet, 2002). We conjecture that

one could achieve a result similar to Lemma 2.3.3 for a constant ratio στ−1 in a

limit with some appropriate mixing properties, though investigating such scenarios

is outside the scope of this chapter.

Lemma 2.3.1. (A1–A4) implies

∇θngY1:n|Θn
(y1:n | θn ; θ, σ, τ) =

n∑
i=0

Ui − V (2.23)

∇2
θn
gY1:n|Θn

(y1:n | θn ; θ, σ, τ) =
n∑
i=0

n∑
j=0

Wi,j +X −
n∑
i=0

(Yi + Y T

i ) (2.24)

where

Ui =

∫ [
∇θi

gY1:n|Θ0:n
(y1:n | θ0:n)

]
gΘ0:n−1|Θn

(θ0:n−1 | θn ; θ, σ, τ) dθ0:n−1

V = ∇θ gY1:n|Θ0:n
(y1:n | θn ; θ, σ, τ)

Wi,j =

∫ [
∇θi
∇T

θj
gY1:n|Θ0:n

(y1:n | θ0:n)
]
gΘ0:n−1|Θn

(θ0:n−1 | θn ; θ, σ, τ) dθ0:n−1

X = ∇2
θ gY1:n|Θ0:n

(y1:n | θn ; θ, σ, τ)

Yi = ∇θ
∫ [

∇T

θi
gY1:n|Θ0:n

(y1:n | θ0:n)
]
gΘ0:n−1|Θn

(θ0:n−1 | θn ; θ, σ, τ) dθ0:n−1

(
= ∇θ UT

i

)

Proof. We start the derivation of (2.23) by integrating gY1:n,Θ0:n−1|Θn
(y1:n, θ0:n−1 | θn ; θ, σ, τ)

over θ0:n−1. We then employ (A2) to justify passing ∇θn through the resulting in-

tegral. Noting that gY1:n|Θ0:n
(y1:n | θ0:n ; θ, σ, τ) does not depend on θ, σ or τ , we

calculate

∇θngY1:n|Θn
(y1:n | θn ; θ, σ, τ) = Un + A + Bn (2.25)

for
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A = gY1:n,Θn
(y1:n, θn ; θ, σ, τ)∇θn

[
1

gΘn
(θn ; θ, σ, τ)

]
Bi =

∫
gY1:n|Θ0:n

(y1:n | θ0:n)

gΘn
(θn ; θ, σ, τ)σnpτ p

[
∇θi

κ
(
θi−θi−1

σ

) ]
κ
(
θ0−θ
τ

)∏
j 6=i

κ
(
θj−θj−1

σ

)
dθ0:n−1 for i ≥ 1

(2.26)

B0 =

∫
gY1:n|Θ0:n

(y1:n | θ0:n)

gΘn
(θn ; θ, σ, τ)σnpτ p

[
∇θ0κ

(
θ0−θ
τ

) ] n∏
j=1

κ
(
θj−θj−1

σ

)
dθ0:n−1 (2.27)

Noticing that∇θi
κ
(
[θi−θi−1]/σ

)
= −∇θi−1

κ
(
[θi−θi−1]/σ

)
and applying integration

by parts to (2.26) one finds that

Bi = Ui−1 + Bi−1 for 1 ≤ i ≤ n. (2.28)

A further calculation gives

B0 = −
∫
gY1:n|Θ0:n

(y1:n | θ0:n)
∇θ gΘ0:n

(θ0:n ; θ, σ, τ)

gΘn
(θn ; θ, σ, τ)

dθ0:n−1

= −
(
V −∇θ

[
1

gΘn
(θn ; θ, σ, τ)

]
gY1:n,Θn

(y1:n, θn ; θ, σ, τ)
)

(2.29)

= −V − A (2.30)

(2.30) follows from (2.29) because gΘn(θn ; θ, σ, τ) is a function of θn−θ. Combining

(2.25), (2.28) and (2.30) gives (2.23). To show (2.24), we write

∇2
θn
gY1:n,Θn

(y1:n | θn ; θ, σ, τ) = C + D + DT +Wn,n + En,n + ET

n,n + Fn (2.31)
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where

C = ∇2
θn

[
1

gΘn
(θn ; θ, σ, τ)

]
gY1:n,Θn

(y1:n, θn ; θ, σ, τ) (2.32)

D = ∇θn

[
1

gΘn
(θn ; θ, σ, τ)

]
∇T

θn
gY1:n,Θn

(y1:n, θn ; θ, σ, τ) (2.33)

Ei,j =

∫ ∇θi
gY1:n |Θ0:n

(y1:n | θ0:n)

gΘn
(θn ; θ, σ, τ)σnpτ p

[
∇T

θj
κ
(
θj−θj−1

σ

) ]
κ
(
θ0−θ
τ

)∏
k 6=j

κ
(
θk−θk−1

σ

)
dθ0:n−1 for j ≥ 1

(2.34)

Ei,0 =

∫ ∇θi
gY1:n |Θ0:n

(y1:n | θ0:n)

gΘn
(θn ; θ, σ, τ)σnpτ p

[
∇T

θ0
κ
(
θ0−θ
τ

) ] n∏
k=1

κ
(
θk−θk−1

σ

)
dθ0:n−1 (2.35)

Fi =

∫
gY1:n |Θ0:n

(y1:n | θ0:n)

gΘn
(θn ; θ, σ, τ)σnpτ p

[
∇2
θi
κ
(
θi−θi−1

σ

) ]
κ
(
θ0−θ
τ

)∏
j 6=i

κ
(
θj−θj−1

σ

)
dθ0:n−1 for i ≥ 1

(2.36)

F0 =

∫
gY1:n |Θ0:n

(y1:n | θ0:n)

gΘn
(θn ; θ, σ, τ)σnpτ p

[
∇2
θ0
κ
(
θ0−θ
τ

) ] n∏
j=1

κ
(
θj−θj−1

σ

)
dθ0:n−1 (2.37)

Applying the identity ∇θj
κ
(
[θj − θj−1]/σ

)
= −∇θj−1

κ
(
[θj − θj−1]/σ

)
to (2.34) and

then integrating by parts gives

Ei,j = Wi,j−1 + Ei,j−1 for 1 ≤ j ≤ n. (2.38)

A similar calculation for j = 0 gives

ET

i,0 = −
(
Yi −∇θ

[
1

gΘn
(θn ; θ, σ, τ)

] ∫ [
∇T

θi
gY1:n|Θ0:n

(y1:n | θ0:n)
]
gΘ0:n

(θ0:n ; θ, σ, τ) dθ0:n−1

)
= −Yi + Gi (2.39)

for

Gi = ∇θ
[

1

gΘn
(θn ; θ, σ, τ)

]
gΘn

(θn ; θ, σ, τ) UT

i . (2.40)
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The same procedure applied to (2.36) gives

Fi = Wi−1,i−1 + Ei−1,i−1 + ET

i−1,i−1 + Fi−1 for 1 ≤ i ≤ n. (2.41)

For i = 0, we calculate

F0 = X −H−HT − C (2.42)

where

H = ∇θ
[

1

gΘn
(θn ; θ, σ, τ)

] ∫
gY1:n|Θ0:n

(y1:n | θ0:n)∇T

θ gΘ0:n
(θ0:n ; θ, σ, τ)dθ0:n−1

(2.43)

= ∇θ
[

1

gΘn
(θn ; θ, σ, τ)

]
∇T

θ gY1:n,Θn
(y1:n, θn ; θ, σ, τ) (2.44)

A further calculation gives

D = −∇θ
[

1
gΘn

(θn ;θ,σ,τ)

] {
gΘn

(θn ; θ, σ, τ)∇T

θn
gY1:n|Θn

(y1:n | θn ; θ, σ, τ)

+gY1:n|Θn
(y1:n | θn ; θ, σ, τ)∇T

θn
gΘn

(θn | θ, σ, τ)
}

=
n∑
i=0

Gi +∇θ
[

1
gΘn

(θn ;θ,σ,τ)

]{
gΘn

(θn ; θ, σ, τ)∇T

θ gY1:n
(y1:n ; θ, σ, τ)

−gY1:n|Θn
(y1:n | θn ; θ, σ, τ)∇T

θn
gΘn

(θn ; θ, σ, τ)
}

=
n∑
i=0

Gi +∇θ
[

1
gΘn

(θn ;θ,σ,τ)

]{
gΘn

(θn ; θ, σ, τ)∇T

θ gY :1:n(y1:n ; θ, σ, τ)

+gY1:n|Θn
(y1:n | θn ; θ, σ, τ)∇T

θ gΘn
(θn ; θ, σ, τ)

}
=

n∑
i=0

Gi + H (2.45)

Combining (2.31), (2.38), (2.39), (2.41), (2.42), (2.45) and the identity Wi,j = W T
j,i

gives (2.24).

Lemma 2.3.2. Let Θ0:n be the collection of random variables defined in Sec-
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tion 2.2, with joint density gΘ0:n
(θ0:n | θ, σ, τ) = 1

σnpτpκ
(
θ0−θ
τ

)∏n
i=1 κ

(
θi−θi−1

σ

)
with

κ satisfying conditions (A3) and (A4). Let ψ(θ0:n) be a continuous function of θ0:n

taking values in Rd for some d. Define θ[k] = (θ, . . . , θ) for k concatenated copies of

θ. Set B(τ) = {θn : |θn−θ| < C2(τ−nσ)} and B(τ) = {θn : |θn−θ| < C2(τ+nσ)}.

Then,

lim
τ→0

sup
θn∈B(τ)

∣∣∣∣ψ(θ[n+1])−
∫
ψ(θ0:n)gΘ0:n−1|Θn

(θ0:n−1 | θn ; θ, σ, τ) dθ0:n−1

∣∣∣∣ = 0, (2.46)

lim
τ→0

sup
θn∈B(τ)

∣∣∣∣∫ ψ(θ0:n)∇θ gΘ0:n−1|Θn
(θ0:n−1 | θn ; θ, σ, τ) dθ0:n−1

∣∣∣∣ = 0. (2.47)

lim
τ→0

sup
θn∈B(τ)

∣∣∣∣∫ ψ(θ0:n)∇2
θ gΘ0:n−1|Θn

(θ0:n−1 | θn ; θ, σ, τ) dθ0:n−1

∣∣∣∣ = 0. (2.48)

Proof. To show (2.46) we note that, for any θn ∈ B(τ), gΘ0:n−1|Θn
(θ0:n−1 | θn ; θ, σ, τ)

defines a probability density for Θ0:n−1 supported on

K(τ) =
{
θ0:n−1 : |θj − θ| ≤ C2(τ + jσ) ∀j ∈ {0, 1, . . . , n− 1}

}
. (2.49)

Since K(τ) converges to the point θ[n] as τ → 0, (2.46) is guaranteed by the

continuity of ψ(θ0:n). To show (2.47), we write the identity

∇θ
∫
ψ(θ0:n)gΘ0:n−1|Θn

(θ0:n−1 | θn ; θ, σ, τ) dθ0:n−1

=

∫
ψ(θ0:n)µ(θ0:n−1 | θn ;σ)∇θ

[
gΘ0

(θ0 ; θ, τ)

gΘn
(θn ; θ, σ, τ)

]
dθ0:n−1

where µ(θ0:n−1 | θn ;σ) = 1
σnp

∏n
k=1 κ

(
θk−θk−1

σ

)
. Since it is clear that µ(θ0:n−1 | θn ;σ)

converges to a point mass at θ
[n]
n in the limit σ → 0, it remains to show that

lim
τ→0

sup
θn∈B(τ), |θ0−θn|≤C2σn

∣∣∣∣∇θ [ gΘ0
(θ0 ; θ, τ)

gΘn
(θn ; θ, σ, τ)

]∣∣∣∣ = 0. (2.50)
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To show (2.50), we start by noting that

gΘn
(θn ; θ, σ, τ) = 1

τ
(κ ∗ ν)

(
θn−θ
τ

)
(2.51)

where ∗ denotes the convolution (κ ∗ ν)(ψ) =
∫
κ(φ)ν(ψ − φ) dφ, and ν(ψ) =

1
σ/τ

κn
(

ψ
σ/τ

)
with κn being the n-fold convolution of κ with itself. One way to

derive (2.51) is to consider the rescaled random variable Θ̃n = (Θn − θ)/τ and to

observe that Θ̃n has density (κ ∗ ν)(θ̃n). Using (2.51), we write

∇θ
[
gΘ0

(θ0 ; θ, τ)

gΘn
(θn ; θ, σ, τ)

]
=

1
τ2

(
[∇κ] ∗ ν

) (
θn−θ
τ

)
× 1

τ
κ
(
θ0−θ
τ

)
− 1

τ
(κ ∗ ν)

(
θn−θ
τ

)
× 1

τ2 [∇κ]
(
θ0−θ
τ

)
1
τ2

[
(κ ∗ ν)

(
θn−θ
τ

) ]2
=

1
τ

[(
[∇κ] ∗ ν

)
(θ̃n)× κ(θ̃0)− (κ ∗ ν)(θ̃n)× [∇κ](θ̃0)

]
[(κ ∗ ν)(θ̃n)]2

(2.52)

where θ̃n = (θn− θ)/τ and θ̃0 = (θ0− θ)/τ . This change of variables maps B(τ) to

B̃(τ) = {θ̃n : |θ̃n| ≤ C2(1+nσ/τ)}, and {|θ0−θn| ≤ C2σn} to {|θ̃0−θ̃n| ≤ C2nσ/τ}.

