
A Manufacturing Study: Hardwire Programming vs Wireless

Background

- Cummins, Inc. Columbus, IN
 - Diesel Engine Design and Manufacture
 - Engines are electronically controlled and require an engine control module (ECM)
- Current Manufacturing Method (HARDWIRE)
 - Program individual ECMs on a programming stand
 - To program 15 modules simultaneously, 15 stands are required
 - Utilize labor resources to staff the programming area
- Proposed Manufacturing Method (WIRELESS)
 - Program multiple modules simultaneously with one set of hardware
 - Eliminates labor in programming area
 - Eliminates assembly and material handling operations

Pictorial Method Comparison

 Determine if wireless programming is a benefit over the current manual programming method

Will it save the company money to implement the wireless solution?

 If yes, at what point (i.e. how many modules need to be programmed simultaneously to make economic sense [2, 3, or4]?)

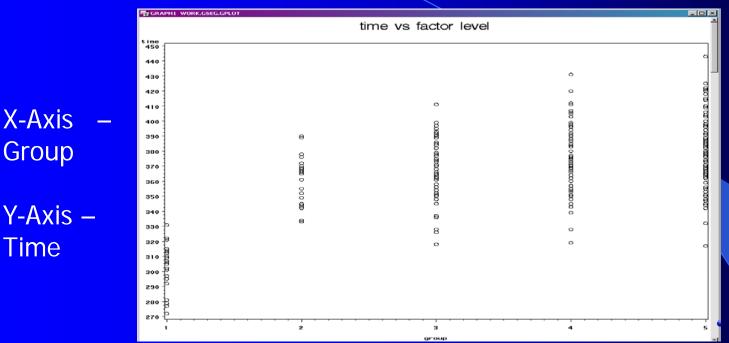
Example - More is NOT necessarily better

Assume the following data

- 1 hardwire = 2 minutes
- 1 wireless = 2.5 minutes
- 2 wireless = 3 minutes
- 3 wireless = 3.2 minutes
- 4 wireless = 8.5 minutes

Improvement is seen for 2 and 3 modules
Degradation in efficiency is seen at 4 modules

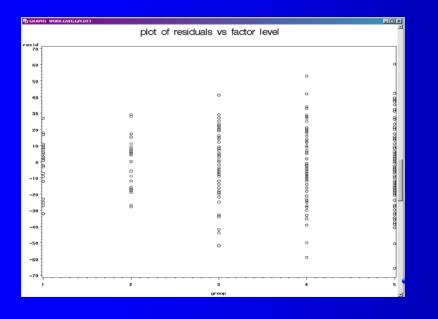
***Important Note - This is NOT ACTUAL data

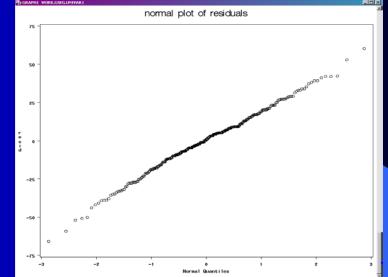

Statistical Model

- One-Way ANOVA
- 5 Factor levels

Treatments	Description	# of Obs
Group 1	One Hardwired Module	28
Group 2	One Wirelessly Programmed Module	28
Group 3	Two Wirelessly Programmed Modules	56
Group 4	Three Wirelessly Programmed Modules	84
Group 5	Four Wirelessly Programmed Modules	112

 Compare overall programming time (seconds) versus factor level

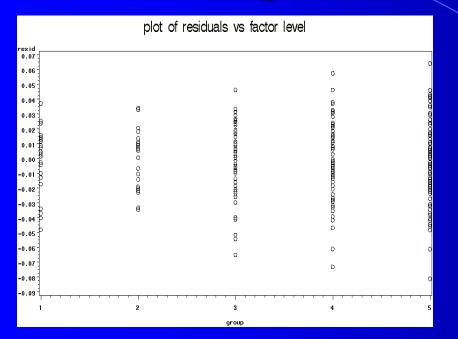

Plot of Data

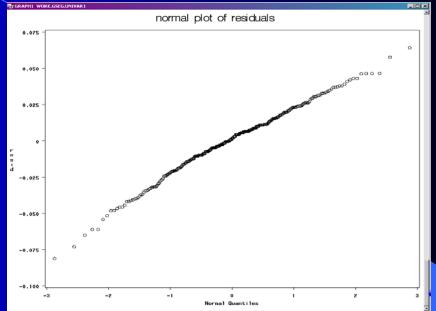


Remarks

- Single wireless module requires more programming time than single hardwire module
- Amount of time required to program multiple modules increases *slightly* as modules are added

