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Outline

• Partitioning sums of squares

• Degrees of freedom

• Expected mean squares

• General linear test

• R2 and the coefficient of correlation

• What if X random variable?
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Partitioning Sums of Squares

• Organizes results arithmetically

• Total sums of squares in Y is defined

SSTO =
∑

(Yi − Y )2

• Can partition sum of squares into
– Model (explained by regression)

– Error (unexplained / residual)

• Rewrite the total sum of squares as
∑

(Yi − Y )2 =
∑

(Yi − Ŷi + Ŷi − Y )2

=
∑

(Ŷi − Y )2 +
∑

(Yi − Ŷi)
2
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Total Sum of Squares

• If we ignored Xh, the sample mean Y would be the best

linear unbiased predictor

Yi = β0 + εi = µ + εi

• SSTO is the sum of squared deviations for this predictor

• Sum of squares has n − 1 degrees of freedom because we

replace β0 with Y

• The total mean square is SSTO/(n − 1) and represents

an unbiased estimate of σ2 under the above model
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SAS & Total Sum of Squares

• SAS uses “Corrected Total” for SSTO

• Uncorrected total sum of squares is
∑

Y 2
i

• “Corrected” means that the sample mean has been

subtracted off before squaring
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Regression Sum of Squares

• SAS calls this model sum of squares

SSR =
∑

(Ŷi − Y )2

• Degrees of freedom is 1 due to the addition of the slope

• SSR large when Ŷi’s are different from Y

• This occurs when there is a linear trend

• Under regression model, can also express SSR as

SSR = b2
1

∑

(Xi − X)2
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Error Sum of Squares

• Error (or residual) sum of squares is equal to the sum of

squared residuals

SSE =
∑

(Yi − Ŷi)
2 =

∑

e2
i

• Degrees of freedom is n − 2 due to using (b0, b1) in place

of (β0, β1)

• SSE large when |residuals| are large. This implies Yi’s

vary substantially around fitted line

• The MSE=SSE/(n − 2) and represents an unbiased

estimate of σ2 when taking X into account
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ANOVA Table

• Table puts this all together

Source of

Variation df SS MS

Regression 1 b2
1

∑

(Xi − X)2 SSR/1

(Model)

Error n − 2
∑

(Yi − Ŷ )2 SSE/(n − 2)

Total n − 1
∑

(Yi − Y )2

Topic 4 8



STAT 525

Expected Mean Squares

• All means squares are random variables

• Already showed E(MSE) = σ2

• What about the MSR?

E(MSR) = E(b2
1

∑

(Xi − X)2)

= E(b2
1)
∑

(Xi − X)2

= (Var(b1) + E(b1)
2)
∑

(Xi − X)2

= σ2 + β2
1

∑

(Xi − X)2

• If β1 = 0, MSR unbiased estimate of σ2
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F test

• Can use this structure to test H0 : β1 = 0

• Consider

F ⋆ =
MSR

MSE

• If β1 = 0 then F ⋆ should be near one

• Need sampling distribution of F ⋆ under H0

• By Cochran’s Thm (pg 70)

F ⋆ =

SSR
σ2

1
÷

SSE
σ2

n − 2

F ⋆
∼

χ2
1

1
÷

χ2
n−2

n − 2

∼ F1,n−2
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F test

• When H0 is false, MSR > MSE

• P-value = Pr(F (1, n − 2) > F ⋆)

• Reject when F ⋆ large, P-value small

• Recall t-test for H0 : β1 = 0

• Can show t2n−2 ∼ F1,n−2

• Obtain exactly the same result (P-value)
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Example

data a1;

infile ’C:\Textdata\CH01TA01.txt’;

input size hours;

proc reg data=a1;

model hours=size;

id size;

run;
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Dependent Variable: hours

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 252378 252378 105.88 <.0001