The denominator on the right hand side of (2.52) is uniformly bounded away from

zero on B̃(τ) since

infeθn∈B̃
(κ ∗ ν)(θ̃n) ≥ inf

|eθn|≤C2

κ(θ̃n) > 0, (2.53)

with the second inequality following from (A3) and being independent of τ . Now

we note that (κ ∗ ν) converges uniformly to κ at rate σ/τ , in the sense that

supeθn∈ ˜B(τ)

|(κ ∗ ν)(θn)− κ(θn)| ≤ supeθn∈ ˜B(τ), |φ̃−eθn|≤C2nσ/τ

∣∣∣κ(φ̃)− κ(θn)
∣∣∣ = O(σ/τ).

(2.54)

Here, we use the Lipschitz continuity of κ guaranteed by (A4). The Lipschitz
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continuity of κ also implies from (2.54) that

supeθn∈ ˜B(τ), |eθ0−eθn|≤C2nσ/τ

∣∣∣(κ ∗ ν)(θ̃n)− κ(θ̃0)
∣∣∣ = O(σ/τ). (2.55)

Since ∇κ ∗ ν converges uniformly to ∇κ at rate σ on ˜B(τ), we obtain

supeθn∈ ˜B(τ), |eθ0−eθn|≤C2nσ

∣∣∣([∇κ] ∗ ν)(θ̃n)−∇κ(θ̃0)
∣∣∣ = O(σ/τ). (2.56)

Combining (2.52), (2.53), (2.55) and (2.56) gives

sup
θn∈B(τ), |θ0−θn|≤C2σn

∣∣∣∣∇θ [ gΘ0
(θ0 ; θ, τ)

gΘn
(θn ; θ, σ, τ)

]∣∣∣∣ = O(στ−2), (2.57)

from which (2.50), and hence (2.46), follows by assumption. The demonstration of

(2.47) follows along similar lines, by checking that

lim
τ→0

sup
θn∈B(τ), |θ0−θn|≤C2σn

∣∣∣∣∇2
θ

gΘ0
(θ0 ; θ, τ)

gΘn
(θn ; θ, σ, τ)

∣∣∣∣ = 0. (2.58)

Following the reparamerization above, (2.58) is equivalent to

lim
τ→0

sup

eθn∈ ˜B(τ)

|eθ0−eθn|≤C2nσ/τ

1

τ 2

∣∣∣∣∣ [κ ∗ ν(θ̃n)]∇2κ(θ̃0)− κ(θ̃0)[∇2κ ∗ ν(θ̃n)]
[κ ∗ ν(θ̃n)]2

+
2κ(θ̃0)[∇κ ∗ ν](θ̃n)[∇Tκ ∗ ν](θ̃n)

[κ ∗ ν(θ̃n)]3

− [∇κ ∗ ν](θ̃n)∇Tκ(θ̃0) +∇κ(θ̃0)[∇Tκ ∗ ν](θ̃n)
[κ ∗ ν(θ̃n)]2

∣∣∣∣∣ = 0.

(2.59)

Combining (2.53), (2.55) and (2.56) with an analogous result for the second deriva-

tive,

supeθn∈ ˜B(τ), |eθ0−eθn|≤C2nσ/τ

∣∣∣∇2κ ∗ ν(θ̃n)−∇2κ(θ̃0)
∣∣∣ = O(σ/τ),
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gives (2.59) via the assumption that σ = o(τ 3), completing the proof of Lemma 2.3.2.

Lemma 2.3.3. Suppose the conditions (A1–A4). For B(τ) = {θn : |θn − θ| <

C2(τ − nσ)},

lim
τ→0

sup
θn∈B(τ)

∣∣∇θn log gYn|Y1:n−1,Θn
(yn | y1:n−1, θn ; θ, σ, τ)−∇θ log fYn|Y1:n−1(yn | y1:n−1 ; θ)

∣∣ = 0

(2.60)

lim
τ→0

sup
θn∈B(τ)

∣∣∇2
θn

log gYn|Y1:n−1,Θn
(yn | y1:n−1, θn ; θ, σ, τ)−∇2

θ log fYn|Y1:n−1(yn | y1:n−1 ; θ)
∣∣ = 0

(2.61)

Proof. Applying Lemma 2.3.2 with ψ(θ0:n) = ∇θi
gYn|Y1:n−1,Θ0:n

(y1:n | θ0:n), we find a

limit for Ui from Lemma 2.3.1 of

lim
τ→0

sup
θn∈B(τ)

∣∣Ui −∇θi
gYn|Y1:n−1,Θ0:n

(y1:n | θ0:n = θ[n+1])
∣∣ = 0. (2.62)

Write V from Lemma 2.3.1 as

V =

∫
gYn|Y1:n−1,Θ0:n

(y1:n | θ0:n)∇θgΘ0:n−1|Θn
(θ0:n−1 | θn ; θ, σ, τ) dθ0:n−1

Then Lemma 2.3.2 applied to gY1:n|Θ0:n
(y1:n | θ0:n) gives

lim
τ→0

sup
θn∈B(τ)

|V | = 0. (2.63)

Noticing that gY1:n|Θ0:n
(y1:n | θ0:n = θ[n+1]) = fY1:n(y1:n ; θ), it follows that

∇θfY1:n(y1:n ; θ) =
n∑
i=0

∇θi
gY1:n|Θ0:n

(y1:n | θ[n+1]). (2.64)
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Combining (2.62), (2.63) and (2.64) with the identity in (2.23) gives

lim
τ→0

sup
θn∈B(τ)

∣∣∇θngYn|Y1:n−1,Θn
(yn | y1:n−1, θn ; θ, σ, τ)−∇θfYn|Y1:n−1(yn | y1:n−1 ; θ)

∣∣ = 0,

(2.65)

from which (2.60) follows by a few routine steps. The argument for (2.61) is similar,

and we start by writing

∇2
θ fY1:n(y1:n ; θ) =

n∑
i=0

n∑
j=1

∇θi
∇T

θj
gY1:n|Θ0:n

(y1:n | θ0:n = θ[n+1]). (2.66)

Applying Lemma 2.3.2 to each term on the right hand side of (2.24) gives

lim
τ→0

sup
θn∈B(τ)

∣∣∣Wij −∇θi
∇T

θj
gY1:n|Θ0:n

(y1:n | θ[n+1])
∣∣∣ = 0, (2.67)

lim
τ→0

sup
θn∈B(τ)

|X| = 0, lim
τ→0

sup
θn∈B(τ)

|Yi| = 0. (2.68)

Combining (2.67), (2.68) and (2.66) with the identity in (2.24) gives

lim
τ→0

sup
θn∈B(τ)

∣∣∇2
θn
gYn|Y1:n−1,Θn

(yn | y1:n−1, θn ; θ, σ, τ)−∇2
θ fYn|Y1:n−1(yn | y1:n−1 ; θ)

∣∣ = 0.

(2.69)

Convergence of the second derivative in (2.69) and the first derivative in (2.65)

implies (2.61) via a few routine steps.

2.3.3 A proof of Theorem 2.2.2

Our approach is based on two general theorems on sequential Monte Carlo

by Crisan and Doucet (2002) and Del Moral and Jacod (2001), stated in our

notation as Theorems 2.3.1 and 2.3.2 below. Both these theorems are stated for

a POMP model with generic density h, parameter vector ψ, Markov process Z0:N

and observation process Y1:N with observed sequence y1:N . For application to the

unperturbed model one sets h = f , Zn = Xn and ψ = θ. For application to the
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perturbed model one sets h = g, Zn = (Xn,Θn) and ψ = (θ, σ, τ).

Theorem 2.3.1. (Crisan and Doucet, 2002) Let h be a generic density for

a POMP model having parameter vector ψ, unobserved Markov process Z0:N , ob-

servation process Y1:N and data y1:N . Define ZF
n,j via applying Algorithm 1 with J

particles. Assume that hYn|Zn(yn | zn ;ψ) is bounded as a function of zn. For any

φ : Rdz → R, denote the filtered mean of φ(zn) and its Monte Carlo estimate by

φFn =

∫
φ(zn)hZn|Y1:n(zn | y1:n ;ψ) dzn, φ̃Fn =

1

J

J∑
j=1

φ
(
ZF
n,j

)
. (2.70)

There is a C7 independent of J such that

Ẽ
[
(φ̃Fn − φFn )2

]
≤ C7 supx |φ(x)|2

J
. (2.71)

Specifically, C7 can be written as a linear function of 1 and ηn,1, . . . , ηn,n defined

as

ηn,i =
n∏

k=n−i+1

(
supzk

hYk|Zk
(yk | zk ;ψ)

hYk|Y1:k−1
(yk | y1:k−1 ;ψ)

)2

. (2.72)

Proof. We focus on the assertion that the constant C7 in equation (2.71) can be

written as a linear function of 1 and the quantities ηn,1, . . . , ηn,n in (2.72). This was

not explicitly mentioned by Crisan and Doucet (2002) but is a direct consequence

of their argument. Crisan and Doucet (2002, Section V) constructed the following

recursion, for which cn|n is the constant C7 in equation (2.71). For n = 1, . . . , N

and c0|0 = 0, define

cn|n =
(√

C +
√
c̃n|n

)2

(2.73)

c̃n|n = 4cn|n−1

( ||h||n
hYn|Y1:n−1(yn|y1:n−1 ;ψ)

)2

(2.74)

cn|n−1 =
(
1 +

√
cn−1|n−1

)2
(2.75)

where ||h||n = supzn
hYn|Zn(yn|zn ;ψ). Here, C is a constant that depends on the
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resampling procedure but not on the number of particles J . Now, (2.73–2.75) can

be reformulated by routine algebra as

cn|n ≤ K1 +K2 c̃n|n (2.76)

c̃n|n ≤ K3 qn cn|n−1 (2.77)

cn|n−1 ≤ K4 +K5 cn−1|n−1 (2.78)

where qn = ||h||2n
[
hYn|Y1:n−1(yn|y1:n−1 ;ψ)

]−2
and K1, . . . , K5 are constants which

do not depend on h, ψ, y1:N or J . Putting (2.77) and (2.78) into (2.76),

cn|n ≤ K1 +K2K3qncn|n−1

≤ K1 +K2K3K4qn +K2K3K5qncn−1|n−1. (2.79)

Since ηn,i = qnηn−1,i for i < n, and ηn,n = qn, the required assertion follows from

(2.79).

Theorem 2.3.2. (Del Moral and Jacod, 2001) Let h, ψ, Z0:N , Y1:N and

y1:N describe a POMP model, as in Theorem 2.3.1. Let φ : Rdz → R be a bounded

function, with φFn and φ̃Fn specified in (2.70). Define the un-normalized filtered

mean φUn and its Monte Carlo estimate φ̃Un by

φUn = φFn

n∏
k=1

hYk|Y1:k−1
(yk | y1:k−1 ;ψ), φ̃Un = φ̃Fn

n∏
k=1

1

J

J∑
j=1

w(k, j). (2.80)

where w(k, j) is computed in Step 4 of Algorithm 1 when evaluating φFn . Then

Ẽ[φ̃Un ] = φUn , (2.81)

Ẽ
[(
φ̃Un − φUn )2

]
≤ (n+ 1) supx |φ(x)|2

J

n∏
k=1

supzk
hYk|Zk

(yk | zk ;ψ)2. (2.82)

To apply Theorems 2.3.1 and 2.3.2 in the context of Theorem 2.2.2, we define
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un,m = (θFn,m − θFn−1,m)/τm and vn,m = V P
n,m/τ

2
m. The corresponding Monte Carlo

estimates of these quantities are ũn,m = (θ̃Fn,m − θ̃Fn−1,m)/τm and ṽn,m = Ṽ P
n,m/τ

2
m.

