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Allele specific expression: 
what is it? 

 
• The unequal expression of alleles 

 
 
 
 

 
 

Nature Reviews Genetics 9, 541-553 (July 2008) 

There is no genetic 
variation in this picture 



Allele specific expression: 
How does it happen? 

• Genetic variation– polymorphism 

 

• Polymorphisms in sequences in areas of 
regulatory importance at the locus itself (cis) 

 

• Differences among alleles at other loci which 
have a regulatory role in transcription (trans) 



Cis variation 

Trans  variation 

Not 
Equal 

Not 
Equal 



Allele specific expression: 
 

Genetic variation in regulatory 
regions of the genome 

 



Allele specific expression: 
why is it important? 

• Complex diseases have been shown to have regulatory 
polymorphisms associated with trait variation 
–  autoimmune disease (Nature, 423, 506–511) 
– rheumatoid arthritis (Nat. Genet., 34, 395–402) 
– myocardial infarction and stroke (Nat. Genet., 36, 233–239) 
– diabetes (Nat. Genet.,26, 163–175) 
– inflammatory bowel disease (Nat. Genet.,29, 223–228)  
– schizophrenia (Am. J. Hum. Genet., 71, 877–892) 
– asthma (Nat. Genet., 34, 181–186) 

• Genes (Human) show evidence of allele specific expression 
– Yan et al. 2002; Bray et al. 2003; Lo et al. 2003; Pastinen and 

Hudson 2004 

• We have very little understanding of this paradigm 



Why the fly? 

• Flies are cheap 

• Flies are easy  

• We can get lots of the same ones again and again 

• They have complex behaviors  

• They are a perfect genetic system 

• There are links to other systems 

 



 
•Many studies indicate the importance of tissue specificity in gene regulation: Isolating heads 
from bodies reduces complexity of the sample and focuses these studies on genes expressed 
in the brain and sensory organs. 

 
•Theses tissues play a central role in the way flies sense and respond to environmental cues 
and enact appropriate behaviors.  
 
•Regulatory divergence of brain, eye and antennal genes among species may be linked to 
adaptive phenotypes. 
 

 
Nat Rev Neurosci, 8(5), 341-354. doi:10.1038/nrn2098   
 
 

Why heads? 

Sight: Eyes and ocelli 

Olfaction, hearing and  
thermosensation: 
Antennal segments and arista 

Taste: Labial palps 

Olfaction: Labial palps 

Brain: 
 
-reception, integration and  
response to sensory inputs. 
 
-complex behaviors: mating and  
aggression. 
 
-modulation of these behaviors 
based on environment and/or  
internal state. 

http://dx.doi.org/10.1038/nrn2098


Measure the alleles separately 

• Arrays 

– Track the alleles on tiling arrays  

• (Graze et. al. 2009) 

• Next generation sequencing! 

– RNA-seq  

• Track the alleles 

– Whole genome re-sequencing 

• Find the regulatory polymorphisms  



Align to a reference genome 
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RNA-seq: The data 

Gene X Exon1 Exon2 Exon3 Exon4 



Summarizing the data 

• Option 1 

– Use previously identified gene models with 
definitions of exons/genes 

– Count how many reads (or partial reads) fall inside 
each exon/gene 

• Option 2 

– Use the data to find boundaries of transcription 

– Count how many reads inside the boundaries 



What kind of experiments will let you 
measure allele specific expression? 

• Need a heterozygote! 
– Separate in your mind tracking the alleles from the 

regulatory polymorphisms that cause allelic imbalance 

 
• F1 hybrids between species 

 
• F1 hybrids within a population 

 
• Chromosomal substitutions, crossed 

appropriately and other fun genetic designs 



Experiment: F1 hybrid  
D. simulans and D. melanogaster:  

 • Divergence between these species is known to 
be extensive, with thousands of individual 
transcript level differences observed. 

• 1 Sequence variant ~every 300 nt  

– Many reads on NGS will be able to be assigned 
allele specifically 

 

Nat Genet, 33(2), 138-144; Science, 300(5626), 1742-1745; Mol Biol Evol, 21(7), 1308-1317; Molecular Biology and 
Evolution, 10(4), 804-822 



Issues 

• Re-sequencing relies on the reference genome 
– Reference genomes: D. melanogaster , D simulans 

assembled on a D. melanogaster backbone 
– Our experiment is a hybrid between D. melanogaster 

and D. simulans 
– Map bias can obscure allele measurements (Degner 

et. al. 2009) 
 

• Technological issues with particular alleles 
(systematic bias) 
 

• Structural variation Genome divergence in copy 
number (systematic bias) 



Genotype specific references 

• Focus on the Exons and start with the existing reference 

– D. melanogaster reference genome 

– D. simulans DPGP sequence aligned to D. melanogaster 
reference  

 

• Use RNA seq data from the parents to update the reference 

– Map reads to each reference 

–  identify polymorphisms 

– Update the reference 

– Repeat until almost no polymorphisms  identified 

 



  
 

Improve alignments and reduce bias 
Replicate Total Genome-aligned Exon-alignedS Exon-alignedU 

1 40.95 M 32.0 M 25.92 M 26.4 M 

2 44.81 M 34.41 M 26.44 M 26.6 M 

3 42.58 M 32.78 M 28.28 M 29.0 M 



Reduced error in allele-assigment 

• Error in allele assignment was calculated by examining reads  
corresponding to exons in Mitochondrial genes (100% 
melanogaster) 

• initial reference 

– RNA: 2.1% of the reads were erroneously assigned to D. 
sim. 

