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What human genes does influenza 
virus co-opt during its life cycle?
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a bit about flu
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RNA interference is a process within living cells 
that moderates the activity of their genes.

Experimental Method: RNAi

Fire and Mello, 2006, Nobel Prize
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a bit about RNAi
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Kim and Rossi Nature Reviews Genetics 8, 173—184 (March 2007) | doi:10.1038/ nrg2006
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Or, more simply, ...

RNA interference = 
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Or, more simply, ...

genome-wide...

RNA interference = 
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explain phenotype 
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Issues
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gene

expression
level

Involvement:  gene may not affect phenotype
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involved gene

expression
level

Efficiency:  knockdown may not be complete
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gene

expression
level

Accessibility: something blocks the phenotype

a.  no expression in these particular cells
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g1

expression
level

Accessibility: something blocks the phenotype

b. Redundency/masking

g2
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gene

expression
level

Accessibility: something blocks the phenotype

c.cytotoxicity
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expression
level

Off target effects

target g1

off target g2

not involved

involved

Tuesday, July 3, 12



Measurement error
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Measurement error

non-involved 
gene

expression
level

false positive
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Measurement error
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Measurement error

expression
level

involved gene

false negative
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one siRNA

+

knock down

no knock down
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on target

off target
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no knock down
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Meta	  analysis	  of	  four	  recent	  studies

	  	  2010

	  	  2010

	  2009

2008

A549DE

A549US

U2OS

Human

DL-1 Drosophila
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Data

results (gene lists) from 4 two-stage RNAi studies

Tuesday, July 3, 12



Data

results (gene lists) from 4 two-stage RNAi studies

1. detection
2. confirmation
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Data

results (gene lists) from 4 two-stage RNAi studies

1. detection
2. confirmation

DL-1 U2OS A549D E A549U S

Detection Screen      1     1     0     0

Conflrmation Screen      1     0     0     0

 Pattern Code    11   10   00   00

e.g., one gene
study
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Pattern DL-1 U2OS A549DE A549US # genes

1 0 0 0 0 21,016
2 10 0 0 0 80
3 11 0 0 0 127

… … … … … …
6 11 10 0 0 4
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
79 11 11 11 0 3
80 11 11 11 10 0
81 11 11 11 11 1

Total G = 22000

Detec9on	  and	  Confirma9on	  Pa>erns

COPG
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Confirmed	  
by	  1	  Study

Confirmed	  by	  
2	  Studies

Confirmed	  by	  
3	  Studies

Confirmed	  by	  
4	  Studies

17

	  Agreement	  among	  studies	  is	  low.

Among	  the	  614	  genes	  confirmed	  by	  at	  least	  one	  study:
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Is	  the	  limited	  overlap	  due	  more	  to	  false	  
posi9ve	  or	  false	  nega9ve	  factors?
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6.7%	  average	  pairwise	  overlap	  of	  confirmed	  gene	  
lists	  is	  significantly	  higher	  than	  expected	  by	  chance
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L =
Q

⇡ P
n⇡
⇡

P⇡ = Prob (gene shows detection/confirmation pattern ⇡ )

n⇡ = #(gene shows detection/confirmation pattern ⇡ )

38

Modeling	  approach

Likelihood
DL-1 U2OS

A549D

E

A549U

S

1 0 0 0 0 21,016

2 10 0 0 0 80

3 11 0 0 0 127

… … … … … …

6 11 10 0 0 4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
79 11 11 11 0 3

80 11 11 11 10 0

81 11 11 11 11 1

Total G = 22000

P⇡
n⇡⇡
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Cg,s = 1 [ gene g confirmed in study s ]

Dg,s = 1 [ gene g detected in study s ]

Ag,s = 1 [ g accessible in s ]

Ig = 1 [ g involved in flu ]

Data	  and	  latent	  variables

Tg,s = #{involved, accessible o↵ targets, study s, target g }
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expression

target gene

Detection screen

pool of 4 distinct 
siRNA’s per target gene

one phenotype call Dg,s

+
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Confirmation screen

Cg,s = 1

"
X

k

Cg,s,k � 2

#

expression

target gene

expression

target gene

expression

target gene

expression

target gene

Cg,s,1 Cg,s,2 Cg,s,3 Cg,s,4

++++
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on target knock down model

U1, U2, U3, U4 ⇠iid Uniform(0, 1)

target gene

expression
level
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on target knock down model