We argue that there are constants C8, . . . , C11 with

∣∣ Ẽ[ũn,m − un,m
] ∣∣ ≤ C8/Jm

∣∣ Ẽ[ṽn,m − vn,m
] ∣∣ ≤ C9/Jm (2.83)

Ẽ
[
|ũn,m − un,m|2

]
≤ C10/Jm Ẽ

[
|ṽn,m − vn,m|2

]
≤ C11/Jm (2.84)

uniformly for θ in any compact set. Previous bounds similar to (2.83,2.84) have

been given for a fixed model as the Monte Carlo sample size Jm increases, for

example by Del Moral and Jacod (2001); Del Moral (2004, Section 11.8.4); Crisan

and Doucet (2002). The complication in (2.83,2.84) is that the model is varying

with σm and τm. However, the bounds |un,m| ≤ 2C2(1 + nσ/τ) and |vn,m| ≤

4pC2
2(1 + σ/τ)2, together with the continuity of g(yn | zn; θ, σ, τ) as a function of

σ and τ , is enough to show via Theorem 2.3.1 that the uniform bound in (2.84)

holds. To show that (2.83) follows from (2.84) we follow the approach of Del Moral

and Jacod (2001, Equation 3.3.14). Noting that φFn = φUn
/
1Un and φ̃Fn = φ̃Un

/
1̃Un ,

Theorem 2.3.2 implies the identity

Ẽ[φ̃Fn − φFn ] = Ẽ
[
(φ̃Fn − φFn )

(
1− 1̃Un (1)

1Un (1)

)]
. (2.85)

Applying the Cauchy-Schwarz inequality, together with (2.71) and (2.82), gives

∣∣ Ẽ[φ̃Fn − φFn ]
∣∣ ≤ C12

supx |φ(x)|
J

. (2.86)

We now proceed to carry out a Taylor series expansion:

ṽ−1
n,mũn,m = v−1

n,mun,m + v−1
n,m(ũn,m − un,m)

−v−1
n,m(ṽn,m − vn,m)v−1

n,mũn,m +R5 (2.87)
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where |R5| < C13(|ũn,m − un,m|2 + |ṽn,m − vn,m|2) for some constant C13. The

existence of such a C13 is guaranteed since the determinant of vn,m is bounded away

from zero. Taking expectations of both sides of (2.87) and applying (2.83,2.84)

gives ∣∣Ẽ[ṽ−1
n,mũn,m]− v−1

n,mun,m
∣∣ ≤ C14/Jm. (2.88)

Another Taylor series expansion,

ṽ−1
n,mũn,m = v−1

n,mun,m +R6 (2.89)

with |R6| < C15(|ũn,m − un,m|+ |ṽn,m − vn,m|) implies

Ṽar(ṽ−1
n,mũn,m) ≤ C16/Jm. (2.90)

Putting together (2.88) and (2.90), we deduce that

τmJm

{
Ẽ
[(
Ṽ P
n,m

)−1
(θ̃Fn,m − θ̃Fn−1,m)

]
−
(
V P
n,m

)−1
(θFn,m − θFn−1,m)

}

and

τ 2
mJm

{
Ṽar
[(
Ṽ P
n,m

)−1
(θ̃Fn,m − θ̃Fn−1,m)

]}
are bounded as m → ∞. Theorem 2.2.2 then follows by applying Theorem 2.2.1,

making use of the assumed continuity with respect to θ.

2.3.4 A proof of Theorem 2.2.3

Theorem 2.2.3 follows directly from a general stochastic approximation result,

presented as Theorem 2.3.3 below. In the context of Theorem 2.2.3, conditions (B4)

and (B5) of Theorem 2.3.3 hold from Theorem 2.2.2 and the remaining assumptions

of Theorem 2.3.3 hold by hypothesis.
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Theorem 2.3.3. Let `(θ) be a continuously differentiable function Rp → R and

let {Dm(θ),m ≥ 1} be a sequence of independent Monte Carlo estimators of

the vector of partial derivatives ∇`(θ). Define a sequence {θ̂m} recursively by

θ̂m+1 = θ̂m + amDm(θ̂m). Assume (B1–B2) of Section 2.2 together with the follow-

ing conditions:

(B3) am > 0, am → 0,
∑

m am = ∞.

(B4)
∑

m a
2
m sup|θ|<r Ṽar

(
Dm(θ)

)
<∞ for every r > 0.

(B5) limm→∞ sup|θ|<r
∣∣Ẽ[Dm(θ)]−∇`(θ)

∣∣ = 0 for every r > 0.

Then θ̂m converges to θ̂ = arg max `(θ) with probability one.

Theorem 2.3.3 is a special case of Theorem 2.3.1 of Kushner and Clark (1978).

The most laborious step in deducing Theorem 2.3.3 from Kushner and Clark (1978)

is to check that (B1–B5) imply that, for all ε > 0,

lim
n→∞

P
[
sup
j≥1

∣∣∣ n+j∑
m=n

am
{
Dm(θ̂m)− Ẽ[Dm(θ̂m) | θ̂m]

}∣∣∣ ≥ ε
]

= 0, (2.91)

which in turn implies condition A2.2.4 of Kushner and Clark (1978). To show

(2.91), we define ξm = Dm(θ̂m)− Ẽ[Dm(θ̂m) | θ̂m] and

ξkm =

 ξm if |θ̂m| ≤ k

0 if |θ̂m| > k
. (2.92)

Define processes {Mn
j =
∑n+j

m=n amξm, j ≥ 0} and {Mn,k
j =

∑n+j
m=n amξ

k
m, j ≥ 0} for

each k and n. These processes are martingales with respect to the filtration de-

fined by the Monte Carlo stochasticity. From the Doob-Kolmogorov martingale

inequality (e.g., Grimmett and Stirzaker, 1992),

P
[
sup
j
|Mn,k

j | ≥ ε
]
≤ 1

ε2

∞∑
m=n

a2
m sup
|θ|<k

Ṽar
(
Dm(θ)

)
. (2.93)
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Define events Fn = {supj |Mn
j | ≥ ε} and Fn,k = {supj |M

n,k
j | ≥ ε}. It follows from

(B4) and (2.93) that limn→∞ P{Fn,k} = 0 for each k. In light of the non-divergence

assumed in (B2), this implies limn→∞ P{Fn} = 0 which is exactly (2.91).

To expand on this final assertion, let Ω = {supm |θ̂m| <∞} and Ωk = {supm |θ̂m| <

k}. Assumption (B2) implies that P(Ω) = 1. Since the sequence of events {Ωk}

is increasing up to Ω, we have limk→∞ P(Ωk) = P(Ω) = 1. Now observe that

Ωk ∩ Fn,j = Ωk ∩ Fn for all j ≥ k, as there is no truncation of the sequence

{ξjm,m = 1, 2, . . . } for outcomes in Ωk when j ≥ k. Then,

lim
n→∞

P[Fn] ≤ lim
n→∞

P[Fn ∩ Ωk] + 1− P[Ωk]

= lim
n→∞

P[Fn,k ∩ Ωk] + 1− P[Ωk]

≤ lim
n→∞

P[Fn,k] + 1− P[Ωk]

= 1− P[Ωk].

Since k can be chosen to make 1−P[Ωk] arbitrarily small, it follows that limn→∞ P[Fn] =

0.

2.4 Discussion of the theory and practice of iterated filter-

ing

The value of all asymptotic theory, such as presented in Section 2.2, is de-

pendent on its finite sample relevance. For challenging numerical computations,

there is often a gap between available theorems and practical techniques. A classic

example of this is optimization by simulated annealing, a popular stochastic opti-

mization technique (Kirkpatrick et al., 1983; Spall, 2003) which draws on physical

insights from statistical mechanics and mathematical foundations from Markov

chain theory. Theoretically motivated convergence rates for simulated anneal-
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ing are often too slow for practical implementation, yet variations on simulated

annealing which endure less theoretical support have been found to be widely

applicable (Ingber, 1993). Although there are substantial differences between sim-

ulated annealing and iterated filtering (e.g. global versus local theory, exact versus

stochastic objective functions), the similarities between these two stochastic search

algorithms nevertheless provide a worthwhile comparison. Indeed, simulated an-

nealing can be studied within the framework of stochastic approximation theory

(Spall, 2003, Chapter 8). To relate simulated annealing and iterated filtering, it

is helpful to adopt from simulated annealing an analogy whereby σm and τm are

thought of as temperatures which approaching freezing as σm → 0 and τm → 0. If

the temperature cools sufficiently slowly, iterated filtering and simulated annealing

theoretically approach the maximum of their respective target functions. In prac-

tice, quicker cooling schedules are used for simulated annealing, in which case it is

more properly called simulated quenching (Ingber, 1993). Periodically increasing

the the temperature, by chaining together quenched searches, is known as simu-

lated tempering and can lead to a reasonable trade-off between investigating fine

scale and larger scale structure of the objective function. It is generally possible

to confirm the success of an optimization procedure by running it from multiple

widely separated starting points, which makes possible post-hoc validation of a

search strategy. Our experience suggests that tempered searches are an effective

technique for iterated filtering. In addition, the rounds of quenching provide a

sequence of parameter estimates which are useful for learning about the structure

of the likelihood surface.

The incorporation of iterated filtering into the framework of stochastic ap-

proximation, which underlies the proof of Theorem 2.2.3, suggests several avenues

for further investigation. Existing modifications of stochastic approximation tech-

niques (Spall, 2003) include: (i) averaging parameter estimates across iterations;
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(ii) breaking down high-dimensional problems into a sequence of randomly selected

lower dimensional problems; (iii) making use of a plug-and-play estimate of second

partial derivatives.

An alternative heuristic approach to understanding iterated filtering is based

on thinking of the quantity θ̃Fn,m in (2.12) as a time-localized estimate of θ, in the

sense that it depends most heavily on observations directly preceding and includ-

ing yn. Perturbing a state space model by applying a random walk in parameter

space to reduce numerical instabilities arising in particle filtering was popularized

by the influential work of Kitagawa (1998) and Liu and West (2001). Unlike these

previous approaches, iterated filtering then reduces the intensity of the random

walk to identify the maximum of the likelihood function for the original, unper-

turbed model. The updating step in iterated filtering is a weighted average of the

time-localized estimates {θ̃Fn,m, n = 0, . . . , N}, in the sense that the coefficients on

the right hand side of (2.12) add up to unity. These coefficients are not neces-

sarily positive, though they become so asymptotically (Ionides et al., 2006). One

can therefore think of the sequential Monte Carlo particles in each iteration of

Algorithm 1 as exploring parameter space and their discoveries being gathered

together by (2.12) to give the starting point for the next iteration. This heuris-

tic explains how one iteration of iterated filtering (which has essentially the same

computational effort as one evaluation of the likelihood function) can result in

considerable progress toward finding appropriate values of θ to match the data.

Iterated filtering has been shown to effectively maximize the likelihood for a 13

dimensional parameter space based on 50 iterations (Ionides et al., 2006). By con-

trast, a direct attempt to construct one single noisy estimate of the derivative of

the log likelihood would usually require 13 + 1 function evaluations in this con-

text. When pushing model complexity to the computational limits permissible for

likelihood-based inference, numerical efficiency becomes a relevant consideration.
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If one departs from the plug-and-play paradigm, then one would expect a reduction

in the required computational effort. For example, sequential Monte Carlo schemes

that have access to derivatives of fXn|Xn−1(xn |xn−1 ; θ) and fYn|Xn(yn |xn ; θ) with

respect to θ can estimate the derivative of the log likelihood in a single smoothing

operation (Poyiadjis et al., 2009). Access to evaluation of fXn|Xn−1(xn |xn−1 ; θ)

makes available other standard algorithms for the calculation and maximization of

the likelihood function via sequential Monte Carlo (e.g., Pitt and Shepard, 1999;

Pitt, 2002). However, we suspect that there will be a continuing demand for plug-

and-play inference methodology for dynamic systems just as there is a continuing

demand for derivative-free procedures to optimize deterministic functions.

There is undoubtedly potential to construct hybrid procedures which combine

the strength of iterated filtering—making efficient use of few filtering operations

to approach the maximum of the likelihood function—with the strengths of other

methodologies. For example, a basic Kiefer-Wolfowitz algorithm (Spall, 2003) ap-

plied to an unbiased sequential Monte Carlo estimate of the likelihood function

would provide a sequence of estimators which converges to the maximum like-

lihood estimate with probability one, for a fixed Monte Carlo sample size (i.e.,

without the requirement Jm →∞ in Theorem 2.2.3). As another example, meth-

ods based on investigating the likelihood function by fitting a spline approximation

to sequential Monte Carlo estimates (Olsson and Rydén, 2008) become feasible on

increasingly large problems once the maximum has been identified to within a

reasonable amount of Monte Carlo uncertainty.

The major challenge for likelihood-based inference in complex models is to iden-

tify a neighborhood containing those models which are plausibly consistent with

the data. Once such a region has been identified, one then seeks to describe the

likelihood surface in this neighborhood via construction of point estimates, con-

fidence intervals and profile likelihood computations. A theoretical basis for this
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philosophy is Le Cam’s quadratic estimation (Le Cam and Yang, 2000), in which

the likelihood surface is approximated in a neighborhood of a
√
n-consistent esti-

mator. Le Cam’s ideas can be extended from quadratic approximation of the log

likelihood surface to more practically attractive smooth local likelihood approxima-

tions (Ionides, 2005). These theoretical results highlight the statistical importance

of correctly capturing the features of the likelihood on the scale of the uncertainty

in the parameters. Smaller scale features in the likelihood surface, which may be a

feature of the model or arise due to numerical considerations, are a distraction from

effective inference. From this perspective, the computationally efficient identifica-

tion of statistically plausible models—the main strength of iterated filtering—is

also the key step in model-based data analysis.

