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BACKGROUND

When undertaking normal approximation to the distribution of a statistic such as the es-

timator of a binomial proportion, where the sampling distribution is lattice, the lack of

smoothness of the true distribution often has to be taken into account. This difficulty

motivates the continuity correction, and also the fiducial approach taken by Clopper and

Pearson (1934) and Sterne (1954) to estimating a binomial proportion.

There is also a very large, more recent literature discussing methodology for solving prob-

lems such as constructing confidence intervals for the difference or sum of two binomial

proportions. Important contributions to that literature include the work of Duffy and San-

ter (1987), Lee et al. (1997), Agresti and Caffo (2000), Brown et al. (2001, 2002), Zhou et

al. (2001), Price and Bonnett (2004), Brown and Li (2005), Borkowf (2006), Roths and Tebbs

(2006), Wang (2010) and Zieliński (2010).
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CASES WHERE SAMPLE SIZES ARE OPEN TO CHOICE

In problems where we wish to construct a confidence interval for, or test for, the differ-

ence between two binomial proportions, the existing literature is founded on the premiss

that the sample sizes are somehow chosen in advance. In such cases the error due to dis-

continuity is generally of the same size as the error arising from issues such as skewness,

kurtosis etc.

However, if the sample sizes can be chosen by the experimenter, then there is considerable

scope for selecting them so that the error due to discontinuity is of second order, even for

one-sided procedures.

This talk was motivated by a problem arising when assessing the risk that environmen-

tal contaminants, in particular foreign species of insects, cross a frontier. In that setting

it was desired to construct a confidence interval for the sum of two unknown binomial

proportions. The experimenters were able to choose the respective sample sizes, within

reasonable limits. We shall show that, in this setting, substantial reductions in the cover-

age error of a confidence interval, or the level inaccuracy of a hypothesis test, are possible.
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THEORETICAL BACKGROUND

Let θ̂ denote an estimator of an unknown θ, and assume that T = n1/2 (θ̂ − θ)/σ is asymp-

totically normal N(0, 1), where n denotes sample size. Under standard assumptions,

P (T ≤ x) = Φ(x) + n−1/2 P (x)φ(x) + o
(

n−1/2
)

, (1)

uniformly in x, where Φ and φ are the standard normal distribution and density functions,

respectively, and P is an even, quadratic polynomial.

For example, if θ̂ denotes the mean of a sample of size n from a population with mean

θ, and if data from the population have finite third moment and a nonlattice distribution,

then (1) holds with

P (x) = 1
6
β
(

1− x2
)

,

where β is the standardised skewness of the population.

On the other hand, still in the case of the mean for a population with finite third moment,

if the population is lattice then an extra, discontinuous term has to be added to (1).
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THEORETICAL BACKGROUND – (2)

The extra term reflects the discrete continuity correction that statisticians are obliged to use

when approximating a lattice distribution, for example a binomial or Poisson distribution,

by the smooth normal distribution:

P (T ≤ x) = Φ(x) + n−1/2 P (x)φ(x) + n−1/2 dn(x)φ(x) + o
(

n−1/2
)

.

Here dn(x) = (e0/σ)ψn(x) denotes the discontinuous term in the Edgeworth expansion, e0
is the maximal span of the lattice, σ2 is the population variance,

ψn(x) = ψ
{

(x− ξn) σ n
1/2

/

e0
}

, ξn =
(

e0
/

σ n1/2
) {

1
2
− ψ(nx0/e0)

}

,

ψ(x) = ⌊x⌋− x+ 1
2
, ⌊x⌋ is the largest integer not strictly exceeding x, and it is assumed that

all points of support in the distribution (of which θ is the mean) have the form x0+ ν e0 for

an integer ν.
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MODEL FOR MULTI-SAMPLE CASES

Our results and methodology are available only for multi-sample problems, which we

now introduce.

Let Xji, for 1 ≤ i ≤ nj and j = 1, . . . , k, denote independent random variables. Assume

that each Xji has a nondegenerate lattice distribution, depending on j but not on i and

with maximal lattice edge width ej and finite third moment. Suppose too that k ≥ 2.

Put X̄j = n−1
j

∑

i Xji, µj = E(Xji), σ
2
j = var(Xji) and

S =

k
∑

j=1

X̄j . (2)

The model (2) includes cases of apparently greater generality, for example where signed

weights are incorporated in the series, since the absolute values of the weights can be

incorporated into (2) by modifying the lattice edge widths, and negative signs can be ad-

dressed by reflecting the summand distributions.