Validation of assumptions


Variance appears to increase as modules are added
Residual distribution is reasonably normal


Homogeneity of Variance

Levene's Test for Homogeneity of log(time) Variance						
	Sı	um of M	Nean			
Source	DF	Squares	Square	F Value	Pr > F	
group	4	1149.7	287.4	1.89	0.1122	

- Homogeneity of variance is preserved
- Low p-value and graph still suggests further investigation to determine if transformation is needed

Log Transformation

- Residual plot
- QQ-plot

Log Transformation

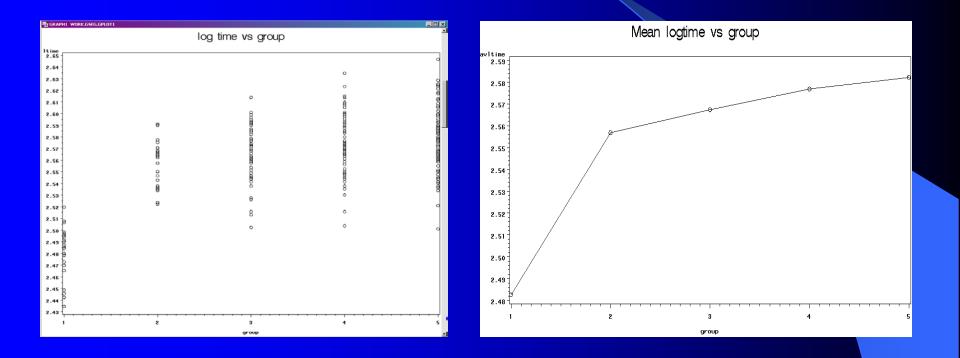
/alue

Levene's Test for Homogeneity of log(time) Variance

	S	Sum of	Mean	
Source	DF	Squares	Square	FΝ
group	4	0.000609	0.000152	0.7

Raw Data

Transformed Data


Pr > F

0.5835

Level oftime-		ne	Level of		ltin	ltime	
group	Ν	Mean	Std Dev	group	Ν	Mean	Std Dev
1	28	304.142857	14.2457642	1	28	2.48260847	0.02066967
2	28	360.785714	14.9427479	2	28	2.55688876	0.01804142
3	56	369.857143	19.3854946	3	56	2.56743466	0.02316147
4	84	378.083333	21.4741135	4	84	2.57689020	0.02481512
5	112	382.732143	21.3207940	5	112	2.58221991	0.02440015

- Various transformations tested log appeared to give the best results
 - Resulted in higher Levene number (0.1122 to 0.5835)
 - Assumption of constant variance more believable
 - Normality between the residuals

Transformed Data (Log Transformation)

GLM Output

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	4	0.23642396	0.05910599	107.22	<.0001

Conclusion: At least one group mean time is different from the others.

Tukey Comparison

Tukey	Mean	Ν	group
А	2.582220	112	5
B A	2.576890	84	4
B C	2.567435	56	3
С	2.556889	28	2
D	2.482608	28	1

- Hardwire (group 1) is clearly different than all wireless groups
- It is difficult to determine how different the other groups (wireless) are from each other
 - There are some similarities

Estimate and Contrast

• Contrast

DF Con	t <mark>rast SS Me</mark> ar	n Square 🛛 F Va	lue Pr >	> F
Wired Vs One Wireless 1	0.07724587	0.07724587	140.13	<.0001
Wired Vs Two Wireless 1	0.13431570	0.13431570	243.66	<.0001
Wired Vs 3 Wireless 1	0.18666994	0.18666994	338.64	<.0001
Wired Vs 4 Wireless 1	0.22226266	0.22226266	403.21	<.0001

• Estimate

Treatment 1	Treatment 2	Estimate (log seconds)	Treatment 1 Est. Time (seconds)	Treatment 2 Est. Time (seconds)	MeanTime difference (seconds)
Hardwired	1 – Wireless	-0.074	304.14	368.88	56.7
Hardwired	2 – Wireless	-0.084	304.14	369.75	65.5
Hardwired	3 – Wireless	-0.094	304.14	377.88	73.7
Hardwired	4 – Wireless	-0.099	304.14	383.55	78.4

 Wirelessly programming 1 module takes more time than with hardwire process → not beneficial.

- Wirelessly programming 2 or more modules takes more overall time, but produces more output → beneficial.
 - In this case, 4 modules makes the most sense
- Further investigation is warranted
 - There will be a point when the capacity of the wireless system is exceeded