A limitation of the mathematical analysis in this chapter is the use of the basic

sequential Monte Carlo scheme in Algorithm 1. Various strategies have been pro-

posed to improve the numerical efficiency of sequential Monte Carlo (Cappé et al.,

2007). However, the effectiveness of these algorithms is dependent on the details

of specific models. Further, these schemes typically do not enjoy the plug-and-play

property. In our experience, the usual cause of poor numerical performance (i.e.,

high Monte Carlo variability) is an attempt to fit a model that is inappropriate

for the data. Heuristically, this is to be expected because numerical instability

occurs when none or few of the sequential Monte Carlo particles are consistent

with an observation. Since plug-and-play methods facilitate the development of

new models and the investigation of variations on existing models, a practitioner

using plug-and-play methodology can focus on developing a suitable model rather

than becoming sidetracked in the pursuit of a customized inference algorithm to

handle the numerical consequences of fitting an inappropriate model.

Beyond model mis-specification, another cause of poor numerical performance

in sequential Monte Carlo schemes can be a model featuring highly accurate mea-
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surements. A small measurement error leads to few of the particles being consistent

with successive observations and consequent degeneracy of the resampling weights

in Algorithm 1. In our view, this arises less often than might be expected because

superficially accurate measurements typically have an uncertain relationship to the

unobserved system. Practical dynamic models are idealizations of a system, and

one can expect some error and uncertainty in the relationship between the ideal-

ized system variables and the measurable quantities. Such uncertainty naturally

enters a statistical model as stochastic variability, even though it could be thought

of as unknown (and perhaps unknowable) systematic error.

We do not wish to discourage the development of increasingly sophisticated

sequential Monte Carlo schemes. Indeed, implementations of iterated filtering

stand to benefit from the potential numerical efficiency of such techniques since

the fundamental justification of iterated filtering (i.e., Theorem 2.2.1) simply calls

for the existence of a numerically tractable filter. However, the arguments in the

preceding two paragraphs help to explain why plug-and-play methods based on

sequential Monte Carlo, such as the iterated filtering algorithm studied here, are

more widely applicable than might have been anticipated.

2.4.1 Case studies of iterated filtering

Scientific applications of partially observed Markov process modeling typically

require an entire paper to describe the scientific context, the model developed, the

data, the inference procedures applied, the results and the conclusions. Substan-

tial applications are, however, the ultimate demonstration of the potential of an

inference approach. Such case studies exist for iterated filtering (King et al., 2008;

Bretó et al., 2009; He et al., 2010; Ionides et al., 2006) and we direct the reader to

these for fully worked examples. We limit ourselves here to discussion of points of

general interest arising from these applications. These practical implementations
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did not employ the increasing Monte Carlo sample size suggested by Theorem 2.2.3

and used a constant ratio σmτ
−1
m rather than a sequence tending to zero. Never-

theless, they were shown to be capable of maximizing complex likelihood surfaces

to an adequate level of accuracy. Since sequential Monte Carlo can provide an

unbiased estimate of the likelihood function (a consequence of Theorem 2.3.2 in

Section 2.3.3) it is relatively straightforward to confirm whether the likelihood has

indeed been successfully maximized.

A consideration for improving the performance of many Monte Carlo parame-

ter estimation procedures, including both Markov chain Monte Carlo and iterated

filtering, is to ensure that the scale of the random jumps in the parameter space is

comparable to the scale of the uncertainty in each parameter. This is equivalent to

reparameterizing the model so that the uncertainty in each parameter is approx-

imately at a unit scale. Working with positive parameters on a logarithmic scale

and (0, 1) valued parameters on a logistic scale has been an adequate resolution

in our experience. Diagnostics and heuristics for convergence of iterated filtering

were discussed by Ionides et al. (2006).

Maximization of the likelihood, which is the central topic of this chapter, is

a basic building block for a complete data analysis. Successful likelihood maxi-

mization permits not just point estimates but also profile likelihood analysis (to

construct confidence intervals) and likelihood-based model comparisons. Plug-

and-play methodology facilitates the fitting of variations on the primary model,

and the maximized likelihoods can then be compared by likelihood ratio tests

or Akaike’s information criterion. The likelihoods of simple alternatives, such as

linear regression models or autoregressive moving average models, should be com-

puted as benchmark comparisons to check whether more sophisticated models in

fact provide a superior explanation of the data. Residual analyses can be carried

out, adapting to dynamic models the techniques that have become standard for
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regression analysis.

The existing demonstrations of the scientific value of iterated filtering method-

ology all take advantage of the plug-and-play property. Iterated filtering imple-

mentations can in principle take advantage of numerically efficient variations on

sequential Monte Carlo which lack the plug-and-play property. However, the vista

of new models which can be analyzed given the availability of effective plug-and-

play methodology makes an attractive motivation for focusing on this property.

Beyond case studies employing iterated filtering, other recently proposed plug-and-

play methodology has also led to the development and analysis of new scientific

models (Andrieu et al., 2010). As plug-and-play methodology becomes more widely

employed, an increasing number of models will be developed which take advantage

of the general applicability of such techniques.
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CHAPTER 3

Malaria in Northwest India: Data analysis via

partially observed stochastic differential equation

models driven by Lévy noise

3.1 Introduction

Malaria is currently a widespread tropical and sub-tropical disease, with ap-

proximately 500 million cases per year (Snow et al., 2005) resulting in over one

million deaths (Hay et al., 2005). Malaria is caused by infection with a proto-

zoan parasite which is transmitted between humans by mosquitoes. The disease

was eliminated from North America and Europe during the first half of the 20th

century, primarily by sanitary and agricultural developments which reduced con-

tact between humans and mosquitoes below the level required to sustain disease

transmission (Packard, 2007). From 1955 to 1969 the World Health Organiza-

tion ran an ambitious Global Malaria Eradication Program, based on mosquito

control by extensive spraying with the insecticide DDT and treatment with the

anti-malarial drug chloroquine (Packard, 2007). In India, malaria incidence de-

clined dramatically during the Global Malaria Eradication Program. A crippling

burden of approximately 75 million cases per year was reduced to a reported in-

cidence of 49,151 in 1961 (Kumar et al., 2007). However, rather than continuing

53



this decline, malaria incidence crept up through the 1960’s. The re-emergence in

India has been attributed to the increasing cost and decreasing supply of DDT,

resistance developed by mosquitoes to DDT, and increasing resistance of malaria

parasites to chloroquine (Kumar et al., 2007; Sharma, 1996). After increasing to

over 6 million reported cases annually in the 1970’s, malaria incidence has since

stabilized at around 2 million cases per year (Kumar et al., 2007). These official

statistics are an indication of the trend of incidence but fail to include many cases

which are treated outside the public health system. A more accurate estimate of

recent incidence may be 11 million cases per year (World Health Organization,

2008).

Hopes for a global eradication of malaria have recently been raised once more.

Eradication has been stated as an explicit goal of the Bill and Melinda Gates

Foundation, with the endorsement of the World Health Organization and the Roll

Back Malaria Partnership (Roberts and Enserink, 2007). The main technologies

underpinning this aspiration are long lasting insecticide-treated bed nets and a new

generation of artemisinin-derived anti-malarial drugs. Although global eradication

is probably unrealistic with currently available tools (Greenwood, 2009), there is

great potential to reduce the heavy global burden of malaria. One of the lessons

learned from the previous eradication program is that effective control requires

adaptation to local patterns of disease transmission (Greenwood, 2009). Improved

quantitative understanding of transmission is therefore a necessary component of

control and prevention efforts.

The early mathematical models of Ross (1911) and Macdonald (1957) have long

been a foundation for developing malaria control strategies (McKenzie and Samba,

2004). Many extensions have been proposed to these mathematical models, allow-

ing for biological aspects such as genetic diversity of the parasite (Gupta et al.,

1994; McKenzie et al., 2008), the mosquito and parasite lifecycle (McKenzie and
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Bossert, 2005), the development of drug resistance (Koella and Antia, 2003; Klein

et al., 2008), and exposure-dependent partial immunity (Dietz et al., 1974; Aron

and May, 1982; Filipe et al., 2007). Given the size of the public health issue and

the extent of the research into malaria transmission, it may be surprising how few

studies investigate the relationship between these dynamic models and available

population-level time series data. Investigations relating disease models (which are

typically partially observed nonlinear Markov processes) to time series data have a

long tradition of inspiring developments in statistical analysis of stochastic dynamic

systems (Bartlett, 1960; Ellner et al., 1998; Finkenstädt and Grenfell, 2000; Ionides

et al., 2006; Cauchemez et al., 2008). Indeed, the most convenient disease systems

to study, such as measles, are still considered a challenge for statistical inference

(Cauchemez and Ferguson, 2008; He et al., 2010). Analysis of measles dynamics is

simplified by clear clinical diagnosis, direct human-to-human transmission, lifelong

immunity following infection, and the availability of extensive spatio-temporal in-

cidence data. The study of malaria dynamics is hindered by nonspecific symptoms;

one usually has to work under the assumption that malaria is the cause of sickness

for patients who have a high fever and are found, by inspection of a blood slide

under a microscope, to be infected with Plasmodium parasites. However, asymp-

tomatic Plasmodium infections are not unusual, and there are many alternative

potential causes of fever. Secondly, human immunity to malaria wanes with time

and gives varying levels of protection to diverse disease strains. Clinical immunity

(i.e., protection to symptomatic infection) can result from repeated infections, and

leads to infections with a reduced transmissibility. Thirdly, malaria transmission is

dependent on mosquito abundance. Malaria transmission is highly sensitive to the

density, longevity and biting habits of the mosquito vector. These entomological

quantities vary considerably in space and time, both within and between vector

species (Packard, 2007). Time series of vector abundance and behavior directly
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relevant to long-term population-level studies are therefore generally unavailable.

In Section 3.2, we develop a quantitative approach to relate malaria transmis-

sion to available time series data. We aim to construct statistical models of the

population-level transmission dynamics which are at once sophisticated enough to

capture the important features of the biological system and simple enough that

they can be rigorously assessed using available data. Mathematically, our models

are a set of coupled nonlinear system of stochastic differential equations driven by

Lévy noise. Whereas certain specific models could be constructed using the more

usual choice of Gaussian noise, a general framework which satisfies necessary non-

negativity constraints can more readily be built using non-negative noise built from

non-decreasing Lévy processes such as the Gamma process. Lévy process models

have been proposed for a range of applications, ranging from option pricing in

finance to quantum mechanics (Applebaum, 2004). However, statistically efficient

inference from general classes of nonstationary partially observed systems driven

by Lévy noise has not previously, to our knowledge, been demonstrated. Here, we

use the term statistically efficient in an informal sense, to describe methodology

leading to parameter estimates whose uncertainty approximates that of Bayesian

or likelihood-based estimates. Statistical efficiency becomes an important consid-

eration when building models whose complexity is at, or close to, the limit which

the available data can support.

Recently, statistically efficient methodology for general partially observed Markov

process (POMP) models has been proposed (Ionides et al., 2006; Andrieu et al.,

2010). The generality of such methodology is based on possession of the so-called

plug-and-play property (Bretó et al., 2009; He et al., 2010; Ionides et al., 2009);

methodology for POMP models is said to have the plug-and-play property if the

dynamic model enters into the inference procedure only through the availability of

numerical solutions (i.e., simulated sample paths). The theory of numerical solu-
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tion of SDEs driven by general Lévy noise closely follows the well-studied special

case of Gaussian noise (Protter and Talay, 1997; Jacod, 2004). One might hope,

therefore, that plug-and-play methodology would be applicable to such models.

In our case study, we demonstrate that this is indeed the case, by carrying out

inference as a routine application of a recently developed likelihood-based plug-

and-play technique called iterated filtering (Ionides et al., 2006). By comparison,

standard expectation-maximization and Markov chain Monte Carlo approaches

(Cappé et al., 2005) require the evaluation of transition densities—this can cause

difficulties, or even complete failure, on continuous time POMP models (Roberts

and Stramer, 2001). We predict that the development of plug-and-play methodol-

ogy will greatly extend the classes of dynamic models used for data analysis.

Section 3.3 presents a data analysis, through which we aim both to demon-

strate our statistical approach and to draw conclusions about the respective roles

of immunity and climate variability for epidemic malaria transmission. Epidemic

or ‘unstable’ malaria (Molineaux, 1988; Kiszewski and Teklehaimanot, 2004) oc-

curs when conditions are only occasionally favorable for disease transmission, for

example due to cold or dry seasons which preclude mosquito activity. Waning

of immunity during the absence of exposure to malaria can lead to high levels of

severe infection in epidemics. By contrast, the repeated exposures in regions of

endemic or ‘stable’ malaria result in acquisition of immunity that protects from

severe forms of the disease. We focus on two questions. Firstly, what is the

appropriate degree of model complexity which is necessary to understand popula-

tion dynamics of epidemic malaria? This issue is basic to developing scientifically

acceptable models for malaria which quantitatively match population-level inci-

dence data. Secondly, what is the role of climate fluctuations, such as interannual

changes in rainfall patterns, for determining the interannual variability of disease

incidence? Despite agreement on the sensitivity of the mosquito vector to environ-
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mental conditions, there has been considerable controversy on the respective roles

of environmental forcing vs. epidemiological considerations, fueled by the lack of a

quantitative statistical approach which can make a formal comparison of rival hy-

potheses. In particular, for malaria in East African highlands, some investigators

have found that interannual variability in rainfall and temperature can explain a

substantial share of the variability in regional malaria incidence time series (Pas-

cual et al., 2008; Zhou et al., 2004), whereas others have proposed that oscillating

levels of immunity in the population act as the major driver (Hay et al., 2000,

2002). We broaden this specific debate by analyzing data from another unstable

malaria transmission environment, in an arid region of Northwest India, where the

role of rainfall variability is less controversial but has not been addressed together

with immunity in the context of the population dynamics of the disease. It is in

desert and highland regions, at the edge of the distribution of the disease, that

we expect climate variability and climate change to be potentially most relevant

to disease dynamics due to the limiting roles of rainfall and temperature. The

data analysis in this chapter focuses on a newly available malaria incidence time

series for the Kutch district, an arid region in the state of Gujarat. The scientific

argument is expanded on elsewhere (Laneri et al., 2010), and our primary goal

here is to describe the statistical foundations for building and analyzing dynamic

models of population-level malaria transmission that can be confronted to time

series data.