In particular, in the case k = 2 the model includes the cases of a sum or difference of

estimators of binomial proportions.
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PROPERTIES OF THE MODEL

Since third moments are finite then, if the distributions of X11, . . . , Xk1 were to satisfy a

smoothness condition, such as that of Cramér, we could express the distribution of S in a

one-term Edgeworth expansion:

P

{

S − E(S)

(varS)1/2
≤ x

}

= Φ(x) + n−1/2 1
6 β

(

1− x2
)

φ(x) + o
(

n−1/2
)

, (2)

Here we take n = n1 + . . . + nk to be the asymptotic parameter, and

β = β(n) =
n1/2E(S − ES)3

(varS)3/2
=
n1/2

∑

j n
−2
j E(Xj1 − EXj1)

3

(
∑

j n
−1
j varXj1)3/2

is a measure of standardised skewness. Under our assumptions it is bounded as n→ ∞.

However, in general (2) does not hold in the lattice-valued case. One way to see this is

to consider the case k = 2 and n1 = n2. Here the need to include an extra, discontinuous

term, of size n−1/2, persists even in the asymptotic limit.
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Figure 1: Plots of P (x) against n1. Plots are given for x = Φ−1(α) = zα and α = 0.95, 0.85,
and 0.75, and for n2 equal to the nearest integer to ρ0n1 , with ρ0 = 1 or 2 (in the first panel)
and ρ0= 1 or 21/2 (in the second panel). 1



PROPERTIES OF THE MODEL – (2)

We assume that each E|Xj1|
3 < ∞; that each Xj1 is distributed on a lattice xj + ν ej, for

integers ν, where ej is the maximal lattice edge width; and that the sample size ratios

nj1/nj2 are all bounded away from zero and infinity as n→ ∞.

Recall the following formula, from the previous slide:

P

{

S − E(S)

(varS)1/2
≤ x

}

= Φ(x) + n−1/2 1
6 β

(

1− x2
)

φ(x) + o
(

n−1/2
)

. (2)

In the first part of the theorem below we impose the following condition on at least one of

the ratios ρj1j2 = (ej2nj1)/(ej1nj2): As n→ ∞,

for each integer ℓ ≥ 1 , n1/2 | sin(ℓρj1j2π)| → ∞ . (3)

Theorem. (i) If, for some pair j1, j2 with 1 ≤ j1 < j2 ≤ k, ρj1j2 satisfies (3), then the one-

term Edgeworth expansion at (2) holds uniformly in x. (ii) However, if ρj1j2 equals a fixed

rational number (not depending on n) for each pair j1, j2, then the expansion at (2) fails to

hold because it does not include an appropriate discontinuous term of size n−1/2.
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CONDITION (3)

Recall condition (3):

for each integer ℓ ≥ 1 , n1/2 | sin(ℓρj1j2π)| → ∞ . (3)

Condition (3) holds if ρj1j2 converges to an irrational number, ρ0 say, as n → ∞, since if ρ0
is irrational then | sin(ℓρ0π)| > 0 for all integers ℓ.

Condition (3) also holds if ρj1j2 converges sufficiently slowly to a rational number, for

example if ρj1j2 = ρ0 + ǫj1j2, where ρ0 is rational and ǫj1j2 = ǫj1j2(n), which can be either

positive or negative, converges to zero strictly more slowly than n1/2:

ǫj1j2 → 0 , n1/2 |ǫj1j2| → ∞ .

On the other hand, if ρj1j2 converges sufficiently quickly to a rational number then not

only does (3) fail, but the expansion (2) does not hold. Indeed, part (ii) of the theorem as-

serts that the theorem fails if ρj1j2 is a fixed rational number, for each pair (j1, j2) and each n.

Condition (3) also holds in many cases where ρj1j2 does not converge.
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“TYPES” OF IRRATIONAL NUMBERS

The theorem shows that, if at least one of the ratios ρj1j2 converges to an irrational num-

ber as n diverges, then the discontinuous term, of order n−1/2, is actually of smaller order

than n−1/2.

To obtain a more concise bound on the discontinuous term we shall investigate in detail

cases where one or more of the ratios ρj1j2 converge to an irrational number as n diverges.

This seems to require discussion of the “type” of an irrational.

If x is a real number, let 〈x〉 denote the distance from x to the nearest integer. In particular,

if ⌊x⌋ is the integer part function, 〈x〉 = min{x− ⌊x⌋, 1− (x− ⌊x⌋)}.

We say that the irrational number ρ is of type η if η equals the supremum of all ζ such that

lim infp→∞ pζ 〈pρ〉 = 0.

