Topic 11: Matrix Approach to Linear Regression

Outline

• Linear Regression in Matrix Form

The Model in Scalar Form

- $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- The ϵ_i are independent Normally distributed random variables with mean 0 and variance σ^2
- Consider writing the observations:

$$Y_{1} = \beta_{0} + \beta_{1}X_{1} + \varepsilon_{1}$$

$$Y_{2} = \beta_{0} + \beta_{1}X_{2} + \varepsilon_{2}$$

$$\vdots$$

$$Y_{n} = \beta_{0} + \beta_{1}X_{n} + \varepsilon_{n}$$

The Model in Matrix Form

The Model in Matrix Form II

Vector of Parameters

Vector of error terms

Vector of responses

Simple Linear Regression in Matrix Form

$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

 $\mathbf{Y} = \mathbf{X} \, \boldsymbol{\beta} + \boldsymbol{\varepsilon} \\ _{n \times 1} \, \sum_{n \times 2} \, \boldsymbol{\beta} + \boldsymbol{\varepsilon} \\ _{n \times 1} \, \sum_{n \times 1} \, n \times 1 \, \sum_{n \to 1} \, n \to 1 \, \sum_{n \to 1} \, \sum_{n \to 1} \, n \to 1 \, \sum_{n \to 1} \, \sum_{n \to 1$

Variance-Covariance **Matrix** $\sigma^{2}(\mathbf{Y}) = \begin{bmatrix} \sigma^{2}(Y_{1}) & \sigma(Y_{1}, Y_{2}) & \cdots & \sigma(Y_{1}, Y_{n}) \\ \sigma(Y_{2}, Y_{1}) & \sigma^{2}(Y_{2}) & \ddots & \vdots \\ \vdots & \vdots & \ddots & \sigma(Y_{n-1}, Y_{n}) \\ \sigma(Y_{n}, Y_{1}) & \cdots & \sigma(Y_{n}, Y_{n-1}) & \sigma^{2}(Y_{n}) \end{bmatrix}$

Main diagonal values are the variances and off-diagonal values are the covariances.

Independent errors means that the covariance of any two residuals is zero. Common variance implies the main diagonal values are equal.

Covariance Matrix of Y

Distributional Assumptions in Matrix Form

- $\varepsilon \sim N(0, \sigma^2 I)$
- I is an n x n identity matrix
- Ones in the diagonal elements specify that the variance of each ε_i is 1 times σ^2
- Zeros in the off-diagonal elements specify that the covariance between different ε_i is zero
- This implies that the correlations are zero

Least Squares

- We want to minimize $(Y-X\beta)'(Y-X\beta)$
- We take the derivative with respect to the (vector) β
- This is like a quadratic function
- Recall the function we minimized using the scalar form

Least Squares

- The derivative is 2 times the derivative of (Y-Xβ)' with respect to β
- In other words, -2X'(Y-Xβ)
- We set this equal to 0 (a vector of zeros)
- So, $-2X'(Y-X\beta) = 0$
- Or, $X'Y = X'X\beta$ (the normal equations)

Normal Equations

- $X'Y = (X'X)\beta$
- Solving for β gives the least squares solution b = (b₀, b₁)'
- $b = (X'X)^{-1}(X'Y)$
- See KNNL p 199 for details
- This same matrix approach works for multiple regression!!!!!!

Fitted Values

We'll use this H matrix when assessing diagnostics in multiple regression

Estimated Covariance Matrix of b

- This matrix, b, is a linear combination of the elements of Y
- These estimates are therefore Normal if Y is Normal
- These estimates will be approximately Normal in general

<u>A Useful</u> MultivariateTheorem

- U ~ N(μ , Σ), a multivariate Normal vector
- V = c + DU, a linear transformation of U
 c is a vector and D is a matrix
- Then V ~ N(c+Dμ, DΣD')

Application of theorem

- $b = (X'X)^{-1}X'Y = ((X'X)^{-1}X')Y$
- Since Y ~ N(Xβ, σ²I) this means the vector b is Normally distributed with mean (X'X)⁻¹X'Xβ = β and covariance σ²((X'X)⁻¹X') I((X'X)⁻¹X')' = σ²(X'X)⁻¹

Background Reading

- We will use this framework to do multiple regression → we have more than one explanatory variable
- Another explanatory variable is comparable to adding another column in the design matrix
- See Chapter 6