STAT 525

Topic 22 - Interaction in Two Factor ANOVA

STAT 525 - Fall 2013

Outline

- Strategies for Analysis
 - when interaction not present
 - when interaction present
 - when $n_{ij} = 1$
 - when factor(s) quantitative

Topic 22

STAT 525

General Plan

- Construct scatterplot / interaction plot
- Run full model
- Check assumptions
 - Residual plots
 - Histogram / QQplot
 - Ordered residuals plot
- Check significance of interaction

STAT 525

Interaction Not Significant

- Determine whether pooling is beneficial
- If yes, rerun analysis without interaction
- Check significance of main effects
- If factor insignificant, determine whether pooling is beneficial
- If yes, rerun analysis as one-way ANOVA
- If statistically significant factor has more than two levels, use multiple comparison procedure to assess differences
- Contrasts and linear combinations can also be used

Topic 22

2

Interactions

• Opposite behavior (no Factor 2 effect?)

STAT 525

• Not similar increase (still Factor 2 effect?)

STAT 525

Topic 22

If Interaction Significant

- Determine if interaction "important"
 - May not be of practical importance
 - May be like plot #2
 - Often due to one cell mean
- If no, use previously described methods making sure to leave interaction in the model (no pooling). Carefully interpret the marginal means as averages over the levels of the other factor and not a main effect
- If yes, take approach of one-way ANOVA with *ab* levels. Use linear combinations to compare various means (e.g., levels of factor *A* for each level of factor *B*). Use the interaction plots for discussion purposes.

STAT 525

Topic 22

Using Estimate Statement

- Must formulate in terms of factor effects model
- Order of factors determined by order in class statement not the model statement
- Example from Castle Bread Company
 - $H_0: \mu_{2.} = \mu_{1.} + \mu_{3.}$
 - Rewriting in factor effect terms

$$\mu_{2.} = \mu_{21} + \mu_{22}$$

$$= \mu + \alpha_{2} + \beta_{1} + (\alpha \beta)_{21} + \mu + \alpha_{2} + \beta_{2} + (\alpha \beta)_{22}$$

$$= 2\mu + 2\alpha_{2} + \beta_{.} + (\alpha \beta)_{2.}$$

$$\mu_{1.} + \mu_{3.} = \mu_{11} + \mu_{12} + \mu_{31} + \mu_{32}$$

$$= 4\mu + 2\alpha_{1} + 2\alpha_{3} + 2\beta_{.} + (\alpha \beta)_{1.} + (\alpha \beta)_{3.}$$

STAT 525

Using Slice Statement

- Slice option performs one-way ANOVA for fixed level of other factor
- Can also express that as contrast statement
- Following output presents results from two contrasts
 - $H_0: 2\mu_{2.} = \mu_{1.} + \mu_{3.}$
 - $H_0: \mu_{11} = \mu_{21} = \mu_{31}$
- See if you can come up with the same contrast statements

Topic 22

SAS Commands

```
proc glm data=a1;
   class height width;
   model sales=height width height*width;
   estimate 'middle is sum of other two heights'
      intercept -2 height -2 2 -2
           height*width -1 -1 1 1 -1 -1:
   contrast 'middle two vs all others'
      height -.5 1 -.5
                         height*width -.25 -.25 .5 .5 -.25 -.25;
   estimate 'middle two vs all others'
      height -.5 1 -.5
                         height*width -.25 -.25 .5 .5 -.25 -.25;
   contrast 'height same for normal width'
      height 1 -1 0 height*width 1 0 -1 0 0 0,
      height 0 1 -1 height*width 0 0 1 0 -1 0;
   means height*width;
proc glm data=a1;
   class height width;
   model sales=height width height*width;
   lsmeans height*width / slice=width;
```

Topic 22

STAT 525

Output

Contrast DF Contrast SS Mean Square F Value Pr > F middle vs others 1536.000000 1536.000000 height for normal 700.000000 350,000000 33.87 0.0005 Parameter Estimate Std Error t Value Pr > |t| middle is sum of others -38.0000000 5.56776436 -6.83 0.0005 middle vs others 24.0000000 1.96850197 12.19 <.0001

Level of	Level of		sa	les
height	width	N	Mean	Std Dev
1	1	2	45.0000000	2.82842712
1	2	2	43.0000000	4.24264069
2	1	2	65.0000000	4.24264069
2	2	2	69.0000000	2.82842712
3	1	2	40.0000000	1.41421356
3	2	2	44.0000000	2.82842712
	height*width	Effect	Sliced by width	for sales
width DF	Sum of Square	es	Mean Square F	Value $Pr > F$
1 2	700.00000	0	350.000000	33.87 0.0005