Properties of convergents of irrational numbers (convergents are particularly accurate ra-

tional approximations, based on continued fractions) can be used to prove that the type of

any given irrational number always satisfies η ≥ 1.
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“TYPES” OF IRRATIONAL NUMBERS – (2)

Roth’s Theorem (Roth, 1955) implies that all algebraic irrationals (that is, all irrational

numbers that are roots of polynomials with rational coefficients) are of minimal type,

i.e. η = 1, which is one of the cases we consider below.

More generally, if a number is chosen randomly, for example as the value of a random

variable having a continuous distribution on the real line, then with probability 1 it is an

irrational of type 1.

Irrationals that are not algebraic are said to be transcendental, and can have type strictly

greater than 1. (However, the transcendental number e is of type 1.)

Known upper bounds to the types of the transcendental numbers π, π2 and log 2 are 6.61,

4.45 and 2.58, respectively. Liouville numbers have type η = ∞.

In our problem, irrational numbers of type 1 seem to produce fewer problems from discon-

tinuities — so in practice (in view of Roth’s Theorem) we favour the algebraic irrationals,

and e.
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REFINEMENT OF THEOREM ABOUT EFFECT OF DISCONTINUITIES

Recall that S =
∑

j X̄j, and that ρj1j2 = (ej2nj1)/(ej1nj2). The theorem below gives condi-

tions under which the net contribution of the discontinuous term equals O(nδ−(1/2)−(1/2η)),

for all δ > 0, when some ρj1j2 is sufficiently close to an irrational number of type η.

Here we strengthen the moment condition to E|Xj1|
4 < ∞ for j = 1, . . . , k, and as before

we assume that Xj1 is distributed on a lattice xj + ν ej, for integers ν, where ej is the

maximal lattice edge width.
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REFINEMENT OF THEOREM ABOUT EFFECT OF DISCONTINUITIES – (2)

Theorem. If, for some pair j1, j2 with 1 ≤ j1 < j2 ≤ k, the ratio ρj1j2 = (ej2nj1)/(ej1nj2)

satisfies

|ρj1j2 − ρ0| = O
(

n−(1/2) {1+(1/η)+δ}
)

(4)

for some δ > 0, where ρ0 is an irrational number of type η, then, for each δ > 0,

P

{

S − E(S)

(varS)1/2
≤ x

}

= Φ(x) + n−1/2 1
6
β
(

1− x2
)

φ(x) +O
(

nδ−(1/2)−(1/2η)
)

, (5)

uniformly in x.

The theorem is of particular interest when η = 1, which encompasses almost all irrational

numbers (with respect to Lebesgue measure), including all the algebraic irrationals and

some transcendental numbers. When η = 1, (5) is equivalent to

P

{

S − E(S)

(varS)1/2
≤ x

}

= Φ(x) + n−1/2 1
6
β
(

1− x2
)

φ(x) +O
(

nδ−1
)

, (6)

uniformly in x, for each δ > 0.

Result (6) implies that the lattice nature of the distribution of Xji can be ignored, almost

up to terms of second order in Edgeworth expansions, when considering the impact of

latticeness on the accuracy of normal approximations.
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PRACTICAL CHOICE OF n1 AND n2

The following assumption is important to the theorem:

|ρj1j2 − ρ0| = O
(

n−(1/2) {1+(1/η)+δ}
)

. (4)

In practice it is not difficult to choose n1 and n2 so that (4) holds. To see how, assume

for simplicity that the lattice edge widths e1 and e2 are identical, as they would be if (for

example) S were equal to a sum or difference of estimators of binomial proportions.

If ρ0 is an irrational number then the convergents m1/m2 of ρ0 satisfy

|(m1/m2)− ρ0| ≤ m−2
2 . (7)

Therefore, if n1 and n2 are relatively prime and n1/n2 is a convergent of ρ0, then (4), for

each δ ∈ (0, 3− (1/η)], follows from (7).
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PRACTICAL CHOICE OF n1 AND n2 – (2)

The most difficult case, as far as (4) is concerned, is the one where the convergence rate in

(4) is fastest, and arises when η = 1.

There we need to ensure that

|ρj1j2 − ρ0| = O
(

n−1−δ
)

for some δ > 0.

Even here there are many options, although the simplest approach is to access the pair

(n1, n2) from the readily available tables of, or formulae for, convergents for commonly

arising irrationals of type 1.
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RESULTS FOR THE BOOTSTRAP

APPLIED TO MULTI-SAMPLE LATTICE MEANS

Condition (4), stated earlier, and appropriate moment assumptions, are also sufficient for

bootstrap versions of the results stated earlier. This includes results about the double boot-

strap applied to construct confidence intervals for sums or differences of binomial propor-

tions.

