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Perspective

Even the simplest models can be interesting, challenging,
and useful for large, high-dimensional data.
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Motivation

Great progress has been made on understanding sparsity for high
dimensional linear models

Many problems have clear nonlinear structure

We are interested in purely functional methods for high dimensional,
nonparametric inference

• no basis expansions
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Additive Models

420 Chapter 23. Nonparametric Regression
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Figure 23.1. Bone Mineral Density Data
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Additive Models

Fully nonparametric methods appear hopeless

• Logarithmic scaling, p = log n (e.g., “Rodeo” Lafferty and
Wasserman (2008))

Additive models are useful compromise

• Exponential scaling, p = exp(nc) (e.g., “SpAM” Ravikumar et al.
(2009))
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Themes of this talk

• Variations on additive models enjoy most of the good statistical
and computational properties of sparse linear models

• Thresholded backfitting algorithms, via subdifferential calculus

• RKHS formulations are problematic

• A little nonparametricity goes a long way
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Outline

• Sparse additive models

• Nonparametric reduced rank regression

• Functional sparse CCA

• The nonparanormal

• Conclusions
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Sparse Additive Models
Ravikumar, Lafferty, Liu and Wasserman, JRSS B (2009)

Additive Model: Yi =
∑p

j=1 mj(Xij) + εi , i = 1, . . . ,n

High dimensional: n� p, with most mj = 0.

Optimization: minimize E
(

Y −
∑

j mj(Xj)
)2

subject to
p∑

j=1

√
E(m2

j ) ≤ Ln

E(mj) = 0

Related work by Bühlmann and van de Geer (2009), Koltchinskii and Yuan
(2010), Raskutti, Wainwright and Yu (2011)
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Sparse Additive Models

C =

{
m ∈ R4 :

√
m2

11 + m2
21 +

√
m2

12 + m2
22 ≤ L

}

π12C =

Geometry
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1.1. Sparse Vectors 3
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Figure 1.1. Lp neighborhoods for various values of p
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1.1. Sparse Vectors 3

p =  0.5 p =  1

p =  1.5 p =  2

Figure 1.1. Lp neighborhoods for various values of p
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Stationary Conditions

Lagrangian

L(f , λ, µ) =
1
2

E
(

Y −
∑p

j=1 mj(Xj)
)2

+ λ

p∑
j=1

√
E(m2

j (Xj))

Let Rj = Y −
∑

k 6=j mk (Xk ) be j th residual. Stationary condition

mj − E(Rj |Xj) + λvj = 0 a.e.

where vj ∈ ∂
√

E(m2
j ) satisfies

vj =
mj√

E(m2
j )

if E(m2
j ) 6= 0

√
Ev2

j ≤ 1 otherwise
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Stationary Conditions

Rewriting,

mj + λvj = E(Rj |Xj) ≡ Pj1 +
λ√

E(m2
j )

mj = Pj if E(P2
j ) > λ

mj = 0 otherwise

This implies

mj =

1− λ√
E(P2

j )


+

Pj
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SpAM Backfitting Algorithm

Input: Data (Xi ,Yi), regularization parameter λ.
Iterate until convergence:

For each j = 1, . . . ,p:

Compute residual: Rj = Y −
∑

k 6=j m̂k (Xk )

Estimate projection Pj = E(Rj |Xj), smooth: P̂j = SjRj

Estimate norm: sj =
√

E[Pj ]2

Soft-threshold: m̂j ←
[
1− λ

ŝj

]
+

P̂j

Output: Estimator m̂(Xi) =
∑

j m̂j(Xij).
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Example: Boston Housing Data

Predict house value Y from 10 covariates.

We added 20 irrelevant (random) covariates to test the method.

Y = house value; n = 506, p = 30.

Y = β0 + m1(crime) + m2(tax) + · · ·+ · · ·m30(X30) + ε.

Note that m11 = · · · = m30 = 0.

We choose λ by minimizing the estimated risk.