3.2 Malaria transmission: A statistical model

We start by describing some relevant biology; for a more complete introduction

we recommend Warrell and Gilles (2002) or the article on malaria in Wikipedia

(2010). The unicellular protozoan parasites of the genus Plasmodium which cause

malaria are transmitted between humans by the female of certain species of Anophe-
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les mosquito. The Plasmodium lifecycle consists of multiple stages in both human

and mosquito hosts. When a mosquito takes a blood meal from an infected human,

male and female Plasmodium gametocytes may be ingested. Sexual reproduction

of the parasite takes place within a vector mosquito’s stomach, resulting in the

formation of sporozoites which migrate to the mosquito’s salivary glands. Upon

a subsequent blood meal, the sporozoites can infect another human—entering the

bloodstream, becoming sequestered in the liver, reemerging into the blood, repro-

ducing asexually in erythrocyte stages, and eventually producing gametocytes to

complete the cycle. During the stages in a human host, the Plasmodium must do

battle with the complex human immune system which attacks sporozoite, erythro-

cyte and gametocycte stages (Artavanis-Tsakonas et al., 2003). The effectiveness

of the immune response depends, amongst other things, on system memory from

previous exposure to related parasites. Transmission of malaria relies upon the

availability of infected humans, susceptible humans, and mosquitoes having suf-

ficient longevity. The mosquito longevity is critical for the viability of the Plas-

modium lifecycle since the time taken for the Plasmodium to undergo ingestion,

reproduction, development and retransmission to a human host is comparable to

the mean lifespan of the mosquito.

The majority of severe and fatal human malaria cases are caused by infection

with P. falciparum. The other widespread species is P. vivax, which is characterized

by less severe symptoms with the possibility of relapse many months after infection.

To develop a quantitative representation, we will write down a model for falciparum

malaria (i.e., disease resulting from infection with P. falciparum) which captures

some key aspects of the human, parasite and vector dynamics. This model could

be extended to vivax malaria by the inclusion of relapse. Our goal is to present a

statistical model in the sense that it is sufficiently parsimonious that the parameters

can be estimated directly from available data, as carried out in Section 3.3.
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We divide humans into five distinct classes: S1, fully susceptible to infection;

S2, protected from severe infection, but susceptible to mild reinfection; E, exposed

(i.e., carrying Plasmodium parasites which have not yet matured into gametocytes);

I1, infected and gametocytemic; I2, possessing a mild, asymptomatic infection with

reduced gametocyte levels (Klein et al., 2008; Filipe et al., 2007). An innovative

feature of this framework, compared to other epidemiological models previously

fitted to population-level time series data, is the inclusion of an explicit represen-

tation of the vector dynamics: A mosquito stage κ represents the latent force of

infection, capturing the likelihood of successful transmission from human to hu-

man; a mosquito stage λ represents the current force of infection, which consists

of the latent infection lagged by a distributed delay corresponding to the time for

development of the Plasmodium parasite among surviving mosquitoes. By repre-

senting mosquito dynamics through a model for the force of infection of humans,

we avoid explicit consideration of mosquito abundance, survival and behavior. In

other words, we limit our inclusion of vector dynamics to the aspect that is most

directly relevant to the human disease.

Figure 3.1 represents diagrammatically the modeled flows between these classes,

formally defined by equations (3.1–3.9) below. We write µXY for the rate of tran-

sition from class X to class Y , for X and Y in {S1, S2, E, I1, I2}. In addition,

we introduce a per-capita birth rate, µBS1 , into the completely susceptible class.

Deaths occur at a constant rate µXD = δ from each class X ∈ {S1, S2, E, I1, I2}.

As mortality from acute malarial infection has become small in India, we do not

include disease-induced mortality in our model. The total population size P (t) is

supposed known by interpolation from the decennial census. The force of infec-

tion, λ(t), is simply an epidemiological term for µS1E and so we have the identity

µS1E(t) = λ(t). Transition from S2 to I2 can be interpreted as reinfection with clin-

ical immunity, i.e., reduced symptoms which do not lead the patient to seek medical
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Figure 3.1: Flow diagram for a compartment model of malaria transmission. Hu-
man classes are S1 (susceptible), S2 (partially protected), E (exposed,
carrying a latent infection), I1 (infected and infectious) and I2 (asymp-
tomatic, with reduced infectivity). The possibility of transition be-
tween class X and Y is denoted by a solid arrow, with the correspond-
ing rate written as µXY . The dotted arrows represent interactions
between the human and mosquito stages of the parasite. Mosquito dy-
namics are modeled via the two stages κ (the latent force of infection)
and λ (the current force of infection), with τ being the mean latency
time. The model, which we call VS2EI2 with ‘V’ for ‘vector’ followed
by a list of the human classes with their multiplicities as superscripts,
is formalized by equations (3.1–3.8). We also consider the subcase with
µI2S2 = ∞ and µS2I2 = µI1S1 = 0. The class I2 can then be eliminated,
and so transition directly from I1 to S2 becomes possible. Also, indi-
viduals in S2 are fully protected in this case. The remaining classes
{S1, E, I1, S2} can then be mapped onto the classes {S,E, I, R} in a
standard epidemiological susceptible-exposed-infected-recovered model
(Anderson and May, 1991; Keeling and Ross, 2008) with added vec-
tor dynamics and waning immunity; we therefore call this special case
VSEIR.
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attention (Gupta et al., 1999; Artavanis-Tsakonas et al., 2003). We suppose that

µS2I2 = cµS1E with some constant of proportionality 0 ≤ c ≤ 1. Our model also

includes the possibility of failing to acquire any protective immunity following in-

fection, by transitioning directly from I1 back to S1 without passing through I2 and

S2. This can arise through prompt treatment with antimalarial drugs, in which

case the body does not have time to build an immune response (Klein et al., 2008).

Alternatively, it can be a consequence of the necessity for multiple infections be-

fore the body learns to mount an effective general-purpose defense against clinical

symptoms in the face of the genetic diversity of the Plasmodium (McKenzie et al.,

2008). The resulting system of coupled nonlinear stochastic differential equations

is as follows:

dS1/dt = µBS1P − µS1ES1 + µI1S1I1 + µS2S1S2 − µS1DS1 (3.1)

dS2/dt = µI2S2I2 − µS2S1S2 − µS2I2S2 − µS2DS2 (3.2)

dE/dt = µS1ES1 − µEI1E − µEDE (3.3)

dI1/dt = µEI1E − µI1S1I1 − µI1I2I1 − µI1DI1 (3.4)

dI2/dt = µI1I2I1 + µS2I2S2 − µI2S2I2 − µI2DI2 (3.5)

dκ/dt = dλ0/dt = (f(t)− κ)nλ τ
−1 (3.6)

dλi/dt = (λi−1 − λi)nλ τ
−1 for i = 1, . . . , nλ − 1 (3.7)

dλ/dt = dλnλ
/dt = (λ[nλ−1] − λ)nλ τ

−1 (3.8)

The malarial status of the human population is represented by the differential

equations in (3.1–3.5), which correspond to a large population limit of homogeneous

individual-level interactions where each individual has exponentially distributed

transition times. Sometimes, consideration of non-exponential transition times can

be worthwhile (Wearing et al., 2005), though we consider this only in the mosquito

stages. Specifically, (3.6–3.8) correspond to Gamma-distributed transitions for
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the latent period of the force of infection. The extra flexibility in the shape of the

Gamma distribution over the exponential distribution may be appropriate since the

development time of the Plasmodium in the mosquito gives rise to a (temperature-

dependent) lower bound. We suppose that the main stochasticity in this system

arises from variations in vector abundance and behavior, which is modeled in the

specification of f(t) by including multiplicative Gamma noise:

f(t) =
I1(t) + qI2(t)

N(t)
β̄ exp

{ ns∑
i=1

βisi(t) + Ztβ
}dΓ
dt
. (3.9)

Here, q represents the transmissibility, relative to full-blown infections, from asymp-

tomatic infections in partially immune individuals; the seasonality of disease trans-

mission is modeled by the coefficients {βi} corresponding to a periodic cubic B-

spline basis {si(t), i = 1, . . . , ns} constructed using ns evenly spaced knots; time-

varying covariates enter via the row vector Zt with coefficients in a column vector

β; the dimensional constant β̄ is required to give f(t) units of t−1, and we set

β̄ = 1yr−1. Γ(t) is a Gamma process representing integrated noise with intensity

σ2. This is defined as a process with stationary independent increments such that

Γ(t)− Γ(s) ∼ Gamma
(
(t− s)/σ2, σ2

)
where Gamma(a, b) is the Gamma distribu-

tion with mean ab and variance ab2. Although Γ(t) is a jump process, and therefore

its sample paths are not differentiable, one can interpret the noise process dΓ/dt

in (3.9) as multiplicative Gamma noise (Bretó et al., 2009). The reason to choose

Gamma noise over the more familiar Gaussian noise is to enforce the positivity of

f(t) and hence all the state variables in (3.1–3.8). Gamma noise is perhaps the sim-

plest and most-studied non-negative Lévy noise process (Applebaum, 2004; Bretó

et al., 2009). We solve (3.1–3.8) numerically via the Euler method (Protter and

Talay, 1997; Jacod, 2004) with a time-step of one day. Whereas all state variables

in the unavailable exact solutions to (3.1–3.8) are non-negative, it is possible for
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the Euler method to generate numerical approximations violating this constraint.

We monitored the frequency of these occurrences; they were rare to the point of

negligibility in our analysis.

At first inspection, (3.1–3.9) may appear to be a dauntingly complex model

specification based on many assumptions that one cannot hope to validate. How-

ever, this work builds on a long history of developing and using similar models

(Keeling and Ross, 2008; Anderson and May, 1991). All the parameters in (3.1–

3.9) have interpretable scientific meaning and can therefore be discussed in the

context of the literature on malaria transmission. Indeed, our model can also be

criticized as an over-simplification, since we do not incorporate many of the bio-

logical aspects developed in previous models (such as Chitnis et al., 2006; Gupta

et al., 1994; McKenzie and Bossert, 2005; Koella and Antia, 2003). In addition,

our model does not make allowances for spatial, socio-economic, age-related and

genetic inhomogeneities among the population. Such structure could play an im-

portant role. Nevertheless, models based on homogeneous populations are often

sufficient to describe the major features of disease transmission dynamics (Earn

et al., 2000; Keeling and Ross, 2008). In the face of biological complexity, a major

part of the value of constructing and analyzing dynamic models is to develop an

understanding of the key components driving the behavior of the biological sys-

tem. In our modeling framework, alternative model specifications can readily be

analyzed and compared, building on the results reported here.

A measurement model provides a formal connection between the dynamic pro-

cess model and available data. Here we give an abstract representation, defer-

ring concrete discussion of data to Section 3.3. We write {tn, n = 1, . . . , N} for

the times of the N observations, and we suppose that the model is initialized at

some time t0 < t1. We define the number of new cases in the nth interval to

be Cn =
∫ tn
tn−1

µEI1E(s) ds. The reported number of confirmed cases, yn, is then
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modeled conditional on Cn as

yn | Cn ∼ Negbin(ρCn, ψ
2), (3.10)

where Negbin(α, β) is the negative binomial distribution with mean α and vari-

ance α + α2β. This distribution allows for the possibility of over-reporting or

under-reporting, and can be viewed as an over-dispersed Poisson distribution with

dispersion parameter ψ. We refer to ρ as the reporting rate. It is known that only

a small fraction of malaria cases are treated in the public clinics which contribute

to district statistics (Kumar et al., 2007), so we expect ρ� 1. The exact interpre-

tation of ρ is necessarily sensitive to the severity of disease that is required to be

classified as a case.

