

General Concepts

Topic 10 - Point Estimation

STAT 511

Professor Bruce Craig

Background Reading

Devore : Section 6.1 - 6.2

- **Inference:** Drawing some type of conclusion about one or more parameters (i.e., parameter characteristics)

Characteristic	Population	Sample
Mean	μ	\bar{x}
Variance	σ^2	s^2
Proportion	p	\hat{p}

- A **point estimate** of parameter θ
 - Based on selecting a suitable statistic
 - Single numeric value computed from sample data
- Chosen statistic called a **point estimator**

10

10-1

Choice of Estimator

- Numerous estimators for each parameter
- For example

Problem #1: Interested in estimating the average flexural strength of concrete beams. If strength distribution relatively symmetric we could use the following estimators

- Sample mean : \bar{X}
- Sample median : \tilde{X}
- $.5\text{Max}(X) + .5\text{Min}(X)$
- How do we choose the “most suitable” ?

10-2

Unbiased Estimator

- Estimator $\hat{\theta}$ said to be unbiased if $E(\hat{\theta}) = \theta$
- **Bias** defined to be $E(\hat{\theta}) - \theta$
- Proposition
 - If X_i ’s from distribution with mean μ , then \bar{X} is unbiased estimator of μ . If distribution **continuous and symmetric**, then \tilde{X} , $.5\text{Max}(X) + .5\text{Min}(X)$, and trimmed means also unbiased estimators.
 - Bias looks only at accuracy
 - Likely want to factor in precision

10-3

Unbiased Estimator

- Have shown $E(\hat{p}) = E(X/n) = p$ ($X \sim \text{Bin}(n, p)$)
- What about S^2 ?

If X_i have mean μ and variance σ^2

$$\begin{aligned} E(S^2) &= E\left(\frac{\sum (X_i - \bar{X})^2}{n-1}\right) \\ &= E\left(\frac{1}{n-1} \left[\sum X_i^2 - n\bar{X}^2 \right] \right) \\ &= \frac{1}{n-1} \left[\sum E(X_i^2) - nE(\bar{X}^2) \right] \\ &= \frac{1}{n-1} \left[\sum (\sigma^2 + \mu^2) - n(\sigma^2/n + \mu^2) \right] \\ &= \sigma^2 \end{aligned}$$

10-4

Precision of Estimator

- Estimator a random variable
 - Has mean and variance
- Use precision to choose estimator
- Among all unbiased estimators, choose the one that has minimum variance
- Estimator known as minimum variance unbiased estimator (**MVUE**)

10-5

Precision of Estimator

- Back to Problem # 1 : If X_i 's a sample from $N(\mu, \sigma)$. Can show \bar{X} is MVUE
- Does **not** mean \bar{X} always the best
 - If $X_i \sim \text{Uniform}(a, b)$, then $.5\text{Max}(X) + .5\text{Min}(X)$ is the MVUE
 - If $X_i \sim \text{Cauchy}$, then \tilde{X} is the MVUE
 - Trimmed mean does well in all cases but not MVUE

10-6

Standard Error

- The standard deviation of a estimator is known as the **standard error**

$$\sigma_\theta = \sqrt{V(\hat{\theta})}$$

- If σ_θ depends on unknown parameters, plug in estimates
- Known as estimated standard error

$$\hat{\sigma}_\theta = s_\theta = \sqrt{\hat{V}(\hat{\theta})}$$

- Example: If X_i Normal with μ unknown, standard error of \bar{X} is σ/\sqrt{n} . If σ also unknown, then the estimated standard error is s/\sqrt{n}