– DNA:   3.5%. of the reads were erroneously assigned to D. 
sim. 

• updated references,  

– RNA: <1%  (.09%) allele assignment error.  

– DNA:  <1% (.45%) allele assignment error 

 

 



Testing for allelic differences: 
 

• Outstanding issues 

– Bias in technology 

– Genome duplications in one species but not the 
other 

 

• DNA as a control 

 



Bayesian Model :  
Reads are RANDOM 

Xij is the number of “A” in the RNA for biorep i and techrep j  

Y ij is the number of “A” in the DNA for biorep i and techrep j  
i= 1,…,I and j=1,….J  

       RNA     DNA 
Xij|Ni,θi ~Negative Binomial (Ni,θi)  Yij|Ni,θi ~Negative Binomial (Yi,p) 

 θi |p~beta (pt,(1-p)t)    p~beta (ν,ν); 

 

t: the strength of the prior = sum of all counts 

P corrects for bias centering the prior on 1-p  

q is the proportion of reads from the M allele 

 

The number of counts is a RANDOM variable 

     



Genes Mel All Bias Mel All Bias θ CI 

pdfr 294 369 .80 278 346 .80 .50 +/-.04 

fax 168 654 .26 30 106 .28 .48 +/-.05 

Iris 14048 14786 .95 1171 2572 .46 .75 +/-.01 

Hexo1 541 945 .572 272 561 .49 .54 +/-.03 

Ugt35b 1992 6546 .30 256 475 .54 .38 +/-.02 
 

RNA DNA 

Results 

• From the posterior sample we compute the 95% Credible interval 
• We need large counts to infer AI  

– small DNA counts estimates of pt disperse 
– small RNA counts  estimates of qt disperse 



Some examples 



How much cis? 

        0.15                                     .5                        .85 
               D. simulans           D. melanogaster                            



Allelic Imbalance is widespread 

• 41% of exons (5,877)  show differences in ASE – this is a 
result of cis regulatory divergence between species 
– mel biased (4,024) sim biased  (1,853 ) 

 
• Most cis differences observed are modest in effect 

 
 

• McManus 2010 (mel/sech 78%) and Fontanillas 2010 
mel/sim 454 (68%) 
 
 

 
 

 



What about within species? 

• Within population examination of regulatory 
variation 

• ~200 genotypes of D. melanogaster 

– ~160 from TFC MacKay  Raleigh  

– ~40 from SV Nuzhdin  Winters 

• Everyone crossed to a tester line (t) w1118 



No more DNA 

• With ~200 genotypes we can not afford to do 
DNA controls 

• Poisson Gamma model 

– As the NB it can adjust for systematic bias 

– The adjustment is via the structure of the model 
and not the prior 

• Simulation ?  

– (Degner et. al. 2009) 

 



Poisson Gamma model 



Poisson Gamma 



Compare the NB and PG 

• Consider q random as in the NB model and 
use the DNA to inform the result 

 

 

 

 

• Similar results  

NB\PG AB AI 

AB 0.57 0.07 

AI 0.01 0.36 



No DNA 

• Simulated all possible reads from the two 
species 

• Aligned them using bowtie with the same 
settings as the  real data 

• Estimate  qsim 

• q0.5  set q=0.50 

• Compare PG qsim  vs  PG qDNA 

• Compare PG q0.5  vs  PG qDNA 



DNA is the “gold standard” 

• Only exons where |qsim-0.5|>0.2 approximately 500 

• Simulations help, the false positive rate is lower 
although false negatives are higher 

– They are not perfect, they only capture ambiguity in the 
genome and not unknown structural variation 

– There are more exons with a bias from the DNA that are not 
captured by the simulation,  

• unknown structural variation 

qsim 

\qDNA 

 
AB 

 
AI 

AB 0.27 0.16 

AI 0.12 0.45 

q0.5 

\qsim 

 
AB 

 
AI 

AB 0.04 0.01 

AI 0.35 0.59 



Conclusions 

• Bayesian models account for variability due to 
RANDOM effects from the number of reads 

• The NB and PG models are very similar 
• When there are no DNA controls simulations can 

help reduce false positives 
– At the expense of increasing false negatives 

• There is structural variation between genomes 
that simulations can not capture 

• There is potentially technical variation due to non-
randomness of sequencing that simulations can 
not capture 
 

 



Bayesians have more fun 