U1, U2, U3, U4 ⇠iid Uniform(0, 1)

target gene

expression
level

U1
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on target knock down model

U1, U2, U3, U4 ⇠iid Uniform(0, 1)

target gene

expression
level
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on target knock down model

U1, U2, U3, U4 ⇠iid Uniform(0, 1)

target gene

expression
level

U1U2
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on target knock down model

U1, U2, U3, U4 ⇠iid Uniform(0, 1)

target gene

expression
level

U1U2
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on target knock down model

U1, U2, U3, U4 ⇠iid Uniform(0, 1)

target gene

expression
level
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on target knock down model

U1, U2, U3, U4 ⇠iid Uniform(0, 1)

target gene

expression
level Y

j

Uj
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on target knock down model

U1, U2, U3, U4 ⇠iid Uniform(0, 1)

target gene

expression
level Y

j

Uj

Y

j

Uj < �

knock down 
effect if

threshold 
parameter

Prob: 1�G4 [log(1/!)]
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off target knock down model

t = #{involved, accessible o↵ targets}

U1, U2, . . . , Ut ⇠i.i.d. Uniform(0, 1)

e.g. t = 3

U1 < !

U2 < !

U3 < !

knock down effect 
if any Uj < !

1� (1� !)tProb:
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ω

Pr
ob

4 hits on target
4 hits off target

1�G4 [log(1/!)]

1� (1� !)4
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detection screen:

knock down

no knock down

measurement

+

1� (1� !)t

(1� !)t{G4 [log(1/�)]}ai

1� {G4 [log(1/�)]}ai

�

1� �

↵

1� ↵

Dg,s | Ag,s = a, Ig = i, Tg,s = t
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confirmation screen

Cg,s = 1

"
X

k

Cg,s,k � 2

#

expression

target gene

expression

target gene

expression

target gene

expression

target gene

Cg,s,1 Cg,s,2 Cg,s,3 Cg,s,4

++++
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confirmation screen:

knock down

no knock down

measurement

+

�

1� �

↵

1� ↵

1� !
⇣
1� !

4

⌘t

1�
⇣
1� !

4

⌘t

Cg,s,k | Ag,s = a, Ig = i, Tg,s = t

1� (1� !)ai
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 On the number of off targets per siRNA

• very limited data
• libraries overlap among 4 studies
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one target gene

K  siRNA’s available to all studies (on average)

siRNA’s

involved 
off targets

Tg
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one target gene

study s uses 4 siRNA’s 

siRNA’s

involved, 
accessible 
off targets

Tg,s

x x
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Tg = #{involved o↵-targets, target g }

Tg,s|Tg = t ⇠ Binomial

✓
t,
4�s
K

◆
detection

confirmationTg,s,k|Tg,s = t ⇠ Binomial

✓
t,
1

4

◆

Tg ⇠ Poisson(K✓⌫)
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In these terms, the log-likelihood is

L = log Prob(data) =
⇧

�

N� logP�, (1)

where pattern probabilities {P�} are defined by a smaller number of parameters through a stochastic
model of genome-wide RNAi. The model is hierarchical, and is specified using latent random e�ects:

Ig = 1[g is involved in influenza virus replication]

Ag,s = 1[g is accessible in study s ]

Tg = number of involved o�-targets for gene g, relative to a pool of siRNAs

that might be used to target gene g

Tg,s = size of the accessible subset of Tg in study s

Vg,s,k = size of the accessible subset of Tg,s in assay k of secondary screen in study s .

One could alternatively classify the {Ig} as a high-dimensional parameter, but in doing Bayesian
inference we would immediately cover it with a prior, so we treat it as a vector of latent factors in
the notation.

A number system-level parameters are used to specify the probability structure of latent vari-
ables and observed data; they describe the basic system in terms of rates governing the latent
variables as well as quantities a�ecting false-positive and false-negative detections and confirma-
tions:

⌅ = proportion of genome involved in influenza virus replication

� = false positive measurement error

⇥s = false negative measurement error, study s

⇤s = rate at which genes are accessible, study s

� = knockdown e⌅ciency per siRNA

⌃ = average number of o�-targets per siRNA .

