Why don't we agree? Studying influenza with RNA interference

Michael Newton UW Madison

From a project on influenza biology with:

Qiuling He Lin Hao Mark Craven Paul Ahlquist

Thanks Christina Kendziorski...

What human genes does influenza virus co-opt during its life cycle?

a bit about flu

Experimental Method: RNAi

RNA interference is a process within living cells that moderates the activity of their genes.

Fire and Mello, 2006, Nobel Prize

a bit about RNAi

Kim and Rossi Nature Reviews Genetics 8, 173-184 (March 2007) | doi:10.1038/nrg2006

Or, more simply, ...

RNA interference =

Or, more simply, ...

RNA interference =

genome-wide...

phenotype of interest changes

explain phenotype

Issues

Involvement: gene may not affect phenotype

Efficiency: knockdown may not be complete

Accessibility: something blocks the phenotype

a. no expression in these particular cells

Accessibility: something blocks the phenotype

b. Redundency/masking

Accessibility: something blocks the phenotype

c.cytotoxicity

false positive

false negative

measurement

Meta analysis of four recent studies

Drosophila RNAi screen identifies host genes important for influenza virus replication

Linhui Hao^{1,2}*, Akira Sakurai³*†, Tokiko Watanabe³, Ericka Sorensen¹, Chairul A. Nidom^{5,6}, Michael A. Newton⁴, Paul Ahlquist^{1,2} & Yoshihiro Kawaoka^{3,7,8,9}

nature

2010

The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus

Abraham L. Brass,^{1,2,4,9,*} I-Chueh Huang,^{5,9} Yair Benita,^{3,10} Sinu P. John,^{1,10} Manoj N. Krishnan,⁶ Eric M. Feeley,¹ Bethany J. Ryan,¹ Jessica L. Weyer,⁶ Louise van der Weyden,⁸ Erol Fikrig,^{6,7} David J. Adams,⁸ Ramnik J. Xavier,^{2,3} Michael Farzan,^{5,*} and Stephen J. Elledge^{4,*}

Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication

Alexander Karlas¹*, Nikolaus Machuy¹*, Yujin Shin¹, Klaus-Peter Pleissner², Anita Artarini¹, Dagmar Heuer¹, Daniel Becker¹, Hany Khalil¹, Lesley A. Ogilvie¹, Simone Hess¹†, André P. Mäurer¹, Elke Müller¹†, Thorsten Wolff³, Thomas Rudel¹† & Thomas F. Meyer¹

Human host factors required for influenza virus replication

nature 2010

Renate König¹*, Silke Stertz⁴*, Yingyao Zhou⁷, Atsushi Inoue¹, H. -Heinrich Hoffmann⁴, Suchita Bhattacharyya², Judith G. Alamares⁴, Donna M. Tscherne⁴, Mila B. Ortigoza⁴, Yuhong Liang⁴, Qinshan Gao⁴, Shane E. Andrews³, Sourav Bandyopadhyay⁸, Paul De Jesus¹, Buu P. Tu⁷, Lars Pache¹, Crystal Shih¹, Anthony Orth⁷, Ghislain Bonamy⁷, Loren Miraglia⁷, Trey Ideker⁸, Adolfo García-Sastre^{4,5,6}, John A. T. Young², Peter Palese^{4,5}, Megan L. Shaw⁴* & Sumit K. Chanda¹*

D-1

Drosophila
Data

results (gene lists) from 4 two-stage RNAi studies

Data

results (gene lists) from 4 two-stage RNAi studies

I. detection2. confirmation

Data

results (gene lists) from 4 two-stage RNAi studies

I. detection2. confirmation

study

	Study			
	DL-1	U2 OS	A549 _{D E}	A549_{US}
Detection Screen	1	1	0	0
Confirmation Screen	1	0	0	0
Pattern Code	11	10	00	00

Detection and Confirmation Patterns

Pettern	D -1	UC	/549 05	/54 0 e	#gre	
1	0	0	0	0	21,016	
2	10	0	0	0	8	
3	11	0	0	0	127	
••	••					
6	11	10	0	0	4	
-	-	-	-	-	-	
•	-	-	-	-	-	
79	11	11	11	0	3	
80	11	11	11	10	0	
81	11	11	11	11	1	COPG
Total					G=22000	

Agreement among studies is low.