Although environmental covariates affect many biological systems, quantifying

their dynamic role can be a formidable task, both from a scientific and a statistical

perspective (Bjørnstad and Grenfell, 2001). The flexibility of plug-and-play sta-

tistical methodology permits scientific considerations to determine ways in which

covariates might appropriately be included in the analysis. Here, we take Zt to be

a scalar covariate measuring the thresholded rainfall integrated over a time interval

[t − u, t]. Specifically, from the accumulated rainfall data {rn, n = 1, . . . , N} at

times t1, . . . , tN we interpolated a continuous-time cubic spline r(t) and then set

Z̃t = max
{ ∫ t

t−u r(s) ds− v , 0
}
. (3.11)

The specification in (3.11) is designed to represent parsimoniously the threshold

and lag effects which are to be expected in biological systems (Stenseth et al.,

2004). The covariate was standardized by setting Zt = (Z̃t − Z)/σZ , where Z =

(tN − t0)
−1
∫ tN
t0
Z̃s ds and σ2

Z = (tN − t0)
−1
∫ tN
t0

(
Zs − Z

)2
ds. This standardization

makes the coefficient β a dimensionless quantity which is expected to vary on a
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unit scale.

3.3 Data analysis

Figure 3.2 shows a plot of the monthly confirmed cases of P. falciparum and

monthly rainfall in the district of Kutch in the state of Gujarat in Northwest

India between January, 1987 and December, 2006. The record of the malaria

cases was obtained from the National Institute of Malaria Research in India, and

was originally compiled by the office of the District Malaria Officer. The rainfall

time series was obtained from a local district weather station run by the Indian

Meteorology Department. Rainfall in Kutch is concentrated within the monsoon

season, and Kutch experiences the seasonal epidemic malaria typical of arid regions

of India (Swaroop, 1949; Bouma et al., 1996; Kiszewski and Teklehaimanot, 2004).

Visually, a lag relationship, with rainfall leading malaria, may seem evident from

this figure. Since rainfall typically peaks during the summer monsoon and malaria

typically peaks a few months later, in late fall, one might see the appearance of

a lag relationship in the absence of a direct link. The correlation between total

monsoon rainfall (aggregated over June-August) and total fall cases (aggregated

over October-December) is 0.84 over these twenty years, which is suggestive of a

causal relationship. However, the intensity of monsoon rainfall has cycles of 2-4

years which matches cycles that are predicted in malaria due to the building up

of population immunity in epidemics followed by subsequent waning of immunity

and birth of newly susceptible children (Pascual et al., 2008). This confounding

of intrinsic cycles (e.g., immunity) with the effect of extrinsic cycles (e.g., climate

variability) adds difficulty to the interpretation of such correlations. Modeling both

intrinsic and extrinsic effects simultaneously provides a way to strengthen scientific

conclusions. This is analogous to using multiple regression to control for potential

confounding variables, but here we must take into account the nonlinear stochastic
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feedbacks and lagged relationships in the dynamic system. In this investigation,

we fixed the rainfall covariate in (3.11) by setting u = 5mo and v = 200mm.

Additional analysis of the relationship with rainfall will be published elsewhere

(Laneri et al., 2010), but it should be clear that the approach we develop here has

the flexibility to address alternative hypotheses concerning this as well as many

other questions about malaria dynamics.
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Figure 3.2: Monthly reported P. falciparum malaria cases (solid line) and monthly
rainfall from a local weather station (broken line) for Kutch.

We carried out likelihood-based inference via iterated filtering, a plug-and-play

sequential Monte Carlo procedure for calculating maximum likelihood estimates

which was introduced by Ionides et al. (2006). Iterated filtering was implemented

using the pomp software package (King et al., 2009) which encodes the algorithm

presented by King et al. (2008, supplementary text). Computer code to generate

an Euler solution to the dynamic model described by equations (3.1–3.9) and to

evaluate the density of the measurement model in (3.10) is all that the user need

supply to embark on statistical analysis via general-purpose software implement-

ing such a plug-and-play procedure. We refer the reader to the online supplement,

and to the relevant literature (King et al., 2008; Bretó et al., 2009; He et al.,

2010; Ionides et al., 2009), for further discussion of iterated filtering methodology.
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There are tuning parameters which affect the numerical efficiency of the maximiza-

tion algorithm; the values we used are reported in the online supplement. These

algorithmic parameters are inconsequential for the inferential conclusions once nu-

merical convergence has been confirmed by checking consistency over a range of

starting values for the likelihood maximization. If all the model parameters share a

unit scale of variability, selection of the algorithmic parameters is simplified. With

this in mind, we worked with the logarithmic transform of non-negative parameters

and the logit transform of parameters taking values in the interval (0, 1). On this

common scale, standard values of the algorithmic parameters gave acceptable op-

timization performance. All reported results are transformed back to the original

scale.

A simple, but valuable, diagnostic for the specification of a mechanistic model

is to compare the goodness of fit with standard non-mechanistic statistical models.

One can argue that part of the point of fitting a mechanistic model to data is to

discover which aspects of the data are not captured by a model describing current

scientific knowledge about the system under investigation. Somewhat equivalently,

one might understand that requiring a model to have scientific interpretability may

lead to a cost in terms of the ability to match data statistically. In this sense, it

may not be a scientific goal to achieve a level of fit comparable to flexible statis-

tical models which do not seek scientific interpretability. On the other hand, to

carry out formal hypothesis tests, or to interpret parameter estimates and their

uncertainty, it is helpful if the model can be shown to give an adequate statistical

fit to the data. In Table 3.1, we include as a benchmark comparison a model in

which {log(yn+1), n = 1, . . . , N} is supposed to follow a Gaussian SARIMA spec-

ification. The large number of additional parameters in the mechanistic models

appears to be justified relative to this log-SARIMA model, according to the AIC

criterion. Log-SARIMA models are theoretically appealing as simple models for
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disease transmission, since (in common with many other biological populations)

the Plasmodium demonstrates annual cycles of abundance which consist approxi-

mately of a period of exponential growth followed by a period of exponential decay.

As another benchmark, we included the rainfall covariate Zt into the log-SARIMA

model (via the ARMAX framework; Shumway and Stoffer, 2006), also reported in

Table 3.1. The improvement in model fit from including the covariate is compara-

ble, in terms of units of log likelihood, to the improvement seen in the VSEIR and

VS2EI2 models.

It is a substantial computational challenge to investigate a non-convex and

potentially multimodal likelihood function, with around 20 parameters, based on

Monte Carlo estimates of the likelihood which involves integrating over all the

unobserved state variables at (tN−t0)/∆ = 20∗365 time points. However, verifying

that this function is indeed adequately maximized, once this has been achieved,

is relatively straightforward. One check is to confirm that the maximization is

robust to different starting values and Monte Carlo replications (i.e., choices of

the random number generation seed). In addition, we construct profile likelihood

plots (one example is given in Figure 3.4) and check that each profile consistently

attains the maximized likelihood. We have found profile likelihood calculations

particularly useful for ensuring that the dynamic system is investigated across a

range of parameter values, facilitating the discovery of new modes of the likelihood

function.

From Table 3.1, we see that all the four mechanistic models analyzed beat the

benchmark non-mechanistic log-SARIMA model by a large margin of AIC. Having

established that these models are adequate statistical explanations of the data, we

compare these models amongst each other. Likelihoods for both the VS2EI2 model

and the simpler VSEIR submodel (described in the caption to Figure 3.1) improve

significantly when the rainfall covariate is used (p < 0.001 for the likelihood ratio
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test, using a chi-square approximation on one degree of freedom). After conclud-

ing that inclusion of rainfall does indeed help to describe malaria dynamics, we

proceed to compare the VSEIR and the VS2EI2 models, both including rainfall.

These two models have different numbers of parameters and we can compare their

Akaike Information Criterion (AIC) values, which favors the VS2EI2 model with

rainfall. Since these two models are nested, one can also carry out a likelihood

ratio test of the null hypothesis that the data follow the VSEIR model (p < 0.001,

chi-square test on 5 degrees of freedom). The nesting is nonstandard (e.g., when

µI2S2 →∞ the initial value [I2]0 becomes undefined), however, the chi-square test

is expected to be conservative in such situations (Self and Liang, 1987; Anisimova

et al., 2001). We consider this comparison to be evidence for the value of incorpo-

rating characteristic aspects of the human immune response to malaria into models

used for time series analysis. However, models based on simpler SEIR descriptions

of human immunity will continue to be central to the study of disease dynamics,

and our results also support a position that the VSEIR model is not entirely dis-

credited. It produces parameter estimates which are qualitatively similar to the

VS2EI2 model, and its log likelihood is much closer to that of the VS2EI2 than to

the log-SARIMA benchmark. To understand the relative strengths and weaknesses

of different models, one pertinent question to consider is which parts of the time

series are better explained by each model. In Figure 3.3 we plot the difference of

the conditional log likelihoods of the VS2EI2 model with rainfall and the VSEIR

model with rainfall, at each point in time. We note that during many of the epi-

demics, most notably in the fall of 1989, 1990, 1992, 1994 and 1997, the simpler

VSEIR model fits the data better as the epidemic approaches its peak. Predicting

the peak of an epidemic is of particular public health interest, as it determines the

maximum case burden experienced by the health care system. The more complex

VS2EI2 model, which fits the data better overall, may have little or no advantage
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for this specific purpose.

Table 3.1: A likelihood-based comparison of the fitted models. Corresponding
point estimates are presented in Table 3.3. The column labeled p corre-
sponds to the number of estimated parameters, including unknown ini-
tial conditions. Parameters which were not estimated are documented
in Table 3.2. AIC is computed as AIC = −2`+ 2p.

Model log likelihood (`) p AIC
VSEIR without rainfall -1275.0 19 2588.0

VSEIR with rainfall -1265.0 20 2570.0
VS2EI2 without rainfall -1261.1 24 2570.2

VS2EI2 with rainfall -1251.0 25 2552.0
Log-SARIMA (1, 0, 1)× (1, 0, 1)12 without rainfall -1329.0 6 2670.0

Log-SARIMA (1, 0, 1)× (1, 0, 1)12 with rainfall -1322.6 7 2659.2
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Figure 3.3: Difference between the conditional log likelihood of yn given
y1, . . . , yn−1 for the VS2EI2 model with rainfall and the VSEIR model
with rainfall, plotted against time (bold line). For comparison, re-
ported malaria cases in Kutch are also shown (thin line).
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Table 3.2: List of symbols used in the chapter along with a brief description and
units. Some parameters were not estimated as part of the analysis pre-
sented in this chapter, and the last column gives their fixed values. Al-
ternative values of these fixed parameters were investigated, but did not
affect the conclusions of the analysis. The values of the remaining pa-
rameters are give in Table 3.3.

symbol brief description unit fixed value
µXY per-capita transition rate from X to Y; X, Y ∈ {S1, S2, E, I1, I2} yr−1 -
[X]0 initial fraction in compartment X; X ∈ {S1, S2, E, I1, I2} - -
κ0, λ0 Initial values for the latent and current force of infection - -
τ mean development delay for mosquitoes yr -
σ standard deviation of the process noise yr1/2 -
ρ reporting fraction - -
q relative infectivity of partially immune individuals - -
c coefficient of reinfection with clinical immunity - -
nλ shape parameter for the delay development kernel for mosquitoes - 1
ψ dispersion parameter of the observation noise - -
ns number of splines describing seasonality - 6
βi spline coefficients, for i = 1, . . . , ns - -
β dimensionality constant yr−1 1
β coefficient of climate (rainfall) covariate - -
u window for rainfall to affect transmission mo 5
v threshold for integrated rainfall mm 200

1/δ average life expectancy yr 50
∆ time step for stochastic Euler integration day 1
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Table 3.3: Estimated model parameters. The columns marked ‘without rain’ cor-
respond to maximum likelihood point estimates under the constraint
β = 0. The last two columns give the lower and upper bounds for ap-
proximate 95% confidence intervals for the VS2EI2 model with rainfall,
derived from profile likelihood computations as shown in Figures 3.4
and 3.5; values of 0 and ∞ correspond to confidence intervals extending
to the boundary of the parameter space. Note: these models coincide
with a subset of the models estimated by Laneri et al. (2010).

VSEIR VS2EI2 VSEIR VS2EI2 confidence interval
without rain without rain with rain with rain

µI1S2 13.587 – 39.021 – ( – , – )
µS2S1 0.116 0.230 5.657 0.334 ( 0.067 , 3.270 )
µEI1 7.301 7.408 10.480 8.902 ( 8.885 , 17.277 )
µI1I2 – 11.544 – 5.511 ( 3.218 , ∞ )
µI2S2 – 0.004 – 0.035 ( 0 , 0.073 )
µI1S1 – 2.320 – 6.563 ( 0 , ∞ )
β1 -0.076 -2.469 1.242 1.201 ( -4.819 , 4.109 )
β2 1.287 2.001 3.590 2.088 ( -0.153 , 6.616 )
β3 4.446 4.227 3.906 3.866 ( 1.874 , 6.939 )
β4 2.868 2.786 3.747 2.808 ( 1.092 , 6.042 )
β5 6.709 6.534 5.742 5.996 ( 4.695 , 9.749 )
β6 6.319 7.080 4.803 5.333 ( 3.912 , 8.287 )
τ 0.025 0.022 0.033 0.030 ( 0.015 , 0.084 )
σ 0.347 0.309 0.225 0.243 ( 0.162 , 0.259 )
ρ 0.022 0.030 0.005 0.015 ( 0.007 , 0.025 )

q × 104 – 4.763 – 9.424 ( 0.100 , 48.102 )
ψ 0.384 0.390 0.390 0.395 ( 0.365 , 0.445 )
β – – 0.489 0.512 ( 0.270 , 0.765 )

[S1]0 0.494 0.164 0.956 0.138 ( 0.001 , 0.900 )
[S2]0 0.505 0.765 0.038 0.775 ( 0.276 , 0.900 )
[E]0 0.003 0.002 0.014 0.004 ( 0.003 , 0.009 )
[I1]0 0.011 0.002 0.002 0.002 ( 0 , 0.087 )
[I2]0 – 0.067 – 0.080 ( 0 , 0.754 )

κ0 × 10 0.079 0.133 0.189 0.171 ( 0 , ∞ )
λ0 × 10 0.050 0.045 0.058 0.061 ( 0 , ∞ )

c – 0.004 – 0.010 ( 0.001 , 0.067 )
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When building mechanistic dynamic models for biological systems, there is a

temptation to include as much biological detail as the available data will support.