The log-likelihood L in (1) is a function of these 12 parameters, which we collect in a vector
⌥ = (⌅,�,⇥, ⇤,�, ⌃), where ⇥ = {⇥s}4s=1, ⇤ = {⇤s}4s=1. Thus L = L(⌥). The stochastic model itself
is:

Ig ⇤ Bernoulli(⌅) (2)

Ag,s ⇤ Bernoulli(⇤s)

Tg ⇤ Negative Binomial(⇧,
K⌅⌃

K⌅⌃ + ⇧
)

Tg,s |[Tg = t] ⇤ Binomial(t,
4⇤s
K

)

Vg,s,k |[Tg,s = u] ⇤ Binomial(u,
1

4
)

Dg,s |[Ig = i, Ag,s = a, Tg,s = t] ⇤ Bernoulli
⌃
1� ⇥s + (�+ ⇥s � 1) [G4,1(� log�)]ai (1� �)t

⌥

Cg,s,k |[Ig = i, Ag,s = a, Vg,s,k = v] ⇤ Bernoulli
�
1� ⇥s + (�+ ⇥s � 1)(1� �)ai+v

⇥

P (Cg,s = 1|Ig = i, Ag,s = a, Tg,s = u) = P

⇤
4⇧

k=1

Cg,s,k ⇥ 2|Ig = i, Ag,s = a, Tg,s = u

⌅
.

2

Parameters
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In these terms, the log-likelihood is

L = log Prob(data) =
⇤

�

N� logP�, (1)

where pattern probabilities {P�} are defined by a smaller number of parameters through a stochastic
model of genome-wide RNAi. The model is hierarchical, and is specified using latent random e�ects:

Ig = 1[g is involved in influenza virus replication]

Ag,s = 1[g is accessible in study s ]

Tg = number of involved o�-targets for gene g, relative to a pool of siRNAs

that might be used to target gene g

Tg,s = size of the accessible subset of Tg in study s

Vg,s,k = size of the accessible subset of Tg,s in assay k of secondary screen in study s .

One could alternatively classify the {Ig} as a high-dimensional parameter, but in doing Bayesian
inference we would immediately cover it with a prior, so we treat it as a vector of latent factors in
the notation.

A number system-level parameters are used to specify the probability structure of latent vari-
ables and observed data; they describe the basic system in terms of rates governing the latent
variables as well as quantities a�ecting false-positive and false-negative detections and confirma-
tions:

⌅ = proportion of genome involved in influenza virus replication

� = false positive measurement error

⇥s = false negative measurement error, study s

⇤s = rate at which genes are accessible, study s

� = knockdown e⌅ciency per siRNA

⌃ = average number of o�-targets per siRNA .

The log-likelihood L in (1) is a function of these 12 parameters, which we collect in a vector
⌥ = (⌅,�,⇥, ⇤,�, ⌃), where ⇥ = {⇥s}4s=1, ⇤ = {⇤s}4s=1. Thus L = L(⌥). The stochastic model itself
is:

Ig ⇥ Bernoulli(⌅)

Ag,s ⇥ Bernoulli(⇤s)

Tg ⇥ Negative Binomial (mean = K⌅⌃, shape = ⇧)

Tg,s |[Tg = t] ⇥ Binomial (t, 4⇤s/K)

Dg,s |[Ig = i, Ag,s = a, Tg,s = t] ⇥ Bernoulli
⌅
1� ⇥s + (�+ ⇥s � 1) [G4,1(� log�)]ai (1� �)t

⇧

Cg,s,k |[Ig = i, Ag,s = a, Tg,s = t] ⇥ Bernoulli
�
1� ⇥s + (�+ ⇥s � 1)(1� �)ai(1� �/4)t

⇥

The shape parameter ⇧ = 0.11 is estimated from a predicted distribution of number of o�-target
genes per dsRNA in a previous study that evaluates the o�-target e�ects of dsRNAs (Kullkarni et
al.). G4,1(.) is the c.d.f. of a gamma distribution with shape parameter 4 and scale parameter 1.
Another system-level parameter we fix a priori and do not estimate from the data is

K = average number of siRNAs that target a gene.

2

Poisson(K✓⌫)
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P⇡ =
X

i,a

P⇡(i, a)
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studies are heterogeneous, both because they may entail di�erent sets of accessible genes, but also
because these accessibility rates (�s) are study specific. (We had considered a single parameter �,
but saw substantial improvements when we allow the extra flexibility.) From study to study the
data are not independent, owing to gene specific factors Ig and Tg, which get marginalized in our
likelihood computation.