434.000000

42.00

0.0003

STAT 525

One Observation Per Cell

- Do not have enough information to estimate **both** the interaction effect and error variance
- With interaction, error degrees of freedom is ab(n-1) = 0
- Common to assume there is no interaction (i.e., pooling)
 - $SSE^* = SSAB + 0$
 - $df_E^* = df_{AB} + 0$
- Can also test for less general type of interaction that requires fewer degrees of freedom

Topic 22

868,000000

Tukey's Test for Additivity

- Consider special type of interaction
- Assume following model

$$Y_{ij} = \mu + \alpha_i + \beta_j + \theta \alpha_i \beta_j + \varepsilon_{ij}$$

- Uses up only one degree of freedom
- Other variations possible (e.g., $\theta_i \beta_i$)
- Want to test $H_0: \theta = 0$
- Will use regression after estimating factor effects to test θ

Topic 22

13

STAT 525

Example Page 882

- \bullet Y is the premium for auto insurance
- Factor A is the size of the city
 - -a = 3: small, medium, large
- \bullet Factor B is the region
 - -b=2: east, west
- Only one city per cell was observed

STAT 525

Topic 22

SAS Commands

```
data a1; infile 'u:\.www\datasets525\CH2OTAO2.txt';
   input premium size region;

if size=1 then sizea='1_small ';
if size=2 then sizea='2_medium';
if size=3 then sizea='3_large ';

proc glm data=a1;
   class sizea region;
   model premium=sizea region / solution;
   means sizea region / tukey;

symbol1 v='E' i=join c=black; symbol2 v='W' i=join c=black;
title1 'Plot of the data';
proc gplot data=a2;
   plot premium*sizea=region/frame;
```

STAT 525

Topic 22

Topic 22

16

SAS Commands

```
proc glm data=a1;
    model premium=; output out=aall p=muhat;

proc glm data=a1; class size;
    model premium=size; output out=aA p=muhatA;

proc glm data=a1; class region;
    model premium=region; output out=aB p=muhatB;

data a2; merge aall aA aB;
    alpha=muhatA-muhat; beta=muhatB-muhat; atimesb=alpha*beta;

proc print data=a2;
    var size region atimesb;

proc glm data=a2;
    class size region;
    model premium=size region atimesb/solution;
run;
```

Topic 22

STAT 525

Topic 22

Output

Source		DF	Sum of	Squar	es	Mear	Square	F Value	Pr > F	
Model		4	10737	7.0967	7	2684	.27419	208.03	0.0519	
Error		1	12	2.9032	3	12	.90323			
Corrected	Tota	1 5	10750	0.000	0					
Source		DF	Тур	pe I S	S	Mean	Square	F Value	Pr > F	
size		2	9300	.00000	0	4650.	000000	360.37	0.0372	
region		1	1350	.00000	0	1350.	000000	104.62	0.0620	
atimesb		1	87	.09677	4	87.	096774	6.75	0.2339	
Parameter	•	Es	timate	S	td	Error	t V	alue P	r > t	
Intercept		195.0	000000	B 2	.932	294230) 6	6.49	0.0096	
size	1	-90.0	000000	В 3	.592	210604	-2	5.05	0.0254	
size	2	-15.0	000000	В 3	. 592	210604	-	4.18	0.1496	
size	3	0.0	000000	В						
region	1	30.0	000000	B 2	.932	294230) 1	0.23	0.0620	
region	2	0.0	000000	В					•	
atimesb		-0.0	064516	0	.002	248323	3 -	2.60	0.2339	
Note: These are the same parameter estimates as the original model without the interaction term.										

Output

Obs	size	region	atimesb
1	1	1	-825
2	1	2	825
3	2	1	300
4	2	2	-300
5	3	1	525
6	3	2	-525

Note: These estimates are based on the factor effects model where $\sum \alpha = 0$ and $\sum \beta = 0$. While not shown, the following were used to compute atimesb: $\hat{\mu} = 175$, $\hat{\mu}_{1.} = 120$, $\hat{\mu}_{2.} = 195$, $\hat{\mu}_{3.} = 210$, $\hat{\mu}_{.1} = 190$, and $\hat{\mu}_{.2} = 160$.

Topic 22

Topic 22

STAT 525

19

One Quantitative Factor

- Similar to regression with one indicator or categorical variable
- Plot the means vs the quantitative factor for each level of the categorical factor
- Based on this plot,
 - Consider linear/quadratic relationships for the quantitative factor
 - Consider different slopes for the different levels of the categorical factor
 - Can perform lack of fit analysis
- If two quantitative variables, can consider linear and quadratic terms. Interactions modeled as the direct product. Lack of fit test very useful. Again very similar to linear regression models.

Background Reading

- KNNL Chapters 19, 20
- \bullet knnl849.sas, knnl883.sas
- KNNL Chapter 23