
Topic 11: Matrix 
Approach to Linear 

Regression



Outline

• Linear Regression in Matrix Form 



The Model in Scalar Form
• Yi  =  β0 + β1Xi + ei
• The ei are independent Normally 

distributed random variables with 
mean 0 and variance σ2

• Consider writing the observations:
Y1= β0 + β1X1 + e1
Y2= β0 + β1X2 + e2
:
Yn= β0 + β1Xn + en



The Model in Matrix Form
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The Model in Matrix Form II
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The Design Matrix
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Vector of Parameters
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Vector of error terms
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Vector of responses
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Simple Linear Regression 
in Matrix Form
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Variance-Covariance 
Matrix

Main diagonal values are the variances and off-diagonal 
values are the covariances.  
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Covariance Matrix of e

Independent errors means that the covariance of any 
two residuals is zero.  Common variance implies the 

main diagonal values are equal.    
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Covariance Matrix of Y
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Distributional Assumptions 
in Matrix Form

• e ~ N(0, σ2I)
• I is an n x n identity matrix
• Ones in the diagonal elements specify that 

the variance of each ei is 1 times σ2

• Zeros in the off-diagonal elements specify 
that the covariance between different ei is 
zero

• This implies that the correlations are zero



Least Squares

• We want to minimize (Y-Xβ)′(Y-Xβ)
• We take the derivative with respect to 

the (vector) β
• This is like a quadratic function
• Recall the function we minimized  

using the scalar form



Least Squares
• The derivative is 2 times the derivative 

of (Y-Xβ)′ with respect to β
• In other words, –2X′(Y-Xβ) 
• We set this equal to 0 (a vector of zeros)
• So, –2X′(Y-Xβ) = 0
• Or, X′Y = X′Xβ (the normal equations)



Normal Equations
• X′Y = (X′X)β
• Solving for β gives the least squares 

solution b = (b0, b1)′
• b = (X′X)–1(X′Y)
• See KNNL p 199 for details 
• This same matrix approach works for 

multiple regression!!!!!!



Fitted Values
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Hat Matrix

We’ll use this H matrix when assessing 
diagnostics in multiple regression
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Estimated Covariance 
Matrix of b

• This matrix, b, is a linear combination of 
the elements of Y

• These estimates are therefore Normal if 
Y is Normal

• These estimates will be approximately 
Normal in general 



A Useful 
MultivariateTheorem

• U ~ N(μ, Σ), a multivariate Normal vector
• V =  c + DU, a linear transformation of U

c is a vector and D is a matrix
• Then V ~ N(c+Dμ, DΣD′)



Application of theorem

• b = (X′X)–1X′Y = ((X′X)–1X′)Y 
• Since Y ~ N(Xβ, σ2I) this means the 

vector b is Normally distributed with 
mean (X′X)–1X′Xβ = β and covariance 
σ2 ((X′X)–1X′)I((X′X)–1X′)′ = σ2 (X′X)–1



Background Reading

• We will use this framework to do 
multiple regression  we have more 
than one explanatory variable 

• Another explanatory variable is 
comparable to adding another column 
in the  design matrix

• See Chapter 6
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