The 81 multi-study pattern probabilities {P�} (and thus the log-likelihood L(⌃)) in (1) are
obtained as a function of the 8 system-level parameters ⌃ by summing out the discrete-valued
latent variables. Considering among-gene independence, we focus on a single gene, and sum out
values of the involvement indicator Ig, the four accessibility indicators Ag,s, and the o�-target
counts Tg and the four Tg,s. (We model Tg,s’s as subsets of a common Tg to reflect the possibility
that di�erent studies share siRNAs.) All but the target counts are binary sums; more complicated
is the elimination of the o�-target counts. To investigate this calculation, write the vector a = {as}
and the conditional probability of data pattern ⇧ as,

P�(i, a) = P (⇧| Ig = i, {Ag,s}4s=1 = a
⇥
.

Each multi-study pattern probability P� is computed as a summation of these P�(i, a) over the 25

values of its arguments. The trickier computation is the evaluation of each P�(i, a), which requires
marginalization of the o�-target counts.

To marginalize the o�-target counts, first recognize that each pattern ⇧ is an intersection of
four study-specific patterns ⇧ =

⇤
s ⇧s. For example ⇧ = 3111 indicates that the gene is confirmed

and detected in the first study and neither detected nor confirmed in any of the remaining three
studies. The modeling assumptions give

P�(i, a) =
�⌅

t=0

P (Tg = t) P
�
⇧|Ig = i, {Ag,s}4s=1 = a, Tg = t

⇥

=
�⌅

t=0

Pois(t)
4⇧

s=1

P (⇧s|Ig = i, Ag,s = as, Tg = t)

=
�⌅

t=0

Pois(t)
4⇧

s=1

t⌅

u=0

Bs(t, u) P (⇧s|Ig = i, Ag,s = as, Tg,s = u)

=
�⌅

t=0

Pois(t)
4⇧

s=1

t⌅

u=0

Bs(t, u) qs,i,as,u (3)

where Pois(t) = P (Tg = t) = exp{�4⇥⇤}(4⇥⇤)t/t! by the Poisson assumption, Bs(t, u) is the
Binomial mass function at u with t trials and success probability �s, and where each contribution
qs,i,as,u = P (⇧s|Ig = i, Ag,s = as, Tg,s = u) is computed from the stochastic model (2). Coming
back to pattern ⇧ = 3111 for example, the four sub-pattern probabilities are:

q1,i,a1,u = P (Dg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u) P (Cg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u)

q2,i,a2,u = P (Dg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u) P (Cg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u)

q3,i,a3,u = P (Dg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u) P (Cg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u)

q4,i,a4,u = P (Dg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) P (Cg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) .

A key to simplifying the computation further is to recognize that with respect to the count variable
u, each qs,i,as,u is a polynomial in ⌅ = (1 � ⌥)1/4, of degree at most 8u. By careful book-keeping,
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Calcula9ng	  pa>ern	  probabili9es:

Ideally if all 4 studies use the same siRNA library, we would expect K = 4 i.e. there are exactly 4
siRNAs targeting every gene as designed; if each study uses a di�erent library, then K = 16 if all li-
braries are specific and there is no chance of genes being targeted by siRNAs other than the designed
ones. K controls the correlation in numbers of o�-targets between studies, i.e. cor(Tg,s,Tg,s0) � 0,
as K � ⇥. In our case, we fix K = 12 since the 4 studies of interest use 3 libraries.

A full specification of conditional independence assumptions is in Figure 2. The various mod-
eling elements have been introduced to address known features of genome-wide siRNA screening.
For example, every additional siRNA applied to an involved gene increases the chance that the
harboring cells exhibit a phenotype. The higher the rate of involved genes, the higher the rate
of an o�-target phenotype. There is heterogeneity among genes, owing to whether or not they
are involved, and owing to varying amounts of o�-targets associated with their targeting pools of
siRNAs, but there is among-gene independence in terms of siRNA detection/confirmation. The
studies are heterogeneous, because they may entail di�erent sets of accessible genes and these ac-
cessibility rates (⇥s) are study specific, and also there may be di�erent false negative measurement
errors involved in each study due to individual experimental environment. (We had considered a
single parameter ⇥ and �, but saw substantial improvements when we allow the extra flexibility.)
From study to study the data are not independent, owing to gene specific factors Ig and Tg, which
get marginalized in our likelihood computation.

