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and Correlation
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Professor Bruce Craig

Background Reading

Devore : Section 12.1 - 12.5
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Overview

• Consider one population but two variables

• For each sampling unit observe X and Y

• Assume linear relationship between variables

• Regression/correlation assess association

• Relationship may be non-linear but linear

in a particular region

• Can often transform Y and/or X to create
linear association

– Dose-response curve: Response with log(dose)

– Lineweaver-Burk: 1/velocity with 1/concen

22-1

Overview

• A scatter plot allows visual assessment of
relationship

• One variable (X) plotted on x-axis, other
variable (Y ) plotted on y-axis

• Linear regression determines “best” line through
(X, Y ) pairs

Y = b0 + b1X

• Correlation describes the “tightness” of the
linear fit

−1 ≤ r ≤ 1
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Scatter Plot Example

The VO2 max readings for 8 healthy adults following
exercise are recorded. Does it appear that VO2 max de-
creases with an increase in activity? Create a scatterplot
to investigate the relationship.

Subject VO2 Max Duration of Exercise
1 82 9.5
2 74 9.9
3 63 10.2
4 65 10.0
5 58 10.7
6 44 11.0
7 55 10.8
8 48 11.0
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Basic Computations

• Have n pairs of (x, y) values

• Univariate summary statistics needed for

analysis

Statistic X Y
Mean x y
Sum of Squares Sxx =

∑
(x − x)2 Syy =

∑
(y − y)2

Std Deviation sx =
√

Sxx

n−1
sy =

√
Syy

n−1

• Also need joint summary statistic

Sxy =
∑

(x − x)(y − y)
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Basic Computations

• Sign of Sxy indicates direction of trend

• (x − x)(y − y) positive

– x > x and y > y

– x < x and y < y

• (x − x)(y − y) negative

– x > x and y < y

– x < x and y > y
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Least Squares Estimation

• Many different ways to fit line

• Need criterion to assess “best” fit

• The least squares criterion estimates are

b1 =
Sxy

Sxx
b0 = y − b1x

• Estimates also labeled β̂0 and β̂1
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Least Squares Estimation

• Given b0 & b1, the predicted value for x?

ŷ = b0 + b1x
?

• Residual is y− ŷ and represents the vertical
distance of y from fitted line

• Least squares minimizes the sum of these
squared residuals

SSE =
∑

(y − ŷ)2

• Can show estimates result in

SSE = Syy −
S2

xy

Sxx
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Residual Standard Deviation

• Describes the “closeness” of the data to
fitted line

• How far above/below line y’s tend to be

• Std deviation based on squared residuals

σ̂2 = s2 =
SSE

n − 2
=

∑
(yi − ŷi)

2

n − 2

• Similar to sy estimate except for ŷi and n−2

• Use n−2 because variation about line (i.e.,
we’re using ŷi not y as the predicted value)

• Normal → approx 95% of obs within ±2s
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Linear Model of X and Y

• Want to generalize sample to population

• Assume for value of X, can observe diff
values of Y

– If X indicates trt, similar to ANOVA

– Dist of Y ’s assumed Normal with unknown mean

• Given X, have conditional dist of Y

• Model mean of Y |X = x as linear function

E(Y |X = x) = β0 + β1x

↓
Y |X = x ∼ N(β0 + β1x, σ2)

22-9

Assumptions

• The conditional distribution of Y is

Normally Distributed

µY |X=x = β0 + β1x

σY |X=x constant (can drop X = x)

• Consider ANOVA problem

– Assume mean depends on treatment group

– Assume constant variance

• ANOVA just special case of regression
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Prediction

• Recall predicted value for X = xo is

ŷ = b0 + b1xo

• Must use caution in interpretation of ŷ

• If xo within range of x’s → interpolation

• If xo outside range of x’s → extrapolation

• Extrapolation should be avoided

– No assurances still linear outside range
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Prediction

• Standard error of ŷ depends on whether

estimating

a Conditional mean → point on regression

line

b Future observation → point may vary

from line

(a) (b)√
s2

(
1

n
+

(xo − x)2

Sxx

) √
s2

(
1 +

1

n
+

(xo − x)2

Sxx

)

• Similar argument to confidence interval vs

prediction interval
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Example

Recall the VO2 Max example. Construct a 95% CI for
the mean VO2 level when a healthy adult exercises for
10.5 minutes.

