Topic 22 - Linear Regression and Correlation

STAT 511

Professor Bruce Craig

Background Reading

Devore : Section 12.1-12.5

22

Overview

- Consider one population but two variables
- For each sampling unit observe X and Y
- Assume linear relationship between variables
- Regression/correlation assess association
- Relationship may be non-linear but linear in a particular region
- Can often transform Y and/or X to create linear association
- Dose-response curve: Response with log(dose)
- Lineweaver-Burk: 1/velocity with $1 /$ concen

22-1

Overview

- A scatter plot allows visual assessment of relationship
- One variable (X) plotted on x-axis, other variable (Y) plotted on y -axis
- Linear regression determines "best" line through (X, Y) pairs

$$
Y=b_{0}+b_{1} X
$$

- Correlation describes the "tightness" of the linear fit

$$
-1 \leq r \leq 1
$$

Basic Computations

- Have n pairs of (x, y) values
- Univariate summary statistics needed for analysis

Statistic	X	Y
Mean	\bar{x}	\bar{y}
Sum of Squares	$\mathrm{S}_{x x}=\sum(x-\bar{x})^{2}$	$\mathrm{~S}_{y y}=\sum(y-\bar{y})^{2}$
Std Deviation	$s_{x}=\sqrt{\frac{\mathrm{S}_{x x}}{n-1}}$	$s_{y}=\sqrt{\frac{\mathrm{S}_{y y}}{n-1}}$

- Also need joint summary statistic

$$
\mathrm{S}_{x y}=\sum(x-\bar{x})(y-\bar{y})
$$

Basic Computations

- Sign of $S_{x y}$ indicates direction of trend
- $(x-\bar{x})(y-\bar{y})$ positive
$-x>\bar{x}$ and $y>\bar{y}$
$-x<\bar{x}$ and $y<\bar{y}$
- $(x-\bar{x})(y-\bar{y})$ negative
$-x>\bar{x}$ and $y<\bar{y}$
$-x<\bar{x}$ and $y>\bar{y}$

Least Squares Estimation

- Many different ways to fit line
- Need criterion to assess "best" fit
- The least squares criterion estimates are

$$
b_{1}=\frac{\mathrm{S}_{x y}}{\mathrm{~S}_{x x}} \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

- Estimates also labeled $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$

Least Squares Estimation

- Given $b_{0} \& b_{1}$, the predicted value for x^{\star}

$$
\hat{y}=b_{0}+b_{1} x^{\star}
$$

- Residual is $y-\widehat{y}$ and represents the vertical distance of y from fitted line
- Least squares minimizes the sum of these squared residuals

$$
\mathrm{SSE}=\sum(y-\widehat{y})^{2}
$$

- Can show estimates result in

$$
\mathrm{SSE}=\mathrm{S}_{y y}-\frac{\mathrm{S}_{x y}^{2}}{\mathrm{~S}_{x x}}
$$

Residual Standard Deviation

- Describes the "closeness" of the data to fitted line
- How far above/below line y 's tend to be
- Std deviation based on squared residuals

$$
\widehat{\sigma}^{2}=s^{2}=\frac{\mathrm{SSE}}{n-2}=\frac{\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2}
$$

- Similar to s_{y} estimate except for \hat{y}_{i} and $n-2$
- Use $n-2$ because variation about line (i.e., we're using \widehat{y}_{i} not \bar{y} as the predicted value)
- Normal \rightarrow approx 95% of obs within $\pm 2 s$

Linear Model of X and Y

- Want to generalize sample to population
- Assume for value of X, can observe diff values of Y
- If X indicates trt, similar to ANOVA
- Dist of Y 's assumed Normal with unknown mean
- Given X, have conditional dist of Y
- Model mean of $Y \mid X=x$ as linear function

$$
\begin{gathered}
\mathrm{E}(Y \mid X=x)=\beta_{0}+\beta_{1} x \\
\downarrow \\
Y \mid X=x \sim \mathrm{~N}\left(\beta_{0}+\beta_{1} x, \sigma^{2}\right)
\end{gathered}
$$