SpAM yields 6 nonzero functions. It correctly reports that
m̂11 = · · · = m̂30 = 0.
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Example Fits
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L2 norms of fitted functions versus 1/λ
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RKHS Version
Raskutti, Wainwright and Yu (2011)

Sample optimization

min
f

1
n

n∑
i=1

(
yi −

p∑
j=1

mj(xij)
)2

+ λ
∑

j

‖mj‖Hj + µ
∑

j

‖mj‖L2(Pn)

where ‖mj‖L2(Pn) =
√

1
n
∑n

i=1 m2
j (xij).

By Representer Theorem, with mj(·) = Kjαj ,

min
f

1
n

n∑
i=1

(
yi −

p∑
j=1

Kjαj

)2
+ λ

∑
j

√
αT

j Kjαj + µ
∑

j

√
αT

j K 2
j αj

Finite dimensional SOCP, but no scalable algorithms known.
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Open Problems

• Under what conditions do the backfitting algorithms converge?

• What guarantees can be given on the solution to the infinite
dimensional optimization?

• Is it possible to simultaneously adapt to unknown smoothness
and sparsity?
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Multivariate Regression

Y ∈ Rq and X ∈ Rp. Regression function M(X ) = E(Y |X ).

Linear model M(X ) = BX where B ∈ Rq×p.

Reduced rank regression: r = rank(B) ≤ C.

Recent work has studied properties and high dimensional scaling of
reduced rank regression where nuclear norm

‖B‖∗ :=

min(p,q)∑
j=1

σj(B)

as convex surrogate for rank constraint (Yuan et al., 2007; Negahban
and Wainwright, 2011)
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Nonparametric Reduced Rank Regression
Foygel, Horrell, Drton and Lafferty (2012)

Nonparametric multivariate regression M(X ) = (m1(X ), . . . ,mq(X ))T

Each component an additive model

mk (X ) =

p∑
j=1

mk
j (Xj)

What is the nonparametric analogue of ‖B‖∗ penalty?
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Recall: Sparse Vectors and `1 Relaxation

sparse vectors convex hull
‖X‖0 ≤ t ‖X‖1 ≤ t

�

�

�

�

�

�

�

�
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Low-Rank Matrices and Convex Relaxation

low rank matrices convex hull
rank(X ) ≤ t ‖X‖∗ ≤ t
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Nuclear Norm Regularization

Algorithms for nuclear norm minimization are a lot like iterative soft
thresholding for lasso problems.

To project a matrix B onto the nuclear norm ball ‖X‖∗ ≤ t :

• Compute the SVD:
B = U diag(σ) V T

• Soft threshold the singular values:

B ← U diag(Softλ(σ)) V T
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Low Rank Functions

What does it mean for a set of functions m1(x), . . . ,mq(x) to be low
rank?

Let x1, . . . , xn be a collection of points.

We require the n × q matrix M(x1:n) = [mk (xi)] is low rank.

Stochastic setting: M = [mk (Xi)]. Natural penalty is

‖M‖∗ =

q∑
s=1

σs(M) =

q∑
s=1

√
λs(MT M)

Population version:

|||M|||∗ :=
∥∥∥√Cov(M(X ))

∥∥∥
∗

=
∥∥∥Σ(M)1/2

∥∥∥
∗
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Constrained Rank Additive Models (CRAM)

Let Σj = Cov(Mj). Two natural penalties:∥∥∥Σ
1/2
1

∥∥∥
∗

+
∥∥∥Σ

1/2
2

∥∥∥
∗

+ · · ·+
∥∥∥Σ

1/2
p

∥∥∥
∗∥∥∥(Σ

1/2
1 Σ

1/2
2 · · ·Σ1/2

p )
∥∥∥
∗

Population risk functional (first penalty)

1
2

E
∥∥∥Y −

∑
j

Mj(Xj)
∥∥∥2

2
+ λ

∑
j

∣∣∣∣∣∣Mj
∣∣∣∣∣∣
∗
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Stationary Conditions

Subdifferential is ∂|||F |||∗ =

{(√
E(FF>)

)−1
F + H

}
where

|||H|||sp ≤ 1, E(FH>) = 0, E(FF>)H = 0

Let P(X ) := E(Y |X ) and consider optimization

1
2

E
∥∥Y −M(X )

