Why don't we agree? Studying influenza with RNA interference

Michael Newton UW Madison

From a project on influenza biology with:

Qiuling He
Lin Hao
Mark Craven
Paul Ahlquist

Thanks Christina Kendziorski...

What human genes does influenza virus co-opt during its life cycle?

a bit about flu

Experimental Method: RNAi

RNA interference is a process within living cells that moderates the activity of their genes.

Fire and Mello, 2006, Nobel Prize

a bit about RNAi

Kim and Rossi Nature Reviews Genetics 8, 173-184 (March 2007) | doi:10.1038/ nrg2006

Or, more simply, ...

RNA interference $=$

Or, more simply, ...

RNA interference $=$

genome-wide...

cell

cell

add siRNA

target gene

cell

add siRNA

cell

cell

phenotype of interest changes

explain phenotype

Issues

Involvement: gene may not affect phenotype

Efficiency: knockdown may not be complete

Accessibility: something blocks the phenotype

a. no expression in these particular cells

Accessibility: something blocks the phenotype

b. Redundency/masking

Accessibility: something blocks the phenotype

c.cytotoxicity

Off target effects

Measurement error

Measurement error

false positive

Measurement error

Measurement error

false negative

one siRNA

knock down
no knock down

one siRNA 0

one siRNA 0

measurement

Meta analysis of four recent studies

nature 2008

2009

nature

 2010Drosophila RNAi screen identifies host genes important for influenza virus replication
Linhui Hao ${ }^{1,2 *}$, Akira Sakurai ${ }^{3}{ }^{3} \dagger$, Tokiko Watanabe ${ }^{3}$, Ericka Sorensen ${ }^{1}$, Chairul A. Nidom ${ }^{5,6}$, Michael A. Newton ${ }^{4}$, Paul Ahlquist ${ }^{1,2}$ \& Yoshihiro Kawaoka ${ }^{3,7,8,9}$

The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus
Abraham L. Brass, ${ }^{1,249 . *}$ 1-Chuoh Huang, ${ }^{5.9}$ Yair Benita, ${ }^{3.20}$ Sinu P. John, ${ }^{2,10}$ Manoj N. Krishnan, ${ }^{6}$ Eric M. Feeley, ${ }^{1}$ Bethany J. Ryan, ${ }^{1}$ Jessica L. Weyer, ${ }^{5}$ Louise van der Weyden, ${ }^{8}$ Erol Fikrig, ${ }^{6,7}$ David J. Adams, ${ }^{8}$ Ramnk J. Xavier, ${ }^{2,3}$ Michael Farzan, ${ }^{\text {s, }}$, and Stephen J. Elledge ${ }^{4 *}$

Genome-wide RNAi screen identifies human host
factors crucial for influenza virus replication
Alexander Karlas ${ }^{1 *}$, Nikolaus Machuy ${ }^{1 *}$, Yujin Shin ${ }^{1}$, Klaus-Peter Pleissner ${ }^{2}$, Anita Artarini ${ }^{1}$, Dagmar Heuer ${ }^{1}$, Daniel Becker ${ }^{1}$, Hany Khalil ${ }^{1}$, Lesley A. Ogilvie ${ }^{1}$, Simone Hess ${ }^{1} \dagger$, André P. Mäurer ${ }^{1}$, Elke Müller ${ }^{1} \dagger$, Thorsten Wolff ${ }^{3}$, Thomas Rudel ${ }^{1} \dagger$ \& Thomas F. Meyer ${ }^{1}$