10-7

Bootstrapping

- When $f(x)$ unknown or $\hat{\theta}$ sufficiently complicated, may not be able to obtain an expression for s_{θ}
- The bootstrap is a computer intensive method to address this problem
 - Parametric bootstrap
 - Nonparametric bootstrap
- Generate B “new” samples of size n and compute $\hat{\theta}$ for each sample
- Standard error estimated with

$$S_{\theta} = \sqrt{\frac{1}{B-1} \sum (\hat{\theta}_i^* - \bar{\theta}^*)^2}$$

10-8

Bootstrapping

- Consider Example 6.10
- 1. Parametric bootstrap
 - Estimate λ from sample of $n = 10$ obs
 - Generate B new samples from $\text{Exp}(\bar{\lambda})$
- 2. Nonparametric bootstrap
 - Don't assume distribution $f(x)$
 - Use data sample to represent distribution
 - Sample **with replacement** from sample
 - Generate B new samples

10-9

Methods of Estimation

- Method of Moments

The k th moment of $f(x)$ is $E(X^k)$

The k th sample moment is $\sum x^k/n$

If m unknown parameters, equate the first m sample moments with the first m moments

- Example: $X_i \sim N(\mu, \sigma^2)$

$$\begin{aligned} \sum X/n &= E(X) = \mu \\ \sum X^2/n &= E(X^2) = \sigma^2 + \mu^2 \end{aligned}$$

$\hat{\mu} = \bar{X}$ and $\hat{\sigma} = \sqrt{\sum (X_i - \bar{X})^2/n}$

10-10

Methods of Estimation

- Maximum Likelihood

Strongly recommended when n large

Define $f_1 = f(x_1)$

Likelihood function $L = f_1 \times f_2 \times \dots \times f_n$

Find θ 's which maximize L

- Example: $X_i \sim N(\mu, \sigma^2)$

$$L = \left(\frac{1}{2\pi\sigma^2} \right)^{\frac{n}{2}} \exp \left(-\sum (x_i - \mu)^2 / 2\sigma^2 \right)$$

$\hat{\mu} = \bar{X}$ and $\hat{\sigma} = \sqrt{\sum (X_i - \bar{X})^2/n}$

10-11

MLE Properties

- Invariance property

- Let $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m$ be the MLEs for parameters $\theta_1, \theta_2, \dots, \theta_m$.
- The MLE of $h(\theta_1, \theta_2, \dots, \theta_m)$ is the function $h(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m)$.

- Large sample behavior

- In many situations, the MLE is approximately unbiased and has variance nearly as small as the MVUE
- Distribution of MLE approximately normal

10-12

Example : Problem #22

Let X denote the proportion of allotted time that a student spends on an aptitude test. Suppose the pdf of X is

$$f(x; \theta) = (\theta + 1)x^\theta \text{ for } 0 \leq x \leq 1$$

1. Use the method of moments to estimate θ

$$\begin{aligned} E(X) &= \int_0^1 x(\theta + 1)x^\theta dx \\ &= \left(\frac{\theta + 1}{\theta + 2} \right) x^{\theta+2} \Big|_0^1 \\ &= \left(\frac{\theta + 1}{\theta + 2} \right) \end{aligned}$$

$$\begin{aligned} \bar{X} &= \left(\frac{\theta + 1}{\theta + 2} \right) \\ &= 1 - 1/(\theta + 2) \\ &\downarrow \\ \hat{\theta} &= \frac{1}{1 - \bar{X}} - 2 \end{aligned}$$

10-13

Example : Problem #22

Let X denote the proportion of allotted time that a student spends on an aptitude test. Suppose the pdf of X is

$$f(x; \theta) = (\theta + 1)x^\theta \text{ for } 0 \leq x \leq 1$$

2. Obtain the MLE of θ

$$\begin{aligned} L &= (\theta + 1)^n \prod X_i^\theta \\ \log(L) &= n \log(\theta + 1) + \theta \sum \log X_i \end{aligned}$$

To maximize $\log(L)$, take derivative with respect to θ and set equal to zero

$$\begin{aligned} \frac{\partial \log(L)}{\partial \theta} &= 0 \\ &= \frac{n}{\theta + 1} + \sum \log X_i \\ &\downarrow \\ \hat{\theta} &= \frac{n}{\sum \log X_i} - 1 \end{aligned}$$

10-14