∥∥2
2 + λ |||M|||∗

Let E(PPT ) = U diag(τ) UT be the SVD. Define

M = U diag([1− λ/
√
τ ]+) UT P

Then M is a stationary point of the optimization, satisfying

E(Y |X ) = M(X ) + λV (X ) a.e., for some V ∈ ∂ |||M|||∗
26



CRAM Backfitting Algorithm (Penalty 1)

Input: Data (Xi ,Yi), regularization parameter λ.
Iterate until convergence:

For each j = 1, . . . ,p:

Compute residual: Rj = Y −
∑

k 6=j f̂k (Xk )

Estimate projection Pj = E(Rj |Xj), smooth: P̂j = SjRj

Compute SVD: 1
n P̂j P̂T

j = U diag(τ) UT

Soft-threshold: M̂j = U diag([1− λ/
√
τ ]+)UT P̂j

Output: Estimator M̂(Xi) =
∑

j M̂j(Xij).
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Example

Data of Smith et al. (1962), chemical measurements for 33 individual
urine specimens.

q = 5 response variables: pigment creatinine, and the concentrations
(in mg/ml) of phosphate, phosphorus, creatinine and choline.

p = 3 covariates: weight of subject, volume and specific gravity of
specimen.

We use Penalty 2 with local linear smoothing.

We take λ = 1 and bandwidth h = .3.
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Xj \ Yk pigment creatinine phosphate phosphorus choline
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Statistical Scaling for Prediction

Let F be class of matrices of functions that have a functional SVD

M(X ) = UDV (X )>

where E(V>V ) = I, and V (X ) = [vsj(Xj)] with each vsj in a
second-order Sobolev space. Define

Mn =

{
M : M ∈ F , ‖D‖∗ = o

(
n

q + log(pq)

)1/4
}
.

Let M̂ minimize the empirical risk 1
n
∑

i ‖Yi −
∑

j Mj(Xij)‖22 over the
classMn. Then

R(M̂)− inf
M∈Mn

R(M)
P−→ 0 .
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Nonparametric CCA

Canonical correlation analysis (CCA, Hotelling, 1936) is classical
method for finding correlations between components of two random
vectors X ∈ Rp and Y ∈ Rq.

Sparse versions have been proposed for high dimensional data
(Witten & Tibshirani, 2009)

Sparse additive models can be extended to this setting.
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Sparse Additive Functional CCA
Balasubramanian, Puniyani and Lafferty (2012)

Population version of optimization:

max
f∈F , g∈G

E (f (X )g(Y )) subject to

max
j

E(f 2
j ) ≤ 1,

p∑
j=1

√
E(f 2

j ) ≤ Cf

max
k

E(g2
k ) ≤ 1,

q∑
k=1

√
E(g2

k ) ≤ Cg

Estimated with analogues of SpAM backfitting, together with
screening procedures. See ICML paper.
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Regression vs. Graphical Models

assumptions regression graphical models

parametric lasso graphical lasso

nonparametric sparse additive model nonparanormal
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The Nonparanormal
Liu, Lafferty and Wasserman, JMLR 2009

A random vector X = (X1, . . . ,Xp)T has a nonparanormal distribution

X ∼ NPN(µ,Σ, f )

in case
Z ≡ f (X ) ∼ N(µ,Σ)

where f (X ) = (f1(X1), . . . , fp(Xp)).

Joint density

pX (x) =
1

(2π)p/2|Σ|1/2 exp
{
−1

2
(f (x)− µ)T Σ−1 (f (x)− µ)

} p∏
j=1

|f ′j (xj)|

• Semiparametric Gaussian copula
34



Examples
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The Nonparanormal

• Define hj(x) = Φ−1(Fj(x)) where Fj(x) = P(Xj ≤ x).

• Let Λ be the covariance matrix of Z = h(X ). Then

Xj q Xk

∣∣∣∣∣ Xrest

if and only if Λ−1
jk = 0.