Error 23 54825 2383.71562

Cor Total 24 307203

Root MSE 48.82331 R-Square 0.8215

Dependent Mean 312.28000 Adj R-Sq 0.8138

Coeff Var 15.63447

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 62.36586 26.17743 2.38 0.0259

size 1 3.57020 0.34697 10.29 <.0001
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General Linear Test

• A different approach to the same problem

• Consider two models
– Full model : Yi = β0 + β1Xi + εi

– Reduced model : Yi = β0 + εi

• Will compare models using SSE’s
– Full model will be labeled SSE(F)

– Reduced model will be labeled SSE(R)

• Note: SSTO is the same under each model
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General Linear Test

• Reduced model −→ H0 : β1 = 0

• Can be shown that SSE(F) ≤ SSE(R)

• Idea: more parameters provide better fit

• If SSE(F) not much smaller than SSE(R), full model

doesn’t better explain Y

F ⋆ =
(SSE(R) − SSE(F))/(dfR − dfF )

SSE(F)/dfF

=
(SSTO − SSE)/1

SSE/(n − 2)

• Same test as before but more general
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Pearson Correlation

• Number between -1 and 1 which measures the strength

of the linear relationship between two variables

r =

∑

(Xi − X)(Yi − Y )
√

∑

(Xi − X)2
∑

(Yi − Y )2

= b1

√

√

√

√

∑

(Xi − X)2

∑

(Yi − Y )2

• Test H0 : β1 = 0 similar to H0 : ρ = 0
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Coefficient of Determination

• Defined as the proportion of total variation explained by

the model utilizing X

R2 =
SSR

SSTO
= 1 −

SSE

SSTO

• 0 ≤ R2 ≤ 1

• Often multiplied by 100 and described as a percent
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Coefficient of Determination

• Can show this is equal to r2

r2 = b2
1

(

∑

(Xi − X)2

∑

(Yi − Y )2

)

=
b2
1

∑

(Xi − X)2

∑

(Yi − Y )2

=
SSR

SSTO

• Relationship not true in multiple regression

• See page 75 for limitations of R2/r
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Normal Correlation Model

• So far, have assumed Xi’s are known constants

• In inference we’ve considered repeat sampling of error

terms with the Xi’s remaining fixed (Yi’s vary)

• What if this assumption is not appropriate?

• In other words, what if Xi’s are random?

• If interest still in relation between these two variables

can use correlation model

• Normal correlation model assumes a bivariate normal

distribution
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Bivariate Normal Distribution

• Consider random variables Y1 and Y2

• Distribution requires five parameters
– µ1 and σ1 are the mean and std dev of Y1

– µ2 and σ2 are the mean and std dev of Y2

– ρ12 is the coefficient of correlation

• Bivariate normal density and marginal distributions given

on page 79

• Marginal distributions are normal

• Conditional distributions are also normal
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Conditional Distribution

• Consider the distribution of Y1 given Y2

1 Can show the distribution is normal

2 The mean can be expressed
(

µ1 − µ2ρ12
σ1

σ2

)

+ ρ12
σ1

σ2

Y2 = α1|2 + β12Y2

3 With constant variance σ2
1 (1 − ρ2

12)

• Similar properties of normal error regression model

• Can use regression to make inference about Y1 given Y2
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So What if X is Random?

• Suppose Xi’s are random samples from g(Xi)?

• Then the previous regression results hold if:

– The conditional distributions of Yi given Xi are normal

and independent with conditional means β0 + β1Xi

and conditional variance σ2

– The Xi are independent and g(Xi) does not involve

the parameters β0, β1, and σ2
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Inference on ρ12

• Point estimate using Y = Y1 and X = Y2 given on 4-15

• Interest in testing H0 : ρ12 = 0

• Test statistic is

t
∗

=
r12

√
n − 2

√

1 − r2

12

• Same result as H0 : β = 0

• Can also form CI using Fisher z transformation or large

sample approx (pg 85)

• If X and Y are nonnormal, can use Spearman correlation

(pg 87)
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Background Reading

• Appendix A

• KNNL Chapter 3
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