Analysis of Covariance (ANCOVA)

Bruce A Craig

Department of Statistics Purdue University

When to Use ANCOVA

- In experiment, there is a nuisance factor x that is
 - Correlated with y
 - Onaffected by treatment
- Can measure x but can't control it (otherwise block)
- Factor x then called a covariate or concomitant variable
- ANCOVA adjusts y for effect of covariate x
- Combination of regression and analysis of variance
- Without adjustment, effects of x on y
 - Will inflate σ^2
 - May alter trt mean comparisons (in extreme cases)

Examples

- Pretest/Posttest score analysis: The change in score y may be associated with current GPA. Also the posttest score y may be associated with the pretest score x. Analysis of covariance provides a way to "handicap" students.
- Weight gain experiments in animals: When comparing different feeds, the weight gain *y* may be associated with the dominance *x* of the animal. While it may be hard to control for dominance, it is not too difficult to measure.
- **Comparing competing drug products**: The effect of the drug *y* after two hours may be associated with the initial mental and physical shape of the subject. Variables describing mental and physical shape *x* at baseline may be used as covariates.

Model Description

- Consider single covariate in CRD
- Statistical model is

$$y_{ij} = \mu + \tau_i + \beta (x_{ij} - \overline{x}_{..}) + \epsilon_{ij} \quad \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, n_i \end{cases}$$

- Additional assumptions
 - x_{ij} not affected by treatment
 - x and y are linearly related
 - Constant slope across groups (can be relaxed)
 - Note: Subtracting off $\bar{x}_{..}$ is not needed (conceptual)

Estimation

• Conceptual Approach:

- Fit one-way model (y = trt)
- Fit one-way model (x = trt)
- Regress residuals (residuals1 = residuals2)

Provides estimate of slope after adjusting for trt

Model estimates are

$$\begin{aligned} \hat{\mu} &= \overline{y}_{..} \\ \hat{\beta} &= \sum \sum (y_{ij} - \overline{y}_{i.})(x_{ij} - \overline{x}_{i.}) / \sum (x_{ij} - \overline{x}_{i.})^2 \\ \hat{\tau}_i &= \overline{y}_{i.} - \overline{y}_{..} - \hat{\beta}(\overline{x}_{i.} - \overline{x}_{..}) \end{aligned}$$

F Tests

- Test $H_0: \tau_1 = \tau_2 = \ldots = \tau_a = 0$
 - Compare treatment means after adjusting for differences among treatments due to differences in covariate levels

• Trt and covariate not orthogonal (order of fit matters)

$$F_0 = rac{\mathrm{SS}(\mathrm{trt}|x)/a - 1}{\mathrm{SS}_\mathrm{E}/(N-a-1)}$$

• Test: $\beta = 0$

• Sum of Squares regression (SS_x): $\hat{\beta}^2 \sum \sum (x_{ij} - \overline{x}_{i.})^2$

$$F_0 = \frac{\mathrm{SS}_x/1}{SS_{\mathrm{E}}/(N-a-1)}$$

Mean Estimates

- Adjusted treatment means
 - Estimate $\hat{\mu}_i = \hat{\mu} + \hat{\tau}_i = \overline{y}_{i.} \hat{\beta}(\overline{x}_{i.} \overline{x}_{..})$
 - Using the expected value of y when x is equal to the average covariate value
 - Can really use any value of x, just make sure it is reasonable for all factor levels

• Variance: $\hat{\sigma}^2 \left(1/n + (\overline{x}_{i.} - \overline{x}_{..})^2 / \sum \sum (x_{ij} - \overline{x}_{i.})^2 \right)$

- Pairwise differences
 - Estimate: $\hat{\tau}_i \hat{\tau}_{i'} = \overline{y}_{i.} \overline{y}_{i'.} \hat{\beta}(\overline{x}_{i.} \overline{x}_{i'.})$
 - Variance: $\hat{\sigma}^2 \left(2/n + (\overline{x}_{i.} \overline{x}_{i'.})^2 / \sum \sum (x_{ij} \overline{x}_{i.})^2 \right)$

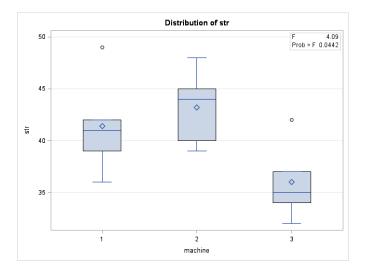
Analysis of Covariance

- Looking at the breaking strength (in pounds) of a monofilament fiber produced by 3 different machines
- Known that strength depends on the fiber thickness
- Machines designed to keep thickness within specification limits but thickness will vary fiber to fiber
- Will consider diameter of the fiber as a covariate