Prediction

Assumptions

- The conditional distribution of Y is

Normally Distributed

$$
\begin{aligned}
& \mu_{Y \mid X=x}=\beta_{0}+\beta_{1} x \\
& \left.\sigma_{Y \mid X=x} \text { constant (can drop } X=x\right)
\end{aligned}
$$

- Consider ANOVA problem
- Assume mean depends on treatment group
- Assume constant variance
- ANOVA just special case of regression
- Recall predicted value for $X=x_{o}$ is

$$
\hat{y}=b_{0}+b_{1} x_{o}
$$

- Must use caution in interpretation of \widehat{y}
- If x_{o} within range of x 's interpolation
- If x_{o} outside range of x 's \rightarrow extrapolation
- Extrapolation should be avoided
- No assurances still linear outside range

Prediction

- Standard error of \hat{y} depends on whether estimating
a Conditional mean \rightarrow point on regression line
b Future observation \rightarrow point may vary from line

$$
\sqrt{s^{2}\left(\frac{1}{n}+\frac{\left(x_{o}-\bar{x}\right)^{2}}{S_{x x}}\right)} \quad \sqrt{s^{2}\left(1+\frac{1}{n}+\frac{\left(x_{o}-\bar{x}\right)^{2}}{S_{x x}}\right)}
$$

- Similar argument to confidence interval vs prediction interval

Example

Recall the VO_{2} Max example. Construct a $95 \% \mathrm{CI}$ for the mean VO_{2} level when a healthy adult exercises for 10.5 minutes.

First, need to estimate the regression line. The summary statistics necessary for this calculation are shown below.

$$
\begin{array}{ccc}
\sum y=489 & \sum x=83.1 \\
\sum y^{2}=31023 & \sum x y=5030.8 & \sum x^{2}=865.43
\end{array}
$$

From these,
$\mathrm{S}_{y y}=31023-489^{2} / 8=1132.88$
$\mathrm{S}_{x x}=865.43-83.1^{2} / 8=2.23$
$\mathrm{S}_{x y}=5030.8-489(83.1) / 8=-48.69$
so
$b_{1}=-48.69 / 2.23=-21.84$
and
$b_{0}=(489 / 8)+21.84(83.1 / 8)=288.0$

The table below computes the pred values and residuals

x	y	Predicted	Residual	$(y-\widehat{y})^{2}$
9.5	82	80.520	1.480	2.190
9.9	74	71.784	2.216	4.917
10.2	63	65.232	-2.232	4.982
10.0	65	69.600	-4.600	21.160
10.7	58	54.312	3.688	13.601
11.0	44	47.760	-3.760	14.138
10.8	55	52.128	2.872	8.248
11.0	48	47.760	0.240	0.058
83.1	489		0.000	69.288

Since SSE $=69.288, s=\sqrt{69.288 / 6}=3.40$.
The pred value for $x=10.5$ is $288.0-21.84(10.5)=58.68$. Interested in the average VO_{2} level, so

$$
\mathrm{SE}(\hat{y})=3.40 \sqrt{\frac{1}{8}+\frac{(10.5-10.3875)^{2}}{2.23}}=1.23
$$

Because we use s, the df is 6 so a $95 \% \mathrm{CI}$ is

$$
58.68 \pm 2.447(1.23)=(55.67,61.69)
$$

An interval which 95% of the time would contain the observed y for a person exercising $x=10.5$ minutes is

$$
58.68 \pm 2.447(3.615)=(49.83,67.53)
$$

Standard Error of b_{1}

- As with all estimates, b_{1} subject to sampling error
- Standard error of b_{1}

$$
\mathrm{s}_{b_{1}}=\sqrt{\frac{s^{2}}{\mathrm{~S}_{x x}}}
$$

- In situations where X^{\prime} 's are under experimental control

If $\mathrm{S}_{x x}$ made large \rightarrow small SE
Increase $\mathrm{S}_{x x}$ by increasing dispersion of x (spread out)