• Hence we need to:

1 Estimate ĥj(x) = Φ−1(F̂j(x)).

2 Estimate covariance matrix of Z = ĥ(X ) using the glasso.
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Winsorizing the CDF

Truncation to estimate F̂j for n > p:

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Winsorized Estimator

We truncate the empirical distribution function

F̂j(t) ≡
1

n

n∑

i=1

1n

X(i)
j ≤t

o.

as

F̃j(x) =






δn if F̂j(x) < δn

F̂j(x) if δn ≤ F̂j(x) ≤ 1 − δn

(1 − δn) if F̂j(x) > 1 − δn,

where

δn ≡
1

4n1/4
√

π log n
.

Winsorized Estimator

We truncate the empirical distribution function

F̂j(t) ≡
1

n

n∑

i=1

1n

X(i)
j ≤t

o.

as

F̃j(x) =






δn if F̂j(x) < δn

F̂j(x) if δn ≤ F̂j(x) ≤ 1 − δn

(1 − δn) if F̂j(x) > 1 − δn,

where

δn ≡
1

4n1/4
√

π log n
.
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Properties

• LLW (2009) show that the resulting procedure has the same
theoretical properties as the glasso, even with dimension p
increasing with n.

• The truncation of the empirical distribution is crucial for the
theoretical results when p is large, although in practice it does
not seem to matter too much.

• If the nonparanormal is used when the data are actually Normal,
little efficiency is lost.
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Gene-Gene Interactions for Arabidopsis thaliana

source: wikipedia.org

Dataset from Affymetrix microarrays,
sample size n = 118, p = 40 genes
(isoprenoid pathway).

39



Example Results

NPN glasso difference
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Transformations for 3 Genes

2 4 6 8

3
4

5
6

7
8

9
10

x5

6 7 8 9 10

8.
0

8.
5

9.
0

9.
5

10
.0

10
.5

11
.0

x8

1 2 3 4 5

2
3

4
5

6

x18

• These genes have highly non-Normal marginal distributions.

• The graphs are different at these genes.
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Graphs on the S&P 500

• Data from Yahoo! Finance (finance.yahoo.com).

• Daily closing prices for 452 stocks in the S&P 500 between 2003
and 2008 (before onset of the “financial crisis”).

• Log returns Xtj = log
(
St ,j/St−1,j

)
.

• Winsorized to trim outliers.

• In following graphs, each node is a stock, and color indicates
GICS industry.

Consumer Discretionary Consumer Staples
Energy Financials
Health Care Industrials
Information Technology Materials
Telecommunications Services Utilities
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S&P Data: Glasso vs. Nonparanormal
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The Nonparanormal SKEPTIC
Liu, Han, Yuan, Lafferty & Wasserman, 2012

Assuming X ∼ NPN(f ,Σ0), we have

Σ0
jk = 2 sin

(π
6
ρjk

)
where ρ is Spearman’s rho:

ρjk := Corr
(
Fj(Xj),Fk (Xk )

)
.

Empirical estimate:

ρ̂jk =

∑n
i=1(r i

j − r̄j)(r i
k − r̄k )√∑n

i=1(r i
j − r̄j)2 ·

∑n
i=1(r i

k − r̄k )2
.

Similar relation holds for Kendall’s tau.
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The Nonparanormal SKEPTIC

Using a Hoeffding inequality for U-statistics, we get

max
jk

∣∣∣Σ̂ρ
jk − Σ0

jk

∣∣∣ ≤ 3
√

2π
2

√
log d + log n

n
,

with probability at least 1− 1/n2.

Can thus estimate the covariance at the parametric rate

Punch line: For graph and covariance estimation, no loss in statistical
or computational efficiency comes from using Nonparanormal rather
than Normal graphical model.
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Conclusions

• Thresholded backfitting algorithms derived from subdifferential
calculus

• RKHS formulations are problematic

• Theory for infinite dimensional optimizations still incomplete

• Many extensions possible: Nonparanormal component analysis,
etc.

• Variations on additive models enjoy most of the good statistical
and computational properties of sparse linear models, with
relaxed assumptions

• We’re building a toolbox for large scale, high dimensional
nonparametric inference.

46