Specifically, provided that

|ρj1j2 − ρ0| = O
(

n−(1/2) {1+(1/η)+δ}
)

, (4)

where ρ0 is an irrational number of type 1 (for example, an algebraic irrational),

P

[

S∗ − E(S∗ | X )

{var(S∗ | X )}1/2
≤ x

∣

∣

∣

∣

X

]

= Φ(x) + n−1/2 1
6 β̂

(

1− x2
)

φ(x) + n−1∆(x) ,

β̂ denotes the bootstrap estimator of β, and

P
{

sup
−∞<x<∞

|∆(x)| > nδ
}

= O
(

n−C
)

,

in which formula C > 0 can be taken arbitrarily large, and δ > 0 arbitrarily small, if

sufficiently many moments are assumed of the variables Xji.
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NUMERICAL PROPERTIES

Throughout we take k = 2 and let Xji be a Bernoulli random variable satisfying P (Xji =

0) = 1− P (Xji = 1) = pj for j = 1, 2, where p1 = 0.4 and p2 = 0.6. Thus, ρ12 = e2 n1/(e1 n2) =

n1/n2, where n1 and n2 are the two sample sizes.

We take n2 to be the integer nearest to ρ0 n1, and vary n1 between 10 and 80; n1 is plotted

on the horizontal axes of each of our graphs. The probability

P (x) = P
[

{S − E(S)}/(varS)1/2 ≤ x
]

was approximated by averaging over the results of 105 Monte Carlo simulations.

To illustrate the influence of ρ12 on the oscillatory behaviour of P (x), and in particular on

the accuracy of the normal approximation, each panel in Figures 1 and 2 plots P (x) against

n1 for x = Φ−1(α) = zα and α = 0.95, 0.85 and 0.75.
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NUMERICAL PROPERTIES – (2)

The first panel of Figure 1 shows results for ρ0 = 1 (indicated by the lines with circles)

and ρ0 = 2 (lines with dots), and it is clear that in both cases there is significant oscillatory

behaviour.

The second panel of Figure 1 shows that these oscillations decline markedly, and the accu-

racy of the normal approximation improves considerably, if ρ0 = 21/2.
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Figure 1: Plots of P (x) against n1. Plots are given for x = Φ−1(α) = zα and α = 0.95, 0.85,
and 0.75, and for n2 equal to the nearest integer to ρ0n1 , with ρ0 = 1 or 2 (in the first panel)
and ρ0= 1 or 21/2 (in the second panel). 1



NUMERICAL PROPERTIES – (3)

Of course, ρ0 = 21/2 is an algebraic irrational. The first panel of Figure 2 shows that broadly

similar values of P (x), although with somewhat more oscillation (reflecting the relatively

low upper bounds given in Theorem 1), are obtained for ρ0 = π/2, a transcendental irra-

tional whose type is bounded above by 6.61.

The second panel of Figure 2 addresses the theoretical result that there can be less oscil-

latory behaviour when ρ12 converges slowly to a rational number than when it converges

quickly.

We consider the cases n2 = n1 + [n
1/5
1 ] and n2 = n1 + [n

3/5
1 ], where [x] denotes the integer

nearest to x. In the first case, ρ12 converges relatively quickly to 1, and in the second case

the convergence is relatively slow.

Figure 2 demonstrates that, as anticipated, the oscillatory behaviour is less pronounced,

and the normal approximation better, in the “slow” case.
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Figure 2: Plots of P (x) against n1. Plots are as for Figure 1, except that ρ0= 1 or π/2 (in
the first panel), and ρ0 converges to 1 rapidly or slowly (in the second panel; see text for
details).
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NUMERICAL PROPERTIES — (4)

Figure 3 shows that broadly similar results are obtained in the bootstrap setting. In the

figure we give plots of percentile bootstrap estimators of P (x) against n1, for x = Φ−1(α)

and α = 0.95.

Each panel depicts the case ρ0 = 1, and successive panels also give results when ρ0 = 31/2,

51/2, e and φ = (1 + 51/2)/2, respectively.

Each of these values of ρ0 is an irrational of type 1, and in each instance the oscillations

are markedly less, and the normal approximation markedly improved, relative to the case

ρ0 = 1.
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Figure 3: Plots of percentile bootstrap estimators of P (x), against n1. Plots in each panel
show the case ρ0= 1 and also, in respective panels, the cases ρ0 = 31/2, ρ0 = 51/2, ρ0 = e and
ρ0 = (1 + 51/2)/2. Throughout, x = Φ−1(α) where α = 0.95.

3