If increase $n \rightarrow \mathrm{~S}_{x x}$ increases

Inference of β_{1}

- Need sampling distribution to construct CI or perform hypothesis test
- Given normality assumption, sampling distribution of b_{1} is also normal

CI: $b_{1} \pm t_{\alpha} \mathrm{S}_{b_{1}}$ ($\mathrm{df}=n-2$)
Hypothesis test

$$
\begin{gathered}
H_{0}: \beta_{1}=\beta_{1}^{\star} \\
t_{s}=\frac{b_{1}-\beta_{1}^{*}}{s_{l_{1}}}
\end{gathered}
$$

- Can look at $\beta_{1}=0$ to see if there is a linear association

Standard Error of b_{0}

- Sometimes interested in intercept β_{0}
- Standard error of b_{0}

$$
\mathrm{s}_{b_{0}}=\sqrt{s^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\mathrm{~S}_{x x}}\right)}
$$

- In situation where X is under experimental control

$$
\text { If } \mathrm{S}_{x x} \text { made large } \rightarrow \text { small SE }
$$

Increase $\mathrm{S}_{x x}$ by increasing dispersion

If \bar{x} close to zero \rightarrow small SE

If increase $n \rightarrow$ increase SS_{X}

Inference of β_{0}

- Need sampling distribution to construct CI or perform hypothesis test
- Given normality assumption, sampling distribution of b_{0} is also normal

CI: $b_{0} \pm t_{\alpha} \mathrm{S}_{b_{0}}(\mathrm{df}=n-2)$
Hypothesis tests

$$
\begin{gathered}
H_{0}: \beta_{0}=\beta_{0}^{\star} \\
t_{s}=\frac{b_{0}-\beta_{0}^{*}}{S_{t_{0}}}
\end{gathered}
$$

- Can compute joint confidence regions using F dist

Example

Recall the VO_{2} Max problem. The standard errors for both b_{0} and b_{1} are

$$
\begin{aligned}
& \mathrm{s}_{b_{1}}=\sqrt{\frac{(69.288 / \sigma)}{2.23}}=2.27 \\
& \mathrm{~s}_{b_{0}}=\sqrt{(69.288 / 6)\left(\frac{1}{8}+\frac{(83.1 / 8)^{2}}{2.23}\right)}=23.67
\end{aligned}
$$

The 95\% CI are

$$
\begin{array}{r}
-21.84 \pm 2.447(2.27)=(-27.39,-16.29) \\
288.0 \pm 2.447(23.67)=(230.08,345.92)
\end{array}
$$

Since 0 is not in the CI for β_{1}, we can say that there is a linear association and it is a negative association. As the amount of exercise increases, there is a decrease in the VO_{2} max.
We must be careful interpreting anything outside of the x range. We should not feel comfortable saying that the VO_{2} max at rest is somewhere between 230.08 and 345.92 with 95% confidence.

The Correlation Coefficient

- Describes how close the data cluster about the line
- Describe direction and "tightness"
- Correlation coefficient is a dimensionless statistic

$$
r=\frac{\mathrm{S}_{x y}}{\sqrt{\mathrm{~S}_{x x} \mathrm{~S}_{y y}}}
$$

- Symmetry - can interchange X and Y with altering the value

The Correlation Coefficient

- Properties
$-r$ has same sign as b_{1}
- r^{2} known as coefficient of determination. \% of total variation in Y explained by regression

$$
r^{2}=1-\frac{\mathrm{SSE}}{\mathrm{SS}_{Y}}
$$

- If straight line fit \rightarrow SSE $=0$

$$
r= \pm 1 \text { and } r^{2}=100 \%
$$

- If no linear association \rightarrow SSE $=\mathrm{SS}_{Y}$
$r=0$ and $r^{2}=0 \%$