Among the 614 genes confirmed by at least one study:

Is the limited overlap due more to false positive or false negative factors?

6.7% average pairwise overlap of confirmed gene lists is significantly higher than expected by chance

Modeling approach

 $P_{\pi} = \text{Prob} (\text{gene shows detection/confirmation pattern } \pi)$

 $n_{\pi} = \#$ (gene shows detection/confirmation pattern π)

Likelihood

$$L = \prod_{\pi} P_{\pi}^{n_{\pi}}$$

π	DL-1	U2 OS	А549 _D Е	А549_U s	n_{π}	P_{π}
1	0	0	0	0	21,016	
2	10	0	0	0	80	
3	11	0	0	0	127	
6	11	10	0	0	4	
				-		
79	11	11	11	0	3	
80	11	11	11	10	0	
81	11	11	11	11	1	
Total					G=22000	

Data and latent variables

$$D_{g,s} = 1 \,[\text{gene } g \text{ detected in study } s \,]$$

 $C_{g,s} = 1 \,[\text{gene } g \text{ confirmed in study } s \,]$

$$I_g = 1 [g \text{ involved in flu}]$$

 $A_{g,s} = 1 [g \text{ accessible in } s]$
 $T_{g,s} = \#\{\text{involved, accessible off targets, study } s, \text{ target } g \}$

Detection screen

pool of 4 distinct siRNA's per target gene

one phenotype call $D_{g,s}$

 $C_{g,s,1}$

 $C_{g,s,2}$

 $C_{g,s,3}$

 $C_{g,s,4}$

$$C_{g,s} = 1 \left[\sum_{k} C_{g,s,k} \ge 2 \right]$$

$$t = \#\{\text{involved}, \text{ accessible off targets}\}$$

 $U_1, U_2, \ldots, U_t \sim_{i.i.d.} \text{Uniform}(0, 1)$

e.g.
$$t = 3$$

knock down effect if any $U_j < \omega$

Prob:
$$1 - (1 - \omega)^t$$

detection screen: *L*

$$D_{g,s} \mid A_{g,s} = a, I_g = i, T_{g,s} = t$$

Tuesday, July 3, 12

confirmation screen

$$C_{g,s} = 1\left[\sum_{k} C_{g,s,k} \ge 2\right]$$

confirmation screen:

$$C_{g,s,k} \mid A_{g,s} = a, I_g = i, T_{g,s} = t$$

On the number of off targets per siRNA

- very limited data
- libraries overlap among 4 studies

one target gene

K siRNA's available to all studies (on average)

Tuesday, July 3, 12

Tuesday, July 3, 12

one target gene

$$T_{g} = \#\{\text{involved off-targets, target }g \}$$

$$T_{g} \sim \text{Poisson}(K\theta\nu)$$

$$T_{g,s}|T_{g} = t \sim \text{Binomial}\left(t, \frac{4\gamma_{s}}{K}\right) \qquad \text{detection}$$

$$T_{g,s,k}|T_{g,s} = t \sim \text{Binomial}\left(t, \frac{1}{4}\right) \qquad \text{confirmation}$$

Parameters

- θ = proportion of genome involved in influenza virus replication
- α = false positive measurement error
- β_s = false negative measurement error, study s
- γ_s = rate at which genes are accessible, study s
- ω = knockdown efficiency per siRNA
- ν = average number of off-targets per siRNA .

$$\begin{split} I_g &\sim \text{Bernoulli}(\theta) \\ A_{g,s} &\sim \text{Bernoulli}(\gamma_s) \\ T_g &\sim \text{Poisson}(K\theta\nu) \\ T_{g,s} \left| [T_g = t] &\sim \text{Binomial}\left(t, 4\gamma_s/K\right) \\ D_{g,s} \left| [I_g = i, A_{g,s} = a, T_{g,s} = t] &\sim \text{Bernoulli}\left[1 - \beta_s + (\alpha + \beta_s - 1)\left[G_{4,1}(-\log\omega)\right]^{ai}(1 - \omega)^t\right] \\ C_{g,s,k} \left| [I_g = i, A_{g,s} = a, T_{g,s} = t] &\sim \text{Bernoulli}\left[1 - \beta_s + (\alpha + \beta_s - 1)(1 - \omega)^{ai}(1 - \omega/4)^t\right] \\ \end{split}$$