First, need to estimate the regression line. The sum-
mary statistics necessary for this calculation are shown
below.∑

y = 489
∑

x = 83.1∑
y2 = 31023

∑
xy = 5030.8

∑
x2 = 865.43

From these,

Syy = 31023 − 4892/8 = 1132.88

Sxx = 865.43 − 83.12/8 = 2.23

Sxy = 5030.8 − 489(83.1)/8 = −48.69

so

b1 = −48.69/2.23 = −21.84

and

b0 = (489/8) + 21.84(83.1/8) = 288.0

22-13

The table below computes the pred values and residuals

x y Predicted Residual (y − ŷ)2

9.5 82 80.520 1.480 2.190
9.9 74 71.784 2.216 4.917
10.2 63 65.232 -2.232 4.982
10.0 65 69.600 -4.600 21.160
10.7 58 54.312 3.688 13.601
11.0 44 47.760 -3.760 14.138
10.8 55 52.128 2.872 8.248
11.0 48 47.760 0.240 0.058
83.1 489 0.000 69.288

Since SSE = 69.288, s =
√

69.288/6 = 3.40.

The pred value for x = 10.5 is 288.0−21.84(10.5) = 58.68.

Interested in the average VO2 level, so

SE(ŷ)=3.40
√

1
8
+ (10.5−10.3875)2

2.23
= 1.23.

Because we use s, the df is 6 so a 95% CI is

58.68 ± 2.447(1.23) = (55.67,61.69).

An interval which 95% of the time would contain the
observed y for a person exercising x = 10.5 minutes is

58.68 ± 2.447(3.615) = (49.83,67.53).
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Standard Error of b1

• As with all estimates, b1 subject to sam-

pling error

• Standard error of b1

sb1
=

√
s2

Sxx

• In situations where X’s are under experi-
mental control

If Sxx made large → small SE

Increase Sxx by increasing dispersion of x (spread
out)

If increase n → Sxx increases
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Inference of β1

• Need sampling distribution to construct CI

or perform hypothesis test

• Given normality assumption, sampling dis-

tribution of b1 is also normal

CI: b1 ± tαsb1
(df =n − 2)

Hypothesis test

H0 : β1 = β?
1

ts = b1−β?
1

sb1

• Can look at β1 = 0 to see if there is a linear

association
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Standard Error of b0

• Sometimes interested in intercept β0

• Standard error of b0

sb0
=

√
s2

(
1

n
+

x2

Sxx

)

• In situation where X is under experimental
control

If Sxx made large → small SE

Increase Sxx by increasing dispersion

If x close to zero → small SE

If increase n → increase SSX
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Inference of β0

• Need sampling distribution to construct CI

or perform hypothesis test

• Given normality assumption, sampling dis-

tribution of b0 is also normal

CI: b0 ± tαsb0
(df= n − 2)

Hypothesis tests

H0 : β0 = β?
0

ts = b0−β?
0

sb0

• Can compute joint confidence regions us-

ing F dist
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Example

Recall the VO2 Max problem. The standard errors for
both b0 and b1 are

sb1
=

√
(69.288/6)

2.23
= 2.27

sb0
=

√
(69.288/6)(

1

8
+

(83.1/8)2

2.23
) = 23.67

The 95% CI are

−21.84 ± 2.447(2.27) = (−27.39,−16.29)
288.0 ± 2.447(23.67) = (230.08,345.92)

Since 0 is not in the CI for β1, we can say that there is
a linear association and it is a negative association. As
the amount of exercise increases, there is a decrease in
the VO2 max.

We must be careful interpreting anything outside of the
x range. We should not feel comfortable saying that
the VO2 max at rest is somewhere between 230.08 and
345.92 with 95% confidence.
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The Correlation Coefficient

• Describes how close the data cluster about

the line

• Describe direction and ”tightness”

• Correlation coefficient is a dimensionless

statistic

r =
Sxy√
SxxSyy

• Symmetry - can interchange X and Y with

altering the value
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The Correlation Coefficient

• Properties

– r has same sign as b1

– r2 known as coefficient of determination. % of
total variation in Y explained by regression

r2 = 1 − SSE

SSY

– If straight line fit → SSE = 0

r = ±1 and r2 = 100%

– If no linear association → SSE = SSY

r = 0 and r2 = 0%
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Coefficient of Determination

Determines % of variability in Y explained by
linear relationship with X

r2 = 1 − SSE

SST)

• Can use r2 to approximate reduction in std
dev

s

sY
≈
√

1 − r2

• Prior to regression, the std dev of Y is sY

• After regressing X on Y the std dev is s

•
√

1 − r2 approx reduction in std dev (i.e.,
closeness)
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Hypothesis Test for ρ

• r is sample correlation coefficient

• Use ρ to denote the pop correlation coef-
ficient

• Under linear model with normal errors

ρ = β1
σX

σY
→ b1

√
SSX

SSY
= r

• Can do t-test to see if population linear
association (same as H0 : β1 = 0)

ts = r

√
n − 2

1 − r2
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Confidence Interval for ρ

