Topic 7 - Matrix Approach to

Simple Linear Regression

STAT 525 - Fall 2013
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Outline

Review of Matrices
Regression model in matrix form

Calculations using matrices
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Matrix

Collection of elements arranged in rows and columns

Elements will be numbers or symbols

1 3
A=|1 5
2 6

Rows denoted with the ¢ subscript

For example:

Columns denoted with the j subscript
The element in row 1 col 2 is 3

The element in row 3 col 1 is 2
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Matrix

Elements often expressed using symbols
ail ai2 ai3 -+ Qlc

a21 a2 a3 -+ Q2c
A =

arl Gr2 Qap3 -+ Qre

Matrix A has r rows and ¢ columns

Said to be of dimension r X ¢

th th o]

Element a;; is in 7" row and j
A matrix is square if r = ¢

Called a column vector is c=1
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Matrix Operations

e Transpose
— Denoted as A’
Row 1 becomes Col 1, Row r becomes Col r

1

Col 1 becomes Row 1, Col ¢ becomes Row ¢
— IfA= [aij] then A/ = [aji]

— If Aisrxcthen Aliscxr

e Addition and Subtraction

— Matrices must have the same dimension

— Addition/subtraction done on element by element basis
ain +bi1 a2 +biz - aic+bic

A+B=

ar1 +br1 ar2+br2 - are + brc
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Matrix Operations

e Multiplication

If scalar then AA = [Aay;]

If multiplying two matrices (AB)

Cols of A must equal Rows of B

Resulting matrix of dimension Rows(A) x Col(B)

Elements obtained by taking cross products of rows of A with cols of B
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Regression Matrices

e Consider example with n =4

Y1 = Bo + P11 X1
Yy = Bo + P1 X2
Y3 = Bo + B1X3
Yy Bo + $1 X4

Bo + B1X1
Bo + B1X2
Bo + 1 X3
Bo + B1X4

X1
X2
X3
X4
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Special Regression Examples

e Using multiplication and transpose

Y'Y > y?

(2

X, T X7

XYY
| 2 XY

X'X

XY

e Will use these to compute B etc.
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Special Types of Matrices

e Symmetric matrix
— When A = A’/
— Requires A to be square
— Example: X’X
e Diagonal matrix
— Square matrix with off-diagonals equal to zero

— Important example: Identity matrix
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Linear Dependence

e If there is a relationship between the column(row) vectors
of a matrix such that x;c; +...+x.Cc. =0 and not all X’s
are 0, then the set of column(row) vectors are linearly
dependent.

e If such a relationship does not exist then the set of

column(row) vectors are linearly independent.

e Consider the matrix Q with column vectors C; — Cs

5 3
Q=11 2
11
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Rank of a Matrix
USiIlg )\1 = —2, )\2 = 0, )\3 =1

5 3 10 0

H +0H +H _ M

1 1 2 0

The columns of Q are linearly dependent

The rank of a matrix is number of linear independent

columns (or rows)
Rank of a matrix cannot exceed min(r, c)
Full Rank = all columns are linearly independent

In this example: The rank of Q is 2
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Inverse of a matrix
Inverse similar to the reciprocal of a scalar
Inverse defined for square matrix of rank r

Want to find the inverse of S, such that

S-S =1
Easy example: Diagonal matrix

2
— Let S = [ 0} then
0 4

inverse of each element

on the diagonal
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Inverse of a matrix
e General procedure for 2 x 2 matrix
e Consider:
a b
A= [c d}
1. Calculate the determinant D =a-d—0b-c

If D = 0 then the matrix has no inverse.

2. In A~1, switch a and d; make ¢ and b negative; multiply each element

by%

Steps work only for a 2 X 2 matrix.

Algorithm for 3 x 3 given in book

Use of Inverse
Consider equation 2z =3 — z =3 x 3
Inverse similar to using reciprocal of a scalar

Pertains to a set of equations
A X= C
(rxr) (rx1) (rx1)

Assuming A has an inverse:
ATTAX
X
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Random Vectors and Matrices
Contain elements that are random variables
Can compute expectation and (co)variance

In regression set up, Y = X3 + €, both € and Y are

random vectors
Expectation vector: F(A) = [E(A;)]

Covariance matrix: symmetric
o?(A1)  o(A1, Ag)
o(A2, A1) 0%(A2)
o?(A) = . .

U(Ar,Al) O'(AT,AQ)
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Basic Theorems
e Consider random vector Y

e Consider constant matrix A

e Suppose W = AY
— W is also a random vector
- E(W) =AE(Y)
— 0*(W) =Ac?(Y)A’
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Regression Matrices

e Can express observations
Y= XB +e

e Both Y and &€ are random vectors

XB + E(e)
Xp

0 + o?(e)

o?1
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Least Squares

e Express quantity ()

QR = (Y-XB'(Y-XP)
= YY-38XY-YX3+B8XXp3

e Taking derivative — —2X'Y + 2X'X3 =0
e This means b = (X'X)'X'Y
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Fitted Values
The fitted values ¥ = Xb = X(X'X) XY
Matrix H = X(X'X) X’ called hat matriz
Equivalently write Y =HY
H symmetric and idempotent (HH = H)

Matrix H used in diagnostics (chapter 9)

STAT 525

Residuals

e Residual matrix

e e a random vector
E(e) (I-H)E(Y)
(I-H)XB
XB-Xp
0

(I-H)o*(Y)I-H)
(I - H)o2L(I — H)
(I-H)o?
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ANOVA

e Quadratic form defined as

Y'AY = Z Z a;;Y;iY;
i

where A is symmetric n X n matrix

e Sums of squares can be shown to be quadratic forms
(page 207)

e Quadratic forms play significant role in the theory of
linear models when errors are Normally distributed

Inference
e Vector b = (X’X)'X'Y = AY
e The mean and variance are
(X'X)"1X'E(Y)

(X'X)"1X'X3
B

AcZ(Y)A'
AcZIA’
o2AA’
o2(X'xX)~t

e Thus, b is multivariate Normal(3, o*(X'X)™1)
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Inference Continued

e Consider X}, =[1 Xj]
e Mean response Y, = X} b

E(th) = X0

Var(V;,) = X},02(b) Xy = 02X}, (X'X) Xy,
e Prediction

E(}A/h) = Xip0

Var(V) = 02(1 + X} (X'X)1X},)
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Background Reading

e KNNL Chapter 5
o KNNL Sections 6.1-6.5




