
Topic 10 - Point Estimation

STAT 511

Professor Bruce Craig

Background Reading

Devore : Section 6.1 - 6.2
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General Concepts

• Inference: Drawing some type of conclu-

sion about one or more parameters (i.e.,

parameter characteristics)

Characteristic Population Sample
Mean µ x

Variance σ2 s2

Proportion p p̂

• A point estimate of parameter θ

– Based on selecting a suitable statistic

– Single numeric value computed from sample data

• Chosen statistic called a point estimator
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Choice of Estimator

• Numerous estimators for each parameter

• For example

Problem #1: Interested in estimating the
average flexural strength of concrete

beams. If strength distribution relatively
symmetric we could use the following

estimators

– Sample mean : X

– Sample median : X̃

– .5Max(X) + .5Min(X)

• How do we choose the “most suitable”?
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Unbiased Estimator

• Estimator θ̂ said to be unbiased if E(θ̂) = θ

• Bias defined to be E(θ̂) − θ

• Proposition

If Xi’s from distribution with mean µ, then
X is unbiased estimator of µ. If distribu-
tion continuous and symmetric, then X̃,
.5Max(X) + .5Min(X), and trimmed means
also unbiased estimators.

• Bias looks only at accuracy

• Likely want to factor in precision
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Unbiased Estimator

• Have shown E(p̂) = E(X/n) = p (X ∼ Bin(n, p))

• What about S2?

If Xi have mean µ and variance σ2

E(S2) = E

(∑
(Xi − X)2

n − 1

)

= E

(
1

n − 1

[∑
X2

i − nX2
])

=
1

n − 1

[∑
E(X2

i ) − nE(X2)
]

=
1

n − 1

[∑
(σ2 + µ2) − n(σ2/n + µ2)

]
= σ2
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Precision of Estimator

• Estimator a random variable

– Has mean and variance

• Use precision to choose estimator

• Among all unbiased estimators, choose the

one that has minimum variance

• Estimator known as minimum variance un-

biased estimator (MVUE)
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Precision of Estimator

• Back to Problem # 1 : If Xi’s a sample

from N(µ, σ). Can show X is MVUE

• Does not mean X always the best

– If Xi ∼ Uniform(a, b), then .5Max(X)+.5Min(X)
is the MVUE

– If Xi ∼ Cauchy, then X̃ is the MVUE

– Trimmed mean does well in all cases but not
MVUE
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Standard Error

• The standard deviation of a estimator is
known as the standard error

σθ =
√

V (θ̂)

• If σθ depends on unknown parameters, plug
in estimates

• Known as estimated standard error

σ̂θ = sθ =
√

V̂ (θ̂)

• Example: If Xi Normal with µ unknown,
standard error of X is σ/

√
n. If σ also un-

known, then the estimated standard error
is s/

√
n
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Bootstrapping

• When f(x) unknown or θ̂ sufficiently com-
plicated, may not be able to obtain an ex-
pression for sθ

• The bootstrap is a computer intensive method
to address this problem

– Parametric bootstrap

– Nonparametric bootstrap

• Generate B “new” samples of size n and
compute θ̂ for each sample

• Standard error estimated with

Sθ =

√
1

B − 1

∑
(θ̂?

i − θ?)2
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Bootstrapping

• Consider Example 6.10

1. Parametric bootstrap

– Estimate λ from sample of n = 10 obs

– Generate B new samples from Exp(λ̂)

2. Nonparametric bootstrap

– Don’t assume distribution f(x)

– Use data sample to represent distribution

– Sample with replacement from sample

– Generate B new samples
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Methods of Estimation

• Method of Moments

The kth moment of f(x) is E(Xk)

The kth sample moment is
∑

xk/n

If m unknown parameters, equate the first
m sample moments with the first m mo-
ments

• Example: Xi ∼ N(µ, σ)

∑
X/n = E(X) = µ∑

X2/n = E(X2) = σ2 + µ2

µ̂ = X and σ̂ =
√∑

(Xi − X)2/n
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Methods of Estimation

• Maximum Likelihood

Strongly recommended when n large

Define f1 = f(x1)

Likelihood function L = f1 × f2 × · · · × fn

Find θ’s which maximize L

• Example: Xi ∼ N(µ, σ)

L =

(
1

2πσ2

)n

2

exp (−
∑

(xi − µ)2/2σ2)

µ̂ = X and σ̂ =
√∑

(Xi − X)2/n

10-11



MLE Properties

• Invariance property

– Let θ̂1, θ̂2,...,θ̂m be the MLEs for parameters θ1,
θ2,...,θm.

– The MLE of h(θ1, θ2, ..., θm) is the function h(θ̂1, θ̂2, ..., θ̂m).

• Large sample behavior

– In many situations, the MLE is approximately
unbiased and has variance nearly as small as the
MVUE

– Distribution of MLE approximately normal
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Example : Problem #22

Let X denote the proportion of allotted time that a
student spends on an aptitude test. Suppose the pdf of
X is

f(x; θ) = (θ + 1)xθ for 0 ≤ x ≤ 1

1. Use the method of moments to estimate θ

E(X) =

∫ 1

0
x(θ + 1)xθdx

=

(
θ + 1

θ + 2

)
xθ+2

∣∣∣∣
1

0

=

(
θ + 1

θ + 2

)

X =

(
θ + 1

θ + 2

)
= 1 − 1/(θ + 2)
↓

θ̂ =
1

1 − X
− 2
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Example : Problem #22

Let X denote the proportion of allotted time that a
student spends on an aptitude test. Suppose the pdf of
X is

f(x; θ) = (θ + 1)xθ for 0 ≤ x ≤ 1

2. Obtain the MLE of θ

L = (θ + 1)n
∏

Xθ
i

↓
log(L) = n log(θ + 1) + θ

∑
logXi

To maximize log(L), take derivative with respect to
θ and set equal to zero

∂ log(L)

∂θ
= 0

=
n

θ + 1
+

∑
logXi

↓
θ̂ =

n∑
logXi

− 1
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