• If sample size large, can construct CI for ρ

• Based on Fisher transformation of r

V =
1

2
ln
(
1 + r

1 − r

)
≈ N

(
1

2
ln

(
1 + ρ

1 − ρ

)
,

1

n − 3

)

• Construct CI for V , then convert back to
CI for ρ

c1 = v − zα/2
1√

n − 3

c2 = v + zα/2
1√

n − 3
↓

(
exp(2c1) − 1

exp(2c1) + 1
,
exp(2c2) − 1

exp(2c2) + 1

)
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Example - Transformation

(Bates and Watts: Nonlinear Regression) Consider the
data set used to describe the relationship between “ve-
locity” of an enzymatic reaction (V ) and the substrate
concentration (C). Consider only the experiment where
the enzyme is treated with Puromycin.

The common model used to describe the relationship
between “velocity” and concentration is the Michaelis-
Menten model

V =
θ1C

θ2 + C

where θ1 is the maximum velocity of the reaction and
θ2 describes how quickly (in terms of increasing concen-
tration) the reaction will reach maximum velocity.
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Scatterplot
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Since this is a non-linear model, one approach is to
transform the variables so that a linear relationship ex-
ists. While this usually works quite well, one must be
aware that the transformation changes the distribution
of the data.

For example, with this model, we can rewrite it as a
linear model if we look at the inverse concentration and
inverse velocity.

1

V
=

1

θ1
+

θ2

θ1

(
1

C

)

One must be careful with this transformation for two
reasons. First, since we are looking at inverse con-
centrations, very low concentrations will be highly in-
fluential in the regression analysis. Second, the equal
variance assumption is often violated. The variance vi-
olation is more easily picked up when there are repli-
cates. Also notice that the two observations at a very
low concentration are now much further separated from
the others making these observations more influential.
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Since the variance appears constant in the untrans-
formed plot, the better way to estimate the parameters
is to use non-linear estimation methods. These proce-
dures are beyond the scope of the class but one could
view it as an iterative least squares approach where
some initial estimates of the parameters are given, the
predicted values are calculated using the untransformed
model, and new parameter estimates are proposed until
the residual sum of squares decreases to a minimum.
The two plots below show the fitted line in reference
to the original data using both the linear and non-linear
approaches.

Method θ̂1 θ̂2

Regression 195.80 0.0484
Non-Linear 212.70 0.0641
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SAS Proc Reg

option nocenter ls=75;
goptions color=(’none’);

PROC IMPORT OUT=EXAMPLE
DATAFILE= "U:\.www\datasets511\exp12-01.xls"
DBMS=EXCEL2000 REPLACE;

GETNAMES=YES;
RUN;

proc gplot data=example;
plot y_*x_;

run;

proc reg data=example;
model y_=x_ / clb clm cli p r;
output out=a2 p=pred r=resid;

proc gplot data=a2;
plot resid*x_/ vref=0;

run;
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Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 39.68595 39.68595 418.32 <.0001
Error 28 2.65634 0.09487
Corrected Total 29 42.34230

Root MSE 0.30801 R-Square 0.9373
Dependent Mean 2.84033 Adj R-Sq 0.9350
Coeff Var 10.84411

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 -0.39774 0.16801 -2.37 0.0251
x_ 1 3.07997 0.15059 20.45 <.0001

Parameter Estimates
Variable DF 95% Confidence Limits
Intercept 1 -0.74189 -0.05359
x_ 1 2.77150 3.38843
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Output Statistics

Dep Var Predicted Std Error
Obs y_ Value Mean Predict 95% CL Mean

1 1.0200 0.8342 0.1131 0.6027 1.0658
2 1.2100 0.8958 0.1105 0.6696 1.1221
3 0.8800 1.0806 0.1028 0.8701 1.2912
4 0.9800 1.1730 0.0990 0.9702 1.3759
5 1.5200 1.3578 0.0917 1.1699 1.5458
6 1.8300 1.4502 0.0882 1.2695 1.6309
7 1.5000 1.7582 0.0772 1.6001 1.9164

Std Error Student
Obs 95% CL Predict Residual Residual Residual -2-1 0 1 2

1 0.1622 1.5063 0.1858 0.287 0.648 | |* |
2 0.2256 1.5661 0.3142 0.288 1.093 | |** |
3 0.4155 1.7458 -0.2006 0.290 -0.691 | *| |
4 0.5103 1.8358 -0.1930 0.292 -0.662 | *| |
5 0.6995 2.0162 0.1622 0.294 0.552 | |* |
6 0.7939 2.1065 0.3798 0.295 1.287 | |** |
7 1.1078 2.4087 -0.2582 0.298 -0.866 | *| |
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