Human host factors required for influenza virus replication

Renate König ${ }^{1 *}$, Silke Stertz ${ }^{4 *}$, Yingyao Zhou ${ }^{7}$, Atsushi Inoue ${ }^{1}$, H. -Heinrich Hoffmann ${ }^{4}$, Suchita Bhattacharyya ${ }^{2}$ Judith G. Alamares ${ }^{4}$, Donna M. Tscherne ${ }^{4}$, Mila B. Ortigoza ${ }^{4}$, Yuhong Liang ${ }^{4}$, Qinshan Gao ${ }^{4}$, Shane E. Andrews ${ }^{3}$, Sourav Bandyopadhyay ${ }^{8}$, Paul De Jesus ${ }^{1}$, Buu P. Tu ${ }^{7}$, Lars Pache ${ }^{1}$, Crystal Shih ${ }^{1}$, Anthony Orth ${ }^{7}$, Ghislain Bonamy ${ }^{7}$, Loren Miraglia ${ }^{7}$, Trey Ideker ${ }^{8}$, Adolfo Garcia-Sastre ${ }^{4,56}$, John A. T. Young ${ }^{2}$, Peter Palese ${ }^{4,5}$, Megan L. Shaw ${ }^{4 *}$ \& Sumit K. Chanda ${ }^{1 *}$

Data

results (gene lists) from 4 two-stage RNAi studies

Data

results (gene lists) from 4 two-stage RNAi studies
I. detection
2. confirmation

Data

results (gene lists) from 4 two-stage RNAi studies

I. detection
2. confirmation

e.g., one gene

Study				
	DL-1	U2OS	A549 $_{\text {DE }}$	A549 ${ }_{\text {us }}$
Detection Screen	1	1	0	0
Conflrmation Screen	1	0	0	0
Pattern Code	11	10	00	00

Detection and Confirmation Patterns

Agreement among studies is low.

Among the 614 genes confirmed by at least one study:

Is the limited overlap due more to false positive or false negative factors?

6.7\% average pairwise overlap of confirmed gene lists is significantly higher than expected by chance

Modeling approach

$P_{\pi}=\operatorname{Prob}$ (gene shows detection/confirmation pattern π)
$n_{\pi}=\#($ gene shows detection/confirmation pattern $\pi)$

Likelihood

$$
L=\prod_{\pi} P_{\pi}^{n_{\pi}}
$$

π	DL-1	U2OS	A549 ${ }_{\text {d }}$	A549 ${ }_{u}$	n_{π}	P_{π}
1	0	0	0	0	21,016	
2	10	0	0	0	80	
3	11	0	0	0	127	
...	\ldots	\ldots	
6	11	10	0	0	4	
\cdot					-	
79	11	11	11	0	3	
80	11	11	11	10	0	
81	11	11	11	11	1	
Total					G = 22000	

Data and latent variables

$$
\begin{aligned}
& D_{g, s}=1[\text { gene } g \text { detected in study } s] \\
& C_{g, s}=1[\text { gene } g \text { confirmed in study } s]
\end{aligned}
$$

$$
\begin{aligned}
& I_{g}=1[g \text { involved in flu }] \\
& A_{g, s}=1[g \text { accessible in } s]
\end{aligned}
$$

$$
T_{g, s}=\#\{\text { involved, accessible off targets, study } s, \text { target } g\}
$$