Coefficient of Determination

Hypothesis Test for ρ

Determines \% of variability in Y explained by linear relationship with X

$$
r^{2}=1-\frac{\mathrm{SSE}}{\mathrm{SST})}
$$

- Can use r^{2} to approximate reduction in std dev

$$
\frac{s}{s_{Y}} \approx \sqrt{1-r^{2}}
$$

- Prior to regression, the std dev of Y is s_{Y}
- After regressing X on Y the std dev is s
- $\sqrt{1-r^{2}}$ approx reduction in std dev (i.e., closeness)

Confidence Interval for ρ

- If sample size large, can construct CI for ρ
- Based on Fisher transformation of r
$V=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right) \approx \mathrm{N}\left(\frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho}\right), \frac{1}{n-3}\right)$
- Construct CI for V, then convert back to CI for ρ

$$
\begin{aligned}
& c_{1}=v-z_{\alpha / 2} \frac{1}{\sqrt{n-3}} \\
& c_{2}=v+z_{\alpha / 2} \frac{1}{\sqrt{n-3}}
\end{aligned}
$$

$$
\left(\frac{\exp \left(2 c_{1}\right)-1}{\exp \left(2 c_{1}\right)+1}, \frac{\exp \left(2 c_{2}\right)-1}{\exp \left(2 c_{2}\right)+1}\right)
$$

Example - Transformation

(Bates and Watts: Nonlinear Regression) Consider the data set used to describe the relationship between "velocity" of an enzymatic reaction (V) and the substrate concentration (C). Consider only the experiment where the enzyme is treated with Puromycin.

The common model used to describe the relationship between "velocity" and concentration is the MichaelisMenten model

$$
V=\frac{\theta_{1} C}{\theta_{2}+C}
$$

where θ_{1} is the maximum velocity of the reaction and θ_{2} describes how quickly (in terms of increasing concentration) the reaction will reach maximum velocity.

Scatterplot

Since this is a non-linear model, one approach is to transform the variables so that a linear relationship exists. While this usually works quite well, one must be aware that the transformation changes the distribution of the data.

For example, with this model, we can rewrite it as a linear model if we look at the inverse concentration and inverse velocity.

$$
\frac{1}{V}=\frac{1}{\theta_{1}}+\frac{\theta_{2}}{\theta_{1}}\left(\frac{1}{C}\right)
$$

One must be careful with this transformation for two reasons. First, since we are looking at inverse concentrations, very low concentrations will be highly influential in the regression analysis. Second, the equal variance assumption is often violated. The variance violation is more easily picked up when there are replicates. Also notice that the two observations at a very low concentration are now much further separated from the others making these observations more influential.

Since the variance appears constant in the untransformed plot, the better way to estimate the parameters is to use non-linear estimation methods. These procedures are beyond the scope of the class but one could view it as an iterative least squares approach where some initial estimates of the parameters are given, the predicted values are calculated using the untransformed model, and new parameter estimates are proposed until the residual sum of squares decreases to a minimum. The two plots below show the fitted line in reference to the original data using both the linear and non-linear approaches.

Method	$\hat{\theta}_{1}$	$\hat{\theta}_{2}$
Regression	195.80	0.0484
Non-Linear	212.70	0.0641

Concentration

SAS Proc Reg

option nocenter ls=75;
goptions color=('none');
PROC IMPORT OUT=EXAMPLE
DATAFILE= "U:\.WWw\datasets511\exp12-01.xls"
DBMS=EXCEL2000 REPLACE;
GETNAMES=YES;
RUN ;
proc gplot data=example;

```
plot y_*x_;
```

run;
proc reg data=example;

model $y_{-}=x_{-} / \operatorname{clb}$ clm cli p r;

output out=a2 p=pred r=resid;
proc gplot data=a2;
plot resid*x_/ vref=0;
run;