Calculating pattern probabilities:

$$P_{\pi} = \sum_{i,a} P_{\pi}(i,a)$$

$$P_{\pi}(i,a) = P(\pi | I_g = i, \{A_{g,s}\}_{s=1}^4 = a).$$

$$P_{\pi}(i,a) = \sum_{t=0}^{\infty} P(T_g = t) P\left(\pi | I_g = i, \{A_{g,s}\}_{s=1}^{4} = a, T_g = t\right)$$

$$= \sum_{t=0}^{\infty} Po(t) \prod_{s=1}^{4} P\left(\pi_s | I_g = i, A_{g,s} = a_s, T_g = t\right) \qquad \pi = \bigcap_s \pi_s.$$

$$= \sum_{t=0}^{\infty} Po(t) \prod_{s=1}^{4} \sum_{u=0}^{t} B_s(t,u) P\left(\pi_s | I_g = i, A_{g,s} = a_s, T_{g,s} = u\right)$$

$$= \sum_{t=0}^{\infty} Po(t) \prod_{s=1}^{4} \sum_{u=0}^{t} B_s(t,u) Q_{s,i,a_s,u}$$

$$Q_{s,i,a_s,u} = P(\pi_s | I_g = i, A_{g,s} = a_s, T_{g,s} = u)$$

Lemma:

$$Q_{s,i,a_s,u} = \sum_{p=0}^{1} \sum_{q=0}^{4} b_{s,p,q} \left(\xi_1^p \xi_2^q\right)^u \qquad \qquad \xi_1 = 1 - \omega$$
$$\xi_2 = 1 - \frac{\omega}{4}$$

$$\sum_{u=0}^{t} B_{s}(t,u) Q_{s,i,a_{s},u} = \sum_{p=0}^{1} \sum_{q=0}^{4} b_{s,p,q} \sum_{u=0}^{t} \left(\xi_{1}^{p} \xi_{2}^{q}\right)^{u} B_{s}(t,u)$$
$$= \sum_{p=0}^{1} \sum_{q=0}^{4} b_{s,p,q} \left(1 - \frac{4\gamma_{s}}{K} + \frac{4\gamma_{s}}{K} \left(\xi_{1}^{p} \xi_{2}^{q}\right)\right)^{t}$$
$$= \sum_{p=0}^{1} \sum_{q=0}^{4} b_{s,p,q} e_{s,p,q}^{t},$$

$$e_{s,p,q} = 1 - \frac{4\gamma_s}{K} + \frac{4\gamma_s}{K} \left(\xi_1^p \, \xi_2^q\right)$$

$$P_{\pi}(i,a) = \sum_{t=0}^{\infty} \operatorname{Po}(t) \prod_{s=1}^{4} \sum_{p=0}^{1} \sum_{q=0}^{4} b_{s,p,q} e_{s,p,q}^{t}$$

$$= \sum_{t=0}^{\infty} \operatorname{Po}(t) \sum_{p_{1}=0}^{1} \sum_{p_{2}=0}^{1} \sum_{p_{3}=0}^{1} \sum_{p_{4}=0}^{1} \sum_{q_{1}=0}^{4} \sum_{q_{2}=0}^{4} \sum_{q_{3}=0}^{4} \sum_{q_{4}=0}^{4} \left(\prod_{s=1}^{4} b_{s,p_{s},q_{s}}\right) \left(\prod_{s=1}^{4} e_{s,p_{s},q_{s}}\right)^{t}$$

$$= \sum_{p_{1}=0}^{1} \sum_{p_{2}=0}^{1} \sum_{p_{3}=0}^{1} \sum_{p_{4}=0}^{1} \sum_{q_{1}=0}^{4} \sum_{q_{2}=0}^{4} \sum_{q_{3}=0}^{4} \sum_{q_{4}=0}^{4} \left(\prod_{s=1}^{4} b_{s,p_{s},q_{s}}\right) \sum_{t=0}^{\infty} \operatorname{Po}(t) \left(\prod_{s=1}^{4} e_{s,p_{s},q_{s}}\right)^{t}$$