Detection screen

pool of 4 distinct siRNA's per target gene

one phenotype call $\quad D_{g, s}$

Confirmation screen

$C_{g, s, 4}$

$$
C_{g, s}=1\left[\sum_{k} C_{g, s, k} \geq 2\right]
$$

Figure 2. Plate diagram for statistical model

on target knock down model

$$
U_{1}, U_{2}, U_{3}, U_{4} \sim_{i i d} \operatorname{Uniform}(0,1)
$$

on target knock down model

$$
U_{1}, U_{2}, U_{3}, U_{4} \sim_{i i d} \operatorname{Uniform}(0,1)
$$

on target knock down model

$$
U_{1}, U_{2}, U_{3}, U_{4} \sim_{i i d} \operatorname{Uniform}(0,1)
$$

on target knock down model

$$
U_{1}, U_{2}, U_{3}, U_{4} \sim_{i i d} \operatorname{Uniform}(0,1)
$$

on target knock down model

$$
U_{1}, U_{2}, U_{3}, U_{4} \sim_{i i d} \operatorname{Uniform}(0,1)
$$

on target knock down model

$$
U_{1}, U_{2}, U_{3}, U_{4} \sim_{i i d} \operatorname{Uniform}(0,1)
$$

on target knock down model

$$
U_{1}, U_{2}, U_{3}, U_{4} \sim_{i i d} \operatorname{Uniform}(0,1)
$$

on target knock down model

$$
U_{1}, U_{2}, U_{3}, U_{4} \sim_{i i d} \operatorname{Uniform}(0,1)
$$

target gene
on target knock down model

$$
U_{1}, U_{2}, U_{3}, U_{4} \sim_{i i d} \operatorname{Uniform}(0,1)
$$

$$
\prod_{j} U_{j}<\omega
$$

effect if

knock down

threshold parameter

$$
\text { Prob: } 1-G_{4}[\log (1 / \omega)]
$$

off target knock down model

$t=\#\{$ involved, accessible off targets $\}$
$U_{1}, U_{2}, \ldots, U_{t} \sim_{i . i . d .} \operatorname{Uniform}(0,1)$

$$
\text { e.g. } t=3
$$

$U_{1}<\omega$
$U_{2}<\omega$
$U_{3}<\omega$
knock down effect if any $\quad U_{j}<\omega$

Prob: $1-(1-\omega)^{t}$

detection screen: $\quad D_{g, s} \mid A_{g, s}=a, I_{g}=i, T_{g, s}=t$

confirmation screen

$+0$

$C_{g, s, 1}$

$C_{g, s, 2}$

$C_{g, s, 3}$
$C_{g, s, 4}$

$$
C_{g, s}=1\left[\sum_{k} C_{g, s, k} \geq 2\right]
$$

confirmation screen: $\quad C_{g, s, k} \mid A_{g, s}=a, I_{g}=i, T_{g, s}=t$

On the number of off targets per siRNA

- very limited data
- libraries overlap among 4 studies

one target gene

K siRNA's available to all studies (on average)
involved
off targets

$$
T_{g}
$$

one target gene

study s uses 4 siRNA's
siRNA's
involved, accessible

off targets

$$
T_{g, s}
$$

$$
\begin{aligned}
& T_{g}=\#\{\text { involved off-targets, target } g\} \\
& T_{g} \sim \text { Poisson }(K \theta \nu) \\
& T_{g, s} \left\lvert\, T_{g}=t \sim \operatorname{Binomial}\left(t, \frac{4 \gamma_{s}}{K}\right) \quad\right. \text { detection } \\
& T_{g, s, k} \left\lvert\, T_{g, s}=t \sim \operatorname{Binomial}\left(t, \frac{1}{4}\right) \quad\right. \text { confirmation }
\end{aligned}
$$

Parameters

$\theta=$ proportion of genome involved in influenza virus replication
$\alpha=$ false positive measurement error
$\beta_{s}=$ false negative measurement error, study s
$\gamma_{s}=$ rate at which genes are accessible, study s
$\omega=$ knockdown efficiency per siRNA
$\nu=$ average number of off-targets per siRNA.

$$
\begin{aligned}
I_{g} & \sim \operatorname{Bernoulli}(\theta) \\
A_{g, s} & \sim \operatorname{Bernoulli}\left(\gamma_{s}\right) \\
T_{g} & \sim \operatorname{Poisson}(K \theta \nu) \\
T_{g, s} \mid\left[T_{g}=t\right] & \sim \operatorname{Binomial}\left(t, 4 \gamma_{s} / K\right) \\
D_{g, s} \mid\left[I_{g}=i, A_{g, s}=a, T_{g, s}=t\right] & \sim \operatorname{Bernoulli}\left[1-\beta_{s}+\left(\alpha+\beta_{s}-1\right)\left[G_{4,1}(-\log \omega)\right]^{a i}(1-\omega)^{t}\right] \\
C_{g, s, k} \mid\left[I_{g}=i, A_{g, s}=a, T_{g, s}=t\right] & \sim \operatorname{Bernoulli}\left[1-\beta_{s}+\left(\alpha+\beta_{s}-1\right)(1-\omega)^{a i}(1-\omega / 4)^{t}\right]
\end{aligned}
$$