The 81 multi-study pattern probabilities {P�} (and thus the log-likelihood L(⌅)) in (1) are
obtained as a function of the 12 system-level parameters ⌅ by summing out the discrete-valued
latent variables. Considering among-gene independence, we focus on a single gene, and sum out
values of the involvement indicator Ig, the four accessibility indicators Ag,s, and the o�-target
counts Tg, the four Tg,s, and the {Vg,s,k}4k=1 for each study. (We model Tg,s’s as subsets of a
common Tg to reflect the possibility that di�erent studies share siRNAs.) All but the target counts
are binary sums; more complicated is the elimination of the o�-target counts. To investigate this
calculation, write the vector a = {as} and the conditional probability of data pattern ⇤ as,

P�(i, a) = P (⇤| Ig = i, {Ag,s}4s=1 = a
⇥
.

Each multi-study pattern probability P� is computed as a summation of these P�(i, a) over the 25

values of its arguments. The trickier computation is the evaluation of each P�(i, a), which requires
marginalization of the o�-target counts.

To marginalize the o�-target counts, first recognize that each pattern ⇤ is an intersection of
four study-specific patterns ⇤ =

⇤
s ⇤s. For example ⇤ = 3111 indicates that the gene is confirmed

and detected in the first study and neither detected nor confirmed in any of the remaining three
studies. The modeling assumptions give
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⇥
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where NB(t) = P (Tg = t) is the point mass of a Negative Binomial distribution with shape pa-
rameter ⇤ and mean K⇥⌅, Bs(t, u) is the Binomial mass function at u with t trials and success
probability 4�s

K , and where each contribution Qs,i,as,u = P (⌃s|Ig = i, Ag,s = as, Tg,s = u) is com-
puted from the stochastic model (??). Coming back to pattern ⌃ = 3111 for example, the four
sub-pattern probabilities are:

Q1,i,a1,u = P (Dg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u) P (Cg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u)

Q2,i,a2,u = P (Dg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u) P (Cg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u)

Q3,i,a3,u = P (Dg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u) P (Cg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u)

Q4,i,a4,u = P (Dg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) P (Cg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) .

where

P (Cg,s = 1|Ig = i, Ag,s = as, Tg,s = u) = P

⇤
4⇧

k=1

Cg,s,k ⇥ 2|Ig = i, Ag,s = as, Tg,s = u

⌅

A key to simplifying the computation further is to recognize that with respect to the count variable
u, each P (Dg,s|Ig, Ag,s, Tg,s) is a polynomial of ⇧1 = 1 � �, and each P (Cg,s|Ig, Ag,s, Tg,s) is a
polynomial of ⇧2 = 1 � ⇥

4 . Thus, each Qs,i,as,u is a bivariate polynomial in ⇧1 and ⇧2, of degree at
most u and 4u respectively. By careful book-keeping, we identify coe�cients {bs,p,q} (depending
on system parameters ⌥ and the pattern ⌃) such that
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with the second-last line obtained from the moment generating function of a Binomial variable, and
with es,p,q = 1� 4�s

K + 4�s
K (⇧p1 ⇧

q
2)

u. Incorporating this back into (2), we obtain for the conditional

4

where NB(t) = P (Tg = t) is the point mass of a Negative Binomial distribution with shape pa-
rameter ⇤ and mean K⇥⌅, Bs(t, u) is the Binomial mass function at u with t trials and success
probability 4�s

K , and where each contribution Qs,i,as,u = P (⌃s|Ig = i, Ag,s = as, Tg,s = u) is com-
puted from the stochastic model (??). Coming back to pattern ⌃ = 3111 for example, the four
sub-pattern probabilities are:

Q1,i,a1,u = P (Dg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u) P (Cg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u)

Q2,i,a2,u = P (Dg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u) P (Cg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u)

Q3,i,a3,u = P (Dg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u) P (Cg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u)

Q4,i,a4,u = P (Dg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) P (Cg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) .

where

P (Cg,s = 1|Ig = i, Ag,s = as, Tg,s = u) = P

⇤
4⇧

k=1

Cg,s,k ⇥ 2|Ig = i, Ag,s = as, Tg,s = u

⌅
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where NB(t) = P (Tg = t) is the point mass of a Negative Binomial distribution with shape pa-
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probability of a pattern given accessibility and involvement:
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where the last line comes from the moment generating function of a Negative Binomial distribution.
Finally, the pattern probability P� is obtained by summing over the 25 states of i and a, as indicated
previously. This provides a route to computing all 81 multi-study pattern probabilities required for
likelihood evaluation.
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•	  12	  parameters
•	  numerical	  (nlminb	  in	  R)	  (point	  es9ma9on)
•	  extensive	  code	  tes9ng
•	  MCMC	  (Bayes	  under	  flat	  prior)
	  	  	  	  (induced	  parameters	  and	  predic9on)

Model fitting
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MCMC looks good
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Table S3-2: Proportions of dsRNAs with predicted numbers of o�-targets in the DRSC collection
from Kulkarni et.al. (2006).