$$= \sum_{p_{1}=0}^{1} \sum_{p_{2}=0}^{1} \sum_{p_{3}=0}^{1} \sum_{p_{4}=0}^{1} \sum_{q_{1}=0}^{4} \sum_{q_{2}=0}^{4} \sum_{q_{3}=0}^{4} \sum_{q_{4}=0}^{4} \left(\prod_{s=1}^{4} b_{s,p_{s},q_{s}}\right) \exp\left\{-K\theta\nu\left(1-\prod_{s} e_{s,p_{s},q_{s}}\right)\right\}$$
Model fitting

- 12 parameters
- numerical (*nlminb* in R) (point estimation)
- extensive code testing
- MCMC (Bayes under flat prior) (induced parameters and prediction)

MCMC looks good

Comfirmed vs Detected

62

Table S3-5: Predicted number of extra genes confirmed by a 4^{th} study based on modeling the other three studies.

Leave Out	Predicted Additional	95% Prediction Interval	Observed Additional
DL-1	133	(76, 207)	136
U2OS	128	(75, 199)	114
A549US	144	(89, 212)	188
A549DE	156	(80, 284)	131

Point estimates

	MLE	MEAN
θ	0.128	0.128
lpha	0.003	0.003
β_1	0.083	0.164
β_2	0.340	0.400
eta_3	0.312	0.375
eta_4	0.038	0.125
γ_1	0.063	0.072
γ_2	0.094	0.107
γ_3	0.113	0.127
γ_4	0.084	0.095
ω	0.809	0.902
u	0.000	0.006

Density of False Discovery Rate (FDR) and False Non–Discovery Rate (FNDR)

Density of False Positive Rate (FP) and False Negative Rate (FN)

Predicted number of confirmed genes

What about low estimated off target rate ??

very hard to extend to Negative Binomial

$$P_{\pi}(i,a) = \sum_{t=0}^{\infty} \operatorname{Po}(t) \prod_{s=1}^{4} \sum_{p=0}^{1} \sum_{q=0}^{4} b_{s,p,q} e_{s,p,q}^{t}$$

$$= \sum_{t=0}^{\infty} \operatorname{Po}(t) \sum_{p_{1}=0}^{1} \sum_{p_{2}=0}^{1} \sum_{p_{3}=0}^{1} \sum_{p_{4}=0}^{1} \sum_{q_{1}=0}^{1} \sum_{q_{2}=0}^{1} \sum_{q_{3}=0}^{4} \sum_{q_{4}=0}^{4} \left(\prod_{s=1}^{4} b_{s,p_{s},q_{s}}\right) \left(\prod_{s=1}^{4} e_{s,p_{s},q_{s}}\right)^{t}$$

$$= \sum_{p_{1}=0}^{1} \sum_{p_{2}=0}^{1} \sum_{p_{3}=0}^{1} \sum_{p_{4}=0}^{1} \sum_{q_{1}=0}^{4} \sum_{q_{2}=0}^{4} \sum_{q_{3}=0}^{4} \sum_{q_{4}=0}^{4} \left(\prod_{s=1}^{4} b_{s,p_{s},q_{s}}\right) \sum_{t=0}^{\infty} \operatorname{Po}(t) \left(\prod_{s=1}^{4} e_{s,p_{s},q_{s}}\right)^{t}$$

$$= \sum_{p_{1}=0}^{1} \sum_{p_{2}=0}^{1} \sum_{p_{3}=0}^{1} \sum_{p_{4}=0}^{1} \sum_{q_{1}=0}^{4} \sum_{q_{2}=0}^{4} \sum_{q_{3}=0}^{4} \sum_{q_{4}=0}^{4} \left(\prod_{s=1}^{4} b_{s,p_{s},q_{s}}\right) \exp\left\{-K\theta\nu\left(1-\prod_{s} e_{s,p_{s},q_{s}}\right)\right\}$$

Sensitivity analysis

- large K <==> independent studies
- simpler likelihood
- separate implementation with Negative Binomial gives essentially the same fits

Profile analysis

- 1. gene-level agreement among studies
- 2. functional category analysis
- 3. protein interaction analysis