Calculating pattern probabilities: $\quad P_{\pi}=\sum_{i, a} P_{\pi}(i, a)$

$$
\begin{aligned}
P_{\pi}(i, a) & =P\left(\pi \mid I_{g}=i,\left\{A_{g, s}\right\}_{s=1}^{4}=a\right) . \\
P_{\pi}(i, a) & =\sum_{t=0}^{\infty} P\left(T_{g}=t\right) P\left(\pi \mid I_{g}=i,\left\{A_{g, s}\right\}_{s=1}^{4}=a, T_{g}=t\right) \\
& =\sum_{t=0}^{\infty} \operatorname{Po}(t) \prod_{s=1}^{4} P\left(\pi_{s} \mid I_{g}=i, A_{g, s}=a_{s}, T_{g}=t\right) \quad \pi=\bigcap_{s} \pi_{s} . \\
& =\sum_{t=0}^{\infty} \operatorname{Po}(t) \prod_{s=1}^{4} \sum_{u=0}^{t} B_{s}(t, u) P\left(\pi_{s} \mid I_{g}=i, A_{g, s}=a_{s}, T_{g, s}=u\right) \\
& =\sum_{t=0}^{\infty} \operatorname{Po}(t) \prod_{s=1}^{4} \sum_{u=0}^{t} B_{s}(t, u) Q_{s, i, u s, u}
\end{aligned}
$$

$Q_{s, i, a_{s}, u}=P\left(\pi_{s} \mid I_{g}=i, A_{g, s}=a_{s}, T_{g, s}=u\right)$

Lemma:

$$
Q_{s, i, a_{s}, u}=\sum_{p=0}^{1} \sum_{q=0}^{4} b_{s, p, q}\left(\xi_{1}^{p} \xi_{2}^{q}\right)^{u} \quad \begin{array}{ll}
\xi_{1} & =1-\omega \\
\xi_{2}=1-\frac{\omega}{4}
\end{array}
$$

$$
\begin{aligned}
& \sum_{u=0}^{t} B_{s}(t, u) Q_{s, i, a_{s}, u}=\sum_{p=0}^{1} \sum_{q=0}^{4} b_{s, p, q} \sum_{u=0}^{t}\left(\xi_{1}^{p} \xi_{2}^{q}\right)^{u} B_{s}(t, u) \\
&=\sum_{p=0}^{1} \sum_{q=0}^{4} b_{s, p, q}\left(1-\frac{4 \gamma_{s}}{K}+\frac{4 \gamma_{s}}{K}\left(\xi_{1}^{p} \xi_{2}^{q}\right)\right)^{t} \\
&=\sum_{p=0}^{1} \sum_{q=0}^{4} b_{s, p, q} e_{s, p, q}^{t} \\
& e_{s, p, q}=1-\frac{4 \gamma_{s}}{K}+\frac{4 \gamma_{s}}{K}\left(\xi_{1}^{p} \xi_{2}^{q}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{\pi}(i, a)=\sum_{t=0}^{\infty} \mathrm{P} O(t) \prod_{s=1}^{4} \sum_{p=0}^{1} \sum_{q=0}^{4} b_{s, p, q} e_{s, p, q}^{t} \\
& =\sum_{t=0}^{\infty} \mathrm{P} \mathrm{O}(t) \sum_{p_{1}=0}^{1} \sum_{p_{2}=0}^{1} \sum_{p_{3}=0}^{1} \sum_{p_{4}=0}^{1} \sum_{q_{1}=0}^{4} \sum_{q_{2}=0}^{4} \sum_{q_{3}=0}^{4} \sum_{q_{4}=0}^{4}\left(\prod_{s=1}^{4} b_{s, p_{s}, q_{s}}\right)\left(\prod_{s=1}^{4} e_{s, p_{s}, q_{s}}\right)^{t} \\
& =\sum_{p_{1}=0}^{1} \sum_{p_{2}=0}^{1} \sum_{p_{3}=0}^{1} \sum_{p_{4}=0}^{1} \sum_{q_{1}=0}^{4} \sum_{q_{2}=0}^{4} \sum_{q_{3}=0}^{4} \sum_{q_{4}=0}^{4}\left(\prod_{s=1}^{4} b_{s, p_{s}, q_{s}}\right) \sum_{t=0}^{\infty} \mathrm{PO}(t)\left(\prod_{s=1}^{4} e_{s, p_{s}, q_{s}}\right)^{t} \\
& =\sum_{p_{1}=0}^{1} \sum_{p_{2}=0}^{1} \sum_{p_{3}=0}^{1} \sum_{p_{4}=0}^{1} \sum_{q_{1}=0}^{4} \sum_{q_{2}=0}^{4} \sum_{q_{3}=0}^{4} \sum_{q_{4}=0}^{4}\left(\prod_{s=1}^{4} b_{s, p_{s}, q_{s}}\right) \exp \left\{-K \theta \nu\left(1-\prod_{s} e_{s, p_{s}, q_{s}}\right)\right\}
\end{aligned}
$$