Number of o�-targets 0 1 2� 10 11� 50 51� 100 101+
Proportion of dsRNAs (%) 61.21 18.96 13.11 3.04 0.91 2.77

Table S3-3: Estimated parameters and 95% credible intervals from Negative Binomial model at
k = 0.110 and Poisson model.

Model Negative Binomial Poisson
Parameter Point Estimate 95% C.I. Point Estimate 95% C.I.

⇤̂ 0.118 (0.089, 0.150) 0.120 (0.092 0.152)
⇥̂ : DL� 1 0.065 (0.047, 0.084) 0.065 (0.049 0.083)
⇥̂ : U2OS 0.058 (0.042, 0.076) 0.058 (0.044 0.074)

⇥̂ : A549DE 0.076 (0.054, 0.096) 0.076 (0.057 0.097)
⇥̂ : A549US 0.091 (0.068, 0.115) 0.091 (0.069 0.114)

�̂ 0.004 (0.003, 0.004) 0.003 (0.003 0.004)
⌅̂ 0.016 (0.000, 0.145) 0.011 (0.000 0.056)
⇧̂ 0.685 (0.602, 0.955) 0.676 (0.602 0.859)

Table S3-4: Estimated parameters by four ways of leaving out one study.

Leave out ⇤̂ ⇥̂ : DL� 1 ⇥̂ : U2OS ⇥̂ : A549DE ⇥̂ : A549US �̂ ⌅̂ ⇧̂
DL-1 0.093 - 0.070 0.091 0.112 0.004 0.017 0.741
U2OS 0.113 0.071 - 0.082 0.065 0.004 0.020 0.649

A549DE 0.181 0.040 0.034 - 0.056 0.004 0.021 0.855
A549US 0.098 0.079 0.110 0.092 - 0.003 0.018 0.693

Table S3-5: Predicted number of extra genes confirmed by a 4th study based on modeling the other
three studies.

Leave Out Predicted Additional 95% Prediction Interval Observed Additional
DL-1 133 (76, 207) 136
U2OS 128 (75, 199) 114
A549US 144 (89, 212) 188
A549DE 156 (80, 284) 131

8

Cross validation
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MLE MEAN a b MLE+
✓ 0.128 0.128 0.102 0.160 0.223
↵ 0.003 0.003 0.002 0.004 0.000
�1 0.083 0.164 0.010 0.337 0.298
�2 0.340 0.400 0.266 0.500 0.404
�3 0.312 0.375 0.240 0.474 0.336
�4 0.038 0.125 0.007 0.277 0.208
�1 0.063 0.072 0.049 0.101 0.069
�2 0.094 0.107 0.073 0.147 0.086
�3 0.113 0.127 0.088 0.169 0.008
�4 0.084 0.095 0.068 0.129 0.076
! 0.809 0.902 0.751 0.996 0.678
⌫ 0.000 0.006 0.000 0.020 0.000

Point estimates
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Density of False Discovery Rate (FDR) and False Non−Discovery Rate (FNDR)

Error rate
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Predicted number of confirmed genes

Number of studies (log scale)
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Kulkarni et al. 2006, Nat. Meth.

- computational predictions
- overestimate

What about low estimated off target rate ??
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probability of a pattern given accessibility and involvement:
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where the last line comes from the moment generating function of a Negative Binomial distribution.
Finally, the pattern probability P� is obtained by summing over the 25 states of i and a, as indicated
previously. This provides a route to computing all 81 multi-study pattern probabilities required for
likelihood evaluation.
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very	  hard	  to	  extend	  to	  Nega9ve	  Binomial
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• large	  K	  <==>	  independent	  studies
• simpler	  likelihood
• separate	  implementa9on	  with	  Nega9ve	  Binomial	  
gives	  essen9ally	  the	  same	  fits	  
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Sensitivity analysis
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Profile 
analysis
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1. gene-‐level	  agreement	  among	  studies
2. func9onal	  category	  analysis
3. protein	  interac9on	  analysis
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Summary
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