A price for this is that certain combinations of parameters may be weakly identified

by the data. However, we can focus on conclusions which are robust to identifia-

bility issues. For example, the model comparison via log likelihoods in Table 3.1

is valid despite any potential lack of identifiability. The profile likelihood for the

reporting rate in Figure 3.4 shows that, without making any specific assumptions

on the the values of the 25 parameters estimated, there is evidence that the effec-

tive reporting rate is less than 2.5%. There is general agreement that malaria is

substantially under-reported in South-East Asia (Snow et al., 2005) and a study

in the city of Ahmedabad, Gujarat, found a reporting rate of 10% (Yadav et al.,

2003). Much of the remaining discrepancy could be explained by a recent sug-

gestion, based on a sensitive polymerase chain reaction diagnostic analysis in an

epidemic malaria region of the East African highlands, that microscopy techniques

may fail to detect two thirds of asymptomatic Plasmodium infections (Baliraine

et al., 2009). There is potential for asymptomatic infections to play important dy-

namic roles, which can be hard to identify (King et al., 2008); for example, there

could be an epidemiological role for boosted immunity due to mild infections that

occur at blood parasite levels too low to be detected by standard field investiga-

tions. One cannot at this point rule out the possibility that the low estimated

reporting rate could be an artifact due to unmodeled population inhomogeneity,

or some other shortcoming of the model. Resolving such questions is beyond the

scope of this chapter. The statistical interpretation, however, is more clearcut:

Any attempt to learn about malaria via fitting epidemiological models of the type

constructed here must take into account the discovery that unconventionally low

reporting rates may give superior explanation of the data.

Many parameter estimates have large statistical uncertainty (Table 3.3, last
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Figure 3.4: Profile likelihood plot for the reporting rate (ρ) for the VS2EI2 model
with rainfall (solid line) and the VSEIR model with rainfall (broken
line). The profile is estimated via fitting a smooth curve through
Monte Carlo evaluations shown as open circles (VS2EI2) and filled cir-
cles (VSEIR). The dashed vertical lines construct approximate 95%
confidence intervals (Barndorff-Nielsen and Cox, 1994).

two columns). One could investigate whether fixing some parameters at previously

published scientific values helps to identify some other parameters. Conclusions

from such an analysis should be made cautiously, since the variability and com-

plexity of biological systems means that it is typically difficult to know to what

extent previous investigations are indeed quantitatively relevant for the current

model and data. This consideration would similarly complicate the development

of a scientifically informed prior distribution, if one were to investigate a Bayesian

approach.

Adding additional parameters to a model does not necessarily result in more

weakly identified parameter estimates, particularly when the extended model pro-

vides substantial improvement in fit. Figure 3.5 provides one such example, where

the Plasmodium development delay τ is more precisely estimable in the larger

VS2EI2 model. Further, in the VS2EI2 model the parameter values which are con-
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sistent with the data are closer to the biological interpretation as a development

delay—directly measured mean development times are around two weeks in this

context. It could be nothing but a happy accident that, in this case, a model

estimated on population data happens to match an individual-level biological in-

terpretation. Given all the simplifications necessarily involved in the modeling

process, it is hard to be sure that this parameter describes the biological inter-

pretation in the strong sense that manipulation of the development time would

affect the system only through the estimated value of τ . Since development time

is a well-studied function of temperature, in principle one could investigate this by

seeing whether building this dependence into the model improves its explanation

of the data. However, even without insisting on such a strong interpretation, when

the data and the model and the desired biological interpretation are all mutually

consistent then the model becomes validated as a conceptual tool for understanding

the biological system.
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Figure 3.5: Profile likelihood plot for the mean development delay time of
mosquitoes (τ) for the VS2EI2 model with rainfall (solid line) and the
VSEIR model with rainfall (broken line). The dashed vertical lines
construct approximate 95% confidence intervals.
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3.4 Discussion

One of the clearest scientific conclusions from our data analysis is that rainfall

variability does indeed have a detectable effect on malaria dynamics in Kutch,

even once one controls for seasonality and nonlinear dynamic effects of the force

of infection and immunity. This is a contribution to the debate on the role of

climate variability in malaria transmission, which has previously been lacking such

an analysis (Hay et al., 2000, 2002; Zhou et al., 2004; Pascual et al., 2006, 2008;

Briët et al., 2008; Clements et al., 2009). We have studied just one district here,

in order to focus on the statistical principles behind our analysis. Investigation

of another district in Northwest India leads to similar conclusions (Laneri et al.,

2010). The statistical approach presented will facilitate similar investigations of

other regions with endemic and epidemic malaria. Given geographical differences

in mosquito species, social and agricultural practices, and many relevant ecological

variables, one should however be cautious about extrapolating our quantitative

results.

At the African summit on Roll Back Malaria in April 2000, forty four leaders

of affected countries signed the Abuja declaration. One of the requirements of this

declaration was that malaria epidemics should be detected, and effective control

measures implemented, within two weeks. In practice, this timeline necessitates

the use of malaria forecasts. Two major components of such a forecast should be

measures of environmental suitability for transmission and the extent of residual

immunity from previous epidemics. Seasonal rainfall forecasts (Bouma and van der

Kaay, 1994, 2009) and satellite observations (Thomson et al., 2006) may have a

role to play, though our results suggest that local rainfall acts at a sufficient lag

to be a simple and useful predictor. Indeed, local rainfall was used as the primary

component of epidemic malaria forecasts published for the semi-arid Punjab in the

early part of the 20th century (Swaroop, 1949).
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This chapter has adopted a likelihood-based, non-Bayesian inferential approach.

Much recent work in the area of inference for POMP models has followed the

Bayesian paradigm (e.g., Andrieu et al., 2010; Toni et al., 2009; Cauchemez and

Ferguson, 2008; Boys et al., 2008). Our maximum likelihood methodology is a

computationally viable alternative to these Bayesian approaches, in addition to

being readily applicable due to the plug-and-play property. The analysis presented

in this chapter is consistent with a recent study by Liu et al. (2009) which re-

ported computational advantages for adopting a maximum likelihood approach

over Bayesian methods for inference on complex phylogenetic models. Regardless

of one’s opinion on the epistemological value of asserting a prior distribution on

unknown parameters, there may be computational advantages to exploring the

likelihood surface rather than a posterior distribution.

Other vector-borne diseases, such as dengue and leishmaniasis, lead to statisti-

cal considerations and challenges similar to those for malaria. In a wider context,

disease systems exemplify the issues at stake in developing an understanding of

ecological processes from available time-series data (Bjørnstad and Grenfell, 2001).

Quantitative understanding of ecosystems has growing importance as mankind is

increasingly responsible for managing the biological resources of the planet. The

broad scope of these responsibilities will continue to drive further developments in

statistical methodology and data analysis.
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CHAPTER 4

An adaptive particle allocation scheme for

off-line sequential importance sampling

algorithms

4.1 Introduction

In many engineering and scientific applications, state and parameter estimation

in a hidden Markov model is of great importance. Particle filters, introduced by

Gordon et al. (1993), have revolutionized the estimation problem. Prior to this,

one had to resort to some variant of the Kalman filter, often requiring questionable

linearization and assumptions of normality. Using particle filters, it is possible to

carry out state and parameter estimation in a general class of state space models

without these restricting assumptions. For a recent survey on the results on particle

filters, see Cappé et al. (2007).

In this chapter, we focus on the problem of likelihood evaluation using particle

filters. A serious challenge to particle filters in this context is the presence of

outliers which results in high Monte Carlo variability of the estimated likelihood

at the corresponding time points. Any implementation of a particle filter is limited

by the computing power of the machine, which translates to a given total number

of particles. Given this constraint, it is often useful to find a way of distributing
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the particles across the time points in order to minimize a target criterion, such as

the variance of the importance sampling estimate of the likelihood. Some previous

non-rigorous result on the particle allocation problem for the online estimation

case can be found in engineering literature, e.g. Fox (2003). In this chapter, we

aim to give a more rigorous treatment to this problem for the off-line case. For

many Sequential Monte Carlo (SMC) based algorithms, such as iterated filtering as

described in chapter 2, the focus is on an off-line estimation of states, parameters

or likelihood. An effective particle allocation technique should result in improved

performance in these cases.

4.2 Problem statement and background

We specifically focus on the off-line estimation problem of the likelihood. With

no prior information about the likelihood surface, the naive strategy is to use an

equal number of particles for each time point. However, this naive initial run

generates some informative diagnostics. One of them, the effective sample size

(Liu, 2001) has proved to be a powerful, though somewhat informal indicator

of the variance of the conditional likelihood at each time point. A low effective

sample size is an indication of high variance in the estimated likelihood. In an

off-line setting, this information can be used in the later iterations to determine

which problems were problematic in the likelihood evaluation and allocate number

of particles accordingly.

In sections 4.3 and 4.4 we deal with the particle allocation problem when the

observations are independent and dependent respectively. The independent case

provides an exact solution but the expression for SMC likelihood for dependent

observations is complicated. We, therefore, model the conditional log-likeliood

with an autoregressive structure in this case and solve the allocation problem for

that model, rather than tackling the likelihood expression directly. This can be
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heuristically argued by an exponential mixing of the likelihood (Crisan and Doucet,

2002). We now state a useful theorem and a lemma.

Theorem 4.2.1. (Oehlert, 1992) Suppose X1, . . . , Xn are iid with k finite moments

where k ≥ 3. Let X̄n denote the sample mean and the mean and variance of X1 be

denoted by µ and σ2. Suppose there is a function g that has k bounded derivatives.

Then

E[g(X̄n)] = g(µ) + g(2)(µ)σ2/(2n) +O(n−2)

Lemma 4.2.1. Consider the variables m1, . . . ,mn so that m1 + . . .+mn = N . Let

k1, . . . , kn be known constants. Then the values of mi that minimize
∑n

i=1 ki/mi

are given by,

mi =
N
√
ki∑n

i=1

√
ki

i = 1, . . . , n

Proof. The Lagrangian function is given by,

f =
n∑
i=1

ki/mi + λ
( n∑
i=1

mi −N
)

Computing ∂f/∂mi and equating to 0 we get,

ki
m2
i

− λ = 0

i.e., mi =

√
ki
λ

(4.1)

Using the constraint m1 + . . .+mn = N , gives the value of λ as,

λ =
(
∑n

i=1

√
ki)

2

N2
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Using this in equation (4.1) completes the proof.

4.3 Applications to likelihood estimation (independent case)

The problem of optimal particle allocation in order to minimize overall variance

for likelihood estimation takes a simple form for time independent observations.

In this case since the total variance is the sum of point-wise variances, we can just

minimize the variance at a given time point, without having to worry about the

dependence structure in the data. The result is given in the following theorem.

Theorem 4.3.1. Suppose X1, . . . , XK are independent random variables with den-

sities given by fk, i.e., Xk ∼ fk(.; θ) where θ is a vector of parameters. Let the

observations be denoted as y1, . . . , yK and conditional on Xk = xk, Yk ∼ hk(.|xk; θ)

be the observation density. Also assume we can draw samples Zk,m from Zk,m ∼

fk(.; θ) for m = 1, . . . ,Mk and
∑K

k=1Mk = M . The likelihood functions lk(θ) is

given by
∫
hk(yk|x; θ)fk(x; θ)dx and let l̂k be the importance sampling estimate of

lk(θ), given by l̂k(θ) = 1
Mk

∑Mk

m=1 hk(yk|Zk,m; θ). Assume that C1 < hk(.|.; θ) < ∞

for all k and some C1 > 0. Then, there exists a constant M0 such that if Mk > M0

for all k, the value of Mk minimizing Var(
∑K

k=1(log l̂k)) is given by,

Mmin
k =

M
√
φk∑K

i=1

√
φi

where, φk = Varfk
(hk(yk|Xk; θ))/lk

2 is bounded and M is chosen large enough so

that the condition Mmin
k > M0 is satisfied for all k.