SAS Code

```
data ancova;
 input machine str dia @@;
 datalines;
 1 36 20 1 41 25 1 39 24 1 42 25 1 49 32
 2 40 22 2 48 28 2 39 22 2 45 30 2 44 28
 3 35 21 3 37 23 3 42 26 3 34 21 3 32 15
 ;
symbol1 i=rl v=circle;
proc gplot; plot str*dia=machine;
proc glm;
 class machine; model str = machine;
 lsmeans machine / adjust=tukey;
proc glm;
 class machine; model str = machine dia;
 lsmeans machine / adjust=tukey;
```

Boxplot



A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

문어 귀엽어

æ

SAS Output - No Covariate

The GLM Procedure

Dependent Variable: str

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	2	140.4000000	70.2000000	4.09	0.0442
Error	12	206.0000000	17.1666667		
Corrected Total	14	346.4000000			

~

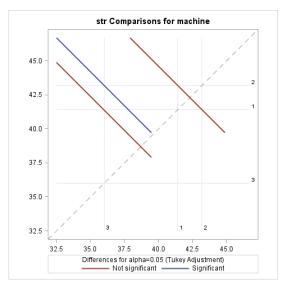
~

	R-Square 0.405312		eff Var 0.30664	Root MSE 4.143268	str 1 40.2		
Source machine		DF 2	Type I S 140.400000		Square 1 2000000	F Value 4.09	Pr > F 0.0442
Source machine		DF 2	Type III S 140.400000		Square 1 2000000	F Value 4.09	Pr > F 0.0442

SAS Output - No Covariate

The GLM Procedure							
Least Squares Means							
Adjustment	for	Multiple	Comparison	ns: Tukey-Kramer			
				LSMEAN			
macl	nine	str	LSMEAN	Number			
1		41.4	4000000	1			
2		43.2	2000000	2			
3		36.0	000000	3			
		str		LSMEAN			
		LSMEAN	machine	Number			
	А	43.2	2	2			
	Α						
В	Α	41.4	1	1			
В							
В		36.0	3	3			

Difference Plot

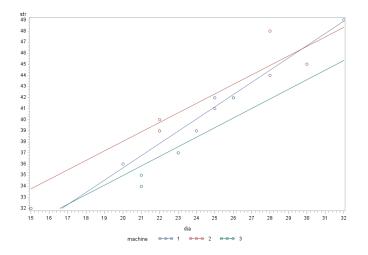


STAT 514 Topic 10

Table of Means

The MEANS Procedure							
Variable	N	Mean	Std Dev	Minimum	Maximum		
str	5	41.4000000	4.8270074	36.0000000	49.000000		
dia	5	25.2000000	4.3243497	20.0000000	32.0000000		
			machine=2				
Variable	N	Mean	Std Dev	Minimum	Maximum		
str	5	43.2000000	3.7013511	39.0000000	48.000000		
dia	5	26.000000	3.7416574	22.0000000	30.0000000		
machine=3							
Variable	N	Mean	Std Dev	Minimum	Maximum		
str	5	36.0000000	3.8078866	32.0000000	42.0000000		
dia	5	21.2000000	4.0249224	15.0000000	26.0000000		

Scatterplot



SAS Output

The GLM Procedure

Dependent Variable: str

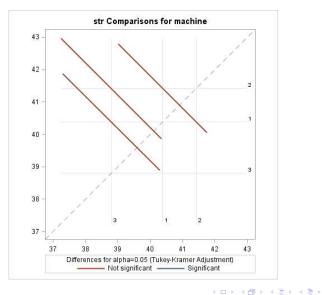
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	318.4141104	106.1380368	41.72	<.0001
Error	11	27.9858896	2.5441718		
Corrected	Total 14	346.4000000			
	R-Square	Coeff Var	Root MSE	str Mean	
	0.919209	3.967776	1.595046	40.20000	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
machine	2	140.4000000	70.2000000	27.59	<.0001
dia	1	178.0141104	178.0141104	69.97	<.0001
Source	DF	Type III SS	Mean Square		Pr > F
machine	2	13.2838506	6.6419253	2.61	0.1181
dia	1	178.0141104	178.0141104	69.97	<.0001

SAS Output

	-	ares Means	
Adjustment i	or Multiple	Comparisons	: Tukey-Kramer
			LSMEAN
machi	.ne str	LSMEAN	Number
1	40.3	3824131	1
2	41.4	192229	2
3	38.7	983640	3
	str		LSMEAN
	LSMEAN	machine	Number
A A	41.41922	2	2
A A	40.38241	1	1
A	38.79836	3	3

****Must use LSMEANS to get adjusted means ****

Difference Plot



æ

Summary

- Positive linear association between diameter and strength. Are slopes constant? Will investigate shortly.
- Model including covariate better explains the data. Percent of explained variation jumps from 40.5% to 91.9%. MSE drops from 17.167 to 2.544.
- Because Machine 3 had narrower fibers, its adjusted mean strength is shifted upwards. Likewise Machine 2 had wider fibers so mean shifted downward
- No significant difference among the machines relies on assumption that diameter not different across machines

Nonconstant Slope in ANCOVA

Statistical model for constant slope is

$$y_{ij} = \mu + \tau_i + \beta(x_{ij} - \overline{x}_{..}) + \epsilon_{ij} \quad \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, n_i \end{cases}$$

• Can allow for different slope by including interaction

$$y_{ij} = \mu + \tau_i + (\beta + (\beta \tau)_i)(x_{ij} - \overline{x}_{..}) + \epsilon_{ij} \quad \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, n_i \end{cases}$$

- In SAS, simply add interaction term into model
- Provides test for nonconstant slope

SAS Code

```
data ancova;
 input machine str dia @@;
datalines:
 1 36 20 1 41 25 1 39 24 1 42 25 1 49 32
 2 40 22 2 48 28 2 39 22 2 45 30 2 44 28
 3 35 21 3 37 23 3 42 26 3 34 21 3 32 15
 ;
proc glm;
 class machine; model str = machine dia;
 lsmeans machine / adjust=tukey lines;
proc glm;
 class machine; model str = machine dia machine*dia;
 lsmeans machine / adjust=tukey lines;
run:
```

SAS Output

The GLM Procedure								
Sum of								
Source		DF	Squares	Mean Square	F Value	Pr > F		
Model		5	321.1512879	64.2302576	22.90	<.0001		
Error		9	25.2487121	2.8054125				
Corrected	Total	14	346.4000000					
I	R-Square	e	Coeff Var	Root MSE	str Mean			
	0.92711:	L	4.166509	1.674937	40.20000			
Source		DF	Type I SS	Mean Square	F Value	Pr > F		
machine		2	140.4000000	70.2000000	25.02	0.0002		
dia		1	178.0141104	178.0141104	63.45	<.0001		
dia*machin	е	2	2.7371774	1.3685887	0.49	0.6293		
Source		DF	Type III SS	Mean Square	F Value	Pr > F		
machine		2	2.6641625	1.3320812	0.47	0.6367		
dia		1	171.1192314	171.1192314	61.00	<.0001		
dia*machin	е	2	2.7371774	1.3685887	0.49	0.6293		

Regression Approach to ANCOVA

• Consider ANCOVA model with a = 3

$$y_j = \beta_0 + \beta_1 X_{1j} + \beta_2 X_{2j} + \beta_3 X_{3j} + \epsilon_j$$

$$j = 1, 2, ..., N$$

$$X_{1j} = 1 \text{ if Trt } 1 \text{ and } X_{1j} = -1 \text{ if Trt } 3$$

$$X_{2j} = 1 \text{ if Trt } 2 \text{ and } X_{2j} = -1 \text{ if Trt } 3$$

$$X_{3j} = (x_j - \overline{x}_{..})$$
• Trt 1: $y_j = \beta_0 + \beta_1 + \beta_3(x_j - \overline{x}_{..}) + \epsilon_j$
• Trt 2: $y_j = \beta_0 + \beta_2 + \beta_3(x_j - \overline{x}_{..}) + \epsilon_j$
• Trt 3: $y_j = \beta_0 - \beta_1 - \beta_2 + \beta_3(x_j - \overline{x}_{..}) + \epsilon_j$
• Results in estimates
$$\hat{\mu} = \hat{\beta}_0 \quad \hat{\tau}_1 = \hat{\beta}_1 \quad \hat{\tau}_2 = \hat{\beta}_2 \quad \hat{\beta} = \hat{\beta}_3$$

Analysis of Covariance

- Can incorporate covariate into any model
- For two factor model

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \beta(x_{ijk} - \overline{x}_{...}) + \epsilon_{ijk}$$

- Assume constant slope for each ij combination
- Can include interaction terms to vary slope
- Plot y vs x for each combination

Background Reading

- ANCOVA Model: Montgomery 15.3.1
- General Regression Significance Test: Montgomery 15.3.3