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The authors are to be congratulated for a novel design of an efficient and
automatic choice of the preconditioning matrix for MALA or mass matrix
for HMC schemes. The clever use of local curvature information results
in possible improvements in the relative speed of convergence to the high
dimensional target distribution, as demonstrated by the authors using various
illustrative examples.

The full MMALA and RMHMC schemes described by the authors require
(a) evaluations of the partial derivatives up to the third order for the log-
likelihood function and (b) inversion of the position specific metric tensor
of the Riemann manifold formed by the parameter space. In the general
case, considering the absence of nice analytical properties inducing sparsity
in the covariance matrix etc., these two steps are computationally intensive
(as pointed out by the authors) and in many of the examples the authors are
forced to resort to a simplified version of the MMALA scheme.

One interesting application would be to use the authors’ approach for an
MCMC based stochastic optimization scheme like simulated annealing. At
the early stages of the algorithm, with high temperature, the use of local
curvature information in the MCMC proposal should result in high accep-
tance rate and the search should quickly reach a neighborhood of the global
maxima (ref. Fig. 1). However, once this has been achieved, the use of local
curvature information is unlikely to have much further benefit at the expense
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of the substantial computational burden imposed by steps (a) and (b) men-
tioned above and a vanilla MCMC (or global MALA or HMC) can be used
once the temperature has cooled sufficiently to do a local search.

Numerical schemes for computing derivatives that are needed by the au-
thors are often unstable. Ionides et al. (2006) proposed iterated filtering, a
derivative free maximum likelihood based inference technique for partially
observed Markovian state space models (an example of such a model is pre-
sented by the authors in section 8) that has been succesfully applied in many
scientific applications (e.g., Laneri et al., 2010; Bretó et al., 2009; He et al.,
2010). From the computational perspective, a favorable comparison of it-
erated filtering with Particle MCMC technique presented in Andrieu et al.
(2010) is presented in Bhadra (2010) and iterated filtering presents a vi-
able maximum likelihood alternative to Bayesian inference in many difficult
situations.
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