Model fitting

- 12 parameters
- numerical (nlminb in R) (point estimation)
- extensive code testing
- MCMC (Bayes under flat prior)
(induced parameters and prediction)

MCMC looks good

β : DL-1

α

β : U2OS

(1)

β : A549DE

v

β : A549US

Comfirmed vs Detected

Posterior predictive checks look good

Cross validation

Table S3-5: Predicted number of extra genes confirmed by a $4^{t h}$ study based on modeling the other three studies.

Leave Out	Predicted Additional	95\% Prediction Interval	Observed Additional
DL-1	133	$(76,207)$	136
U2OS	128	$(75,199)$	114
A549US	144	$(89,212)$	188
A549DE	156	$(80,284)$	131

Point estimates

	MLE	MEAN
θ	0.128	0.128
α	0.003	0.003
β_{1}	0.083	0.164
β_{2}	0.340	0.400
β_{3}	0.312	0.375
β_{4}	0.038	0.125
γ_{1}	0.063	0.072
γ_{2}	0.094	0.107
γ_{3}	0.113	0.127
γ_{4}	0.084	0.095
ω	0.809	0.902
ν	0.000	0.006

Density of False Discovery Rate (FDR) and False Non-Discovery Rate (FNDR)

Density of False Positive Rate (FP) and False Negative Rate (FN)

Predicted number of confirmed genes

What about low estimated off target rate ??

very hard to extend to Negative Binomial

$$
\begin{aligned}
& P_{\pi}(i, a)=\sum_{t=0}^{\infty} \operatorname{Po}(t) \prod_{s=1}^{4} \sum_{p=0}^{1} \sum_{q=0}^{4} b_{s, p, q} e_{s, p, p} t^{t} \\
& =\sum_{t=0}^{\infty} \operatorname{Po}(t) \sum_{p=0}^{1} \sum_{p=0}^{1} \sum_{p=0}^{1} \sum_{p_{p=0}=0}^{1} \sum_{q=0}^{4} \sum_{p_{z=0}}^{4} \sum_{q=0}^{4} \sum_{q=0}^{4}\left(\prod_{o=1}^{4} b_{s, p_{p} q_{s}}\right)\left(\prod_{s=1}^{4} e_{s_{p, p_{s}}}\right)^{t}
\end{aligned}
$$

Sensitivity analysis

- large K <==> independent studies
- simpler likelihood
- separate implementation with Negative Binomial gives essentially the same fits

Profile analysis

Summary

1. gene-level agreement among studies
2. functional category analysis
3. protein interaction analysis