Proof. We have,

lk(θ) =

∫
hk(yk|x; θ)fk(x; θ)dx

= Efk

[
hk(yk|X; θ)

]
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where, X ∼ fk(.; θ). Now, the importance sampling estimate of the likelihood is,

l̂k(θ) =
1

Mk

Mk∑
m=1

hk(yk|Zk,m; θ)

where Zk,m ∼ fk(.; θ), Efk
[hk(yk|Zk,m; θ)] = lk and Varfk

[hk(yk|Zk,m; θ)] = φkl
2
k

(from the definition of φk). We now apply Theorem 4.2.1 to the functions log(l̂k)

and (log(l̂k)
2) respectively. It is easy to see the conditions for Theorem 4.2.1 are

satisfied since hk(.|., θ) is bounded away from 0. This also means lk and φk are

bounded away from 0 for all k and the boundedness condition for the derivatives

are satisfied. Thus, we have

Efk
[log l̂k] = log lk −

(
1

l2k

)
φkl

2
k

2Mk

+O(M−2
k )

= log lk −
φk

2Mk

+O(M−2
k ) (4.2)

and

Efk
[(log l̂k)

2] = (log lk)
2 +

(
2(1− log lk)

l2k

)
φkl

2
k

2Mk

+O(M−2
k )

= (log lk)
2 +

φk
Mk

− φk log lk
Mk

+O(M−2
k ) (4.3)

Then combining equations (4.2) and (4.3) we have

Varfk
[log l̂k] = Efk

[(log l̂k)
2]− E2

fk
[log l̂k]

=
φk
Mk

+O(M−2
k )
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Thus, for each k, there exists an Mk0 and a constant C ′
k such that

φk
Mk

− C ′
k

M2
k

≤ Varfk
[log l̂k] ≤

φk
Mk

+
C ′
k

M2
k

for all Mk > Mk0 , 0 < C ′
k <∞

i.e.,
φk
Mk

(1− εk) ≤ Varfk
[log l̂k] ≤

φk
Mk

(1 + εk) for εk = C ′
k/Mkφk

Thus, we have, (1 − ε̄)
∑K

k=1 φk/Mk ≤
∑K

k=1 Varfk
(log l̂k) ≤ (1 + ε̄)

∑K
k=1 φk/Mk,

where ε̄ > maxk εk = maxk C
′
k/Mkφk. Such an ε̄, independent of k, will exist

and can be made arbitrarily small (i.e., smaller than any given δ) if all Mk are

chosen greater than a sufficiently large M0 which is also greater than each Mk0 .

Now the problem is to minimize Var(
∑K

k=1(log l̂k)) =
∑K

k=1 Varfk
(log l̂k) (using

independence), subject to
∑K

k=1Mk = M . Since ε̄ is arbitrarily small, we can

shrink the interval containing
∑K

k=1 Varfk
(log l̂k) until it collapses to

∑K
k=1 φk/Mk

from both sides and using Lemma 4.2.1 we have,

Mmin
k =

M
√
φk∑K

i=1

√
φi

as the optimal value of Mk when M is chosen large enough so that the condition

Mmin
k > M0 is satisfied for all k. Such an M can be chosen since φk is bounded for

all k.

4.4 Applications to likelihood estimation (dependent case)

For the dependent case, consider the time series of observations y1:K = (y1, . . . , yK).

The data are modeled as a realization of some sequence of real valued random vari-

ables Y1:K , taking value in Rdy×K . The conditional density of Yk given Y1:k−1 is

assumed to exist for all k = 1, . . . , K. Now, let, gk = log fYk|Y1:k−1
(yk|y1:k−1; θ) and

ĝk = log f̂Yk|Y1:k−1
(yk|y1:k−1; θ), where the subscripts denote the random variables

to which the densities correspond and f̂Yk|Y1:k−1
(yk|y1:k−1; θ) denotes the sequential
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Monte Carlo estimate of fYk|Y1:k−1
(yk|y1:k−1; θ). It is known f̂Yk|Y1:k−1

(yk|y1:k−1; θ)

is an unbiased estimator of fYk|Y1:k−1
(yk|y1:k−1; θ) (Del Moral and Jacod, 2001).

We call gk the conditional log likelihood at time k and note that
∑K

k=1 gk =

log fY1:K
(y1:K ; θ), gives the total log likelihood. We use the SMC evaluations ĝk

to fit the following AR(1) model

xk = µk + q(xk−1 − µk−1) + εk (4.4)

where µk = E[xk], εk ∼ N(0, φk/Mk), φk is positive and Mk is the number of

particles used at time k. An AR(1) model for the conditional log likelihoods in

SMC is suggested by exponential mixing of the SMC likelihood. We then proceed

to solve the particle allocation problem for this simple AR(1) model. We have

Var(xk) = q2Var(xk−1) +
φk
Mk

= q2Var(qxk−2 + εk−1) +
φk
Mk

= q4Var(xk−2) + q2 φk−1

Mk−1

+
φk
Mk

= · · ·

=
k∑

m=1

φmq
2(k−m)

Mm
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and for i > k

Cov(xi, xk) = Cov(µi + q(xi−1 − µi−1) + εi, xk)

= qCov(xi−1, xk)

= · · ·

= qi−kCov(xk, xk)

= qi−kVar(xk)

= qi−k
k∑

m=1

φmq
2(k−m)

Mm
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Thus,

Var(
K∑
k=1

xk) =
K∑
k=1

Var(xk) + 2
K∑
i=1

K∑
j=1 j<i

Cov(xi, xj)

=
K∑
k=1

Var(xk) + 2
K∑
i=2

i−1∑
j=1

Cov(xi, xj)

=
K∑
k=1

k∑
m=1

φmq
2(k−m)

Mm

+ 2
K∑
i=2

i−1∑
j=1

qi−j
j∑

m=1

φmq
2(j−m)

Mm

=
K∑
m=1

K∑
k=m

φmq
2(k−m)

Mm

+ 2
K∑
i=2

i−1∑
j=1

j∑
m=1

φmq
(i+j−2m)

Mm

=
K∑
m=1

φmq
−2m

Mm

K∑
k=m

q2k + 2
K∑
m=1

φmq
−2m

Mm

K−1∑
j=1

qj
K∑

i=j+1

qi

=
K∑
m=1

φmq
−2m

Mm

· q2m · 1− q2(K−m+1)

1− q2
+ 2

K∑
m=1

φmq
−2m

Mm

K−1∑
j=1

qj · qj+1 1− q(K−j)

1− q

=
1

1− q2

K∑
m=1

φm(1− q2(K−m+1))

Mm

+
2q

1− q

K∑
m=1

φmq
−2m

Mm

K−1∑
j=1

(q2j − q(K+j))

=
1

1− q2

K∑
m=1

φm(1− q2(K−m+1))

Mm

+
2q

1− q

K∑
m=1

φmq
−2m

Mm

(
1− q2(K−1)

1− q2
− qK · 1− q(K−1)

1− q

)

= C1

K∑
m=1

Am
Mm

+ C2

K∑
m=1

Bm

Mm

=
K∑
m=1

Zm
Mm
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where

C1 =
1

1− q2
(4.5)

C2 =
2q

1− q

(
1− q2(K−1)

1− q2
− qK · 1− q(K−1)

1− q

)
(4.6)

Am = φm(1− q2(K−m+1)) (4.7)

Bm = φmq
−2m (4.8)

Zm := C1Am + C2Bm (4.9)

Thus, the variance minimization problem is now equivalent to minimizing
∑K

k=1 Zk/Mk

with the constraint
∑K

k=1Mk = M . Using Lemma 4.2.1 we have,

Mk =
M
√
Zk∑K

i=1

√
Zi

as the optimal value of Mk. As a consistency check, note how the results presented

in this section reduce to the results presented for the independent case (section 4.3)

when q = 0.

4.4.1 Joint estimation of q and φk

In oder to implement the particle allocation scheme described in section 4.4,

one would need to fit the model described in equation (4.4). As described before,

without any prior knowledge of the likelihood surface, initially one just uses an

equal allocation of particles for all the time points, i.e. an ordinary particle filter,

say P times. This gives rise to estimates of Var(xk). Call these estimates Ṽar(xk).

It is given by

Ṽar(xk) =
1

P − 1

P∑
p=1

(ĝk,p − ĝk)
2
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where ĝk,p is the estimate of the conditional log likelihood at time point k for the

p’th filtering operation and ĝk = 1
P

∑P
p=1 ĝk,p. Now, note from equation (4.4)

Var(xk) = q2Var(xk−1) +
φk
Mk

Thus, in equation (4.7) and (4.8) we use the estimate φ̂k of φk defined as

φ̂k = Mk

(
Ṽar(xk)− q2Ṽar(xk−1)

)

Then Zm in equation (4.9) becomes a function of just q whose estimate q̂ is then

calculated as a number between -1 and 1 that minimizes the sum
∑K

m=1 Zm/Mm.

4.5 Simulation Study

A simulation study was performed to compare the performance of the adaptive

and non-adaptive filtering procedures. We work with a two dimensional AR(1)

process observed with noise defined by the following state and observation equa-

tions,

Xk = αXk−1 + σξk (state equation)

Yk = βXk + τεk (observation equation)

Here, Xk = (X1
k , X

2
k) and Yk = (Y 1

k , Y
2
k ) are in R2 for all k = 1, . . . , K; α and β

are 2× 2 constant matrices, ξk and εk are independent bivariate standard normal

random variables, σ is a lower-triangular 2× 2 matrix and τ is a 1× 2 matrix with
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both entries equal. For our example, we use

α =

0.9 0.0

0.0 0.99


β =

1 0

0 1


σ =

1.00 0

0 2.00


τ =

(
1 1

)

These parameter values were chosen to be the same as in the vignette for King

et al. (2009). One simulation of the state and observation models for k = 1, . . . , 100

time points is shown in Figure 4.1(left panel). We then use 1000 simulations from

the process model to compute the standard deviation at each time point. Outliers

are then introduced at 4 randomly chosen points in Y 1 as

Y 1∗
k′ = Y 1

k′ + 3 ∗ Z ∗ sd(Y 1
k′)

where the random variable Z ∈ {−1, 1} with probability 0.5 each and k′ ∈ C, where

C is a set of 4 time points randomly chosen between 1 and 100. Figure 4.1(right

panel) shows Y 1 before (top) and after (bottom) introducing the outliers. Thus,

after introducing these so called outliers the hope is that an adaptive particle filter

will perform better than the naive particle filter, given same amount of computer

resource is available to both the adaptive and non-adaptive schemes.

Since this is clearly a dependent setting, we choose the particle allocation

scheme detailed in section 4.4. Table 4.1 shows the result of applying the ordi-

nary and adaptive filters on the data set in order to estimate the overall likelihood.
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Figure 4.1: Plot of the two dimensional AR(1) process. Left panel shows the state
(X1, X2) and observation (Y 1, Y 2) vectors. Outliers are introduced
only in Y 1 at time points 4,51,75 and 90. The vector Y 1 is shown in
the right panel, upper part is before introducing outliers (same as that
of left panel) and lower part is after introducing outliers.

Here, N denotes the number of times a set of 4 outliers are introduced at randomly

chosen points between 1 and 100 to generate a test set. M denotes the number of

times the filters are applied on each such test set. The total time taken T is then

the time for a total N ×M filtering operations. For each n = 1, . . . , N we then
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compute the estimate of the variances of the overall log-likelihood as

V̂ a
n =

1

M − 1

M∑
m=1

(Ĝa
n,m − Ĝa

n)
2

V̂ o
n =

1

M − 1

M∑
m=1

(Ĝo
n,m − Ĝo

n)
2

where

Ĝn,m =
K∑
k=1

ĝk,n,m

Here ĝk,n,m is the estimate of the conditional log-likelihood (as defined in sec-

tion 4.4) at time k evaluated with the particle filter for the n th series and m th

filtering iteration, the superscripts a and o denote the adaptive and ordinary (i.e.

non-adaptive) particle filters respectively. Ĝn,m is thus an estimate of the total

log-likelihood and Ĝn = 1
M

∑M
m=1

ˆGn,m. The estimates of the average variance (V̂ )

of the independently generated test sets as shown in table 4.1 are then computed

as V̂ = 1
N

∑N
n=1 V̂n.

The gain or improvement α in using the adaptive over ordinary particle filter

is calculated as

α = 1− 1

N

N∑
n=1

V̂ a
n

V̂ o
n

(4.10)

With approximately the same amount of time (T ) as shown in table 4.1, G was

found to be 45.862%. A 1 sided t-test performed to test the hypothesis H0 :

µV a/V o = 1 and H1 : µV a/V o < 1 had a p-value of 2.379 × 10−5, indicating a

statistically significant improvement achieved with the adaptive scheme.
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Adaptive filter (a) Ordinary filter (o)
Number of tests (N) 10 10

Number of filtering operations per test (M) 100 100
Number of total particles used per filtering operation 15000 15000

Total time taken(sec) (T ) 2222 2149

Average variance (V̂ ) 0.995 1.854

Table 4.1: Comparison of adaptive and non-adaptive particle filters. The gain α
as defined in equation (4.10) was found to be 45.862%.
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