Topic 16: Multicollinearity and Polynomial Regression
Outline

• Multicollinearity
• Polynomial regression
An example (KNNL p256)

- The P-value for ANOVA F-test is < .0001
- The P values for the individual regression coefficients are 0.1699, 0.2849, and 0.1896
- None of these are near our standard significance level of 0.05
- What is the explanation?

Multicollinearity!!!
Multicollinearity

• **Numerical analysis problem** in that the matrix $X'X$ is close to singular and is therefore difficult to invert accurately

• **Statistical problem** in that there is too much correlation **among the explanatory variables** and it is therefore difficult to determine the regression coefficients
Multicollinearity

- Solve the statistical problem and the numerical problem will also be solved
 - We want to refine a model that currently has redundancy in the explanatory variables
 - Do this regardless if $X^\prime X$ can be inverted without difficulty
Multicollinearity

• Extreme cases can help us understand the problems caused by multicollinearity
 – Assume columns in X matrix were uncorrelated
 • Type I and Type II SS will be the same
 • The contribution of each explanatory variable to the model is the same whether or not the other explanatory variables are in the model
Multicollinearity

- Suppose a linear combination of the explanatory variables is a constant
 - The Type II SS for the X’s involved will all be zero
 - Example: $X_1 = X_2 \rightarrow X_1 - X_2 = 0$
 - Example: $3X_1 - X_2 = 5$
 - Example: SAT total = SATV + SATM
An example: Part I

Data a1;
 infile '../data/csdata.dat';
 input id gpa hsm hss hse satm satv genderm1;

Data a1; set a1;
 hs = (hsm+hse+hss)/3;
Proc reg data=a1;
 model gpa= hsm hss hse hs;
run;
Output

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>27.71233</td>
<td>9.23744</td>
<td>18.86</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>220</td>
<td>107.75046</td>
<td>0.48977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>223</td>
<td>135.46279</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Something is wrong
• $df_M = 3$ but there are 4 X’s
Output

NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported DF of 0 or B means that the estimate is biased.
Output

NOTE: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

hs = 0.33333*hsm + 0.33333*hss + 0.33333*hse
Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | Type I SS | Type II SS |
|----------|----|--------------------|----------------|---------|-------|----------------|------------|------------|
| Intercept| 1 | 0.58988 | 0.29424 | 2.00 | 0.0462| 1555.5459 | 1.96837 |
| hsm | B | 0.16857 | 0.03549 | 4.75 | <.0001| 25.80989 | 11.04779 |
| hss | B | 0.03432 | 0.03756 | 0.91 | 0.3619| 1.23708 | 0.40884 |
| hse | B | 0.04510 | 0.03870 | 1.17 | 0.2451| 0.66536 | 0.66536 |
| hs | 0 | 0 | . | . | . | . | . |

In this extreme case, SAS does not consider hs in the model.
Extent of multicollinearity

• This example had one explanatory variable equal to a linear combination of other explanatory variables

• This is the most extreme case of multicollinearity and is detected by statistical software because \((X'X)\) does not have an inverse

• We are concerned with cases less extreme
An example: Part II

*add a little noise to break up perfect linear association;
Data a1; set a1;
hs1 = hs + normal(612)*.05;

Proc reg data=a1;
 model gpa= hsm hss hse hs1;
run;
Output

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>27.81586</td>
<td>6.95396</td>
<td>14.15</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>219</td>
<td>107.64693</td>
<td>0.49154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>223</td>
<td>135.46279</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model seems to be good here
Output

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | Type I SS | Type II SS |
|----------|----|--------------------|----------------|---------|------|--------|------------|-------------|
| Intercept| 1 | 0.56271 | 0.30066 | 1.87 | 0.0626 | 1555.5459 | 1.72182 |
| hsm | 1 | 0.02411 | 0.31677 | 0.08 | 0.9394 | 25.80989 | 0.00285 |
| hss | 1 | -0.11093 | 0.31872 | -0.35 | 0.7281 | 1.23708 | 0.05954 |
| hse | 1 | -0.10038 | 0.31937 | -0.31 | 0.7536 | 0.66536 | 0.04856 |
| hs1 | 1 | 0.43805 | 0.95451 | 0.46 | 0.6467 | 0.10352 | 0.10352 |

- None of the predictors significant.
- Much larger SEs.
- Look at the differences in Type I and II SS
- Sign of each coefficient make sense?
Effects of multicollinearity

- Regression coefficients are not well estimated and may be meaningless
- Similarly for standard errors of these estimates
- Type I SS and Type II SS will differ
- R^2 and predicted values are usually ok in these situations
Pairwise Correlations

- Pairwise correlations can be used to check for “pairwise” collinearity
- Recall KNNL p256

```plaintext
proc reg data=a1 corr;
  model fat=skinfold thigh midarm;
  model midarm = skinfold thigh;
run;
```
Pairwise Correlations

- \(\text{Cor(skinfold, thigh)} = 0.9238 \)
- \(\text{Cor(skinfold, midarm)} = 0.4578 \)
- \(\text{Cor(thigh, midarm)} = 0.0847 \)

Multicollinearity may involve multiple X’s
- \(\text{Cor(midarm, skinfold+thigh)} = 0.9952!!! \)

See p 284 for change in coeff values of skinfold and thigh depending on what variables are in the model

None of these appear too high
Polynomial regression

• We can fit a quadratic, cubic, etc. relationship by defining squares, cubes, etc., of a single X in a data step and using them as additional explanatory variables

• We can do this with more than one explanatory variable if needed

• Issue: When we do this we generally create a multicollinearity problem
KNNL Example p300

- Response variable is the life (in cycles) of a power cell
- Explanatory variables are
 - Charge rate (3 levels)
 - Temperature (3 levels)
- This is a designed experiment!
Input and check the data

Data a1;
 infile '../data/ch08ta01.txt';
 input cycles chrate temp;
run;

Proc print data=a1;
run;
Output

<table>
<thead>
<tr>
<th>Obs</th>
<th>cycles</th>
<th>chrate</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>0.6</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>86</td>
<td>1.0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>1.4</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>288</td>
<td>0.6</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>157</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>131</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>184</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>109</td>
<td>1.4</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>279</td>
<td>0.6</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>235</td>
<td>1.0</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>224</td>
<td>1.4</td>
<td>30</td>
</tr>
</tbody>
</table>

 Known as center points
Design Layout
Create new variables and run the regression

Data a1; set a1;
 chrate2=chrate*chrate;
 temp2=temp*temp;
 ct=chrate*temp;

Proc reg data=a1;
 model cycles=
 chrate temp chrate2 temp2 ct;
run;
Output

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>55366</td>
<td>11073</td>
<td>10.57</td>
<td>0.0109</td>
</tr>
<tr>
<td>Error</td>
<td>5</td>
<td>5240.4386</td>
<td>1048.0877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>10</td>
<td>60606</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|-------|---|
| Intercept| 1 | 337.72149 | 149.96163 | 2.25 | 0.0741|
| chrate | 1 | -539.51754 | 268.86033 | -2.01 | 0.1011|
| temp | 1 | 8.91711 | 9.18249 | 0.97 | 0.3761|
| chrate2 | 1 | 171.21711 | 127.12550 | 1.35 | 0.2359|
| temp2 | 1 | -0.10605 | 0.20340 | -0.52 | 0.6244|
| ct | 1 | 2.87500 | 4.04677 | 0.71 | 0.5092|
Conclusion

• Overall F significant, individual t’s not significant → multicollinearity problem
• Look at the correlations (proc corr)
• There are some very high correlations
 – r(chrate,chrate2) = 0.99103
 – r(temp,temp2) = 0.98609
• Common to have correlation between powers of a variable
A remedy

• We can often remove the correlation between explanatory variables and their powers by centering.

• Centering means that you subtract off the mean before squaring etc.

• KNNL rescaled by standardizing (subtract the mean and divide by the standard deviation) but subtracting the mean is key here because you get positive and negative values of X.
A remedy

- Use Proc Standard to center the explanatory variables
- Recompute the squares, cubes, etc., using the centered variables
- Rerun the regression analysis
Proc standard

Data a2; set a1;
 schrate=chrate; stemp=temp;
 keep cycles schrate stemp;

Proc standard data=a2
 out=a3 mean=0 std=1;
 var schrate stemp;

Proc print data=a3;
run;
<table>
<thead>
<tr>
<th>Obs</th>
<th>cycles</th>
<th>schrate</th>
<th>stemp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>-1.29099</td>
<td>-1.29099</td>
</tr>
<tr>
<td>2</td>
<td>86</td>
<td>0.00000</td>
<td>-1.29099</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>1.29099</td>
<td>-1.29099</td>
</tr>
<tr>
<td>4</td>
<td>288</td>
<td>-1.29099</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>157</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>131</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>7</td>
<td>184</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>8</td>
<td>109</td>
<td>1.29099</td>
<td>0.00000</td>
</tr>
<tr>
<td>9</td>
<td>279</td>
<td>-1.29099</td>
<td>1.29099</td>
</tr>
<tr>
<td>10</td>
<td>235</td>
<td>0.00000</td>
<td>1.29099</td>
</tr>
<tr>
<td>11</td>
<td>224</td>
<td>1.29099</td>
<td>1.29099</td>
</tr>
</tbody>
</table>
Recompute squares and cross product

Data a3; set a3;
 schrate2=schrate*schrate;
 stemp2=stemp*stemp;
 sct=schrate*stemp;
Rerun regression

Proc reg data=a3;
 model cycles=schrate stemp
 schrate2 stemp22 sct;
run;
Output

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>55366</td>
<td>11073</td>
<td>10.57</td>
<td>0.0109</td>
</tr>
<tr>
<td>Error</td>
<td>5</td>
<td>5240.4386</td>
<td>1048.0877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>10</td>
<td>60606</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exact same ANOVA table as before!!
Output

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|-------|---|
| Intercept | 1 | 162.84211 | 16.60761 | 9.81 | 0.0002|
| schrate | 1 | -43.24831 | 10.23762 | -4.22 | 0.0083|
| stemp | 1 | 58.48205 | 10.23762 | 5.71 | 0.0023|
| schrate2 | 1 | 16.43684 | 12.20405 | 1.35 | 0.2359|
| stemp2 | 1 | -6.36316 | 12.20405 | -0.52 | 0.6244|
| sct | 1 | 6.90000 | 9.71225 | 0.71 | 0.5092|
Conclusion

• Overall F significant
• Individual t’s significant for chrate and temp
• Appears linear model will suffice
• Could do formal general linear test to assess this. (P-value is 0.5527)
Last slide

• We went over KNNL 7.6 and 8.1.
• We used programs Topic16.sas